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Abstract. Shallow landslides pose a risk to infrastructure and residential areas. Therefore, we developed SlideforMAP, a
probabilistic model that allows for a regional assessment of shallow landslide probability while considering the effect of
different scenarios of forest cover, forest management and rainfall intensity. SlideforMAP uses a probabilistic approach by
distributing hypothetical landslides to uniformly randomized coordinates in a 2D space. The surface areas for these hypothetical
landslides are derived from a distribution function calibrated on observed events. For each generated landslide, SlideforMAP
calculates a factor of safety using the limit equilibrium approach. Relevant soil parameters are assigned to the generated
landslides from log-normal distributions based on mean and standard deviation values representative for the study area. The
computation of the degree of soil saturation is implemented using a stationary flow approach and the topographic wetness
index. The root reinforcement is computed by root proximity and root strength derived from single tree detection data. The
ratio of unstable landslides to the number of generated landslides, per raster cell, is calculated and used as an index for
landslide probability. We performed a calibration of SlideforMAP for three test areas in Switzerland with a reliable landslide
inventory, by randomly generating 1000 combinations of model parameters and then maximising the Area Under the Curve
(AUC) of the Receiver Operation Curve. The test areas are located in mountainous areas ranging from 0.5 — 7.5 km? with
mean slope gradients from 18 - 28°. The density of inventoried historical landslides varies from 5 — 59 slides/km?. AUC values
between 0.64 and 0.93 with the implementation of single-tree detection indicated a good model performance. A qualitative
sensitivity analysis indicated that the most relevant parameters for accurate modeling of shallow landslide probability are the
soil thickness, soil cohesion and the precipitation intensity/transmissivity ratio. Furthermore, we show that the inclusion of
single tree detection improves overall model performance compared to assumptions of uniform vegetation. In conclusion, our

study shows that the approach used in SlideforMAP can reproduce observed shallow landslide occurrence at a catchment scale.
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1 Introduction

Landslides pose serious threats to inhabited areas world-wide. They are the cause of 17% of the fatalities due to natural
hazards in the period of 1994-2013 (Kjekstad and Highland, 2009). Average annual monetary losses over the period of 2010—
2019 are approximately 25 billion US dollars (Munich RE, 2018). In addition, Swiss Re Institute (2019) notes a significant
increase in damages by hydrologically related natural hazards over the past 5 years, including hydrologically-triggered shallow
landslides. This has been attributed to increased urbanization in risk-prone areas and to an increase in heavy rainfall events.
Furthermore, Swiss Re Institute (2019) notes that the modelling of shallow landslides is underdeveloped compared to the
severity of the danger they pose. In mountainous regions, landsliding is a prominent natural hazard. For instance, in the Alpine
parts of Switzerland, 74 people have died as a result of landslide events between 1946 and 2015 (Badoux et al., 2016). The
annual cost of landslide protective measures alone is approximately 15 million CHF each year (Dorren and Sandri, 2009).
No distinction is made between deep-seated and shallow landslides in these numbers. Rain induced shallow landslides are
one of the most important and dangerous types of mass movement in mountainous regions (Varnes, 1978). Shallow landslides
are defined as translational mass movement with a maximum soil thickness of 2 m and are the main focus in this paper.
Fortunately, improvements in hazard assessment have significantly decreased the number of shallow landslide related deaths
over the past decades (Badoux et al., 2016). This general trend is also supported by long-term data (Munich RE, 2018). The
fatality decrease is related to better organizational measures regarding hazards, such as warning based evacuations and road
closures. Biological measures, such as management of protection forests, also play a role in mitigation of natural hazards. The
latter role is especially important for (shallow) landslides, rockfall, snow avalanches and debris flows (Corominas et al., 2014).

Modelling of shallow landslide triggering has been an ongoing process. Shallow landslide probability has been modelled
mostly using a deterministic approach (Corominas et al., 2014). The deterministic approach is defined by using average values
of risk components and resulting in a univariate result (Corominas et al., 2014). An example of a deterministic approach in
this sense is the SHALSTAB model of Dietrich and Montgomery (1998). Other contemporary examples are TRIGRS (Baum
et al., 2002) and SLIP (Montrasio et al., 2011), the latter showing good results in assessing soil saturation in a spatially
heterogeneous way. In a comparative research it was noted that the SHALSTAB approach was not representative for the spatial
variability of the parameters at a small scale (Cervi et al., 2010). In recent decades, the development of probabilistic models
and statistical methods has improved model performance for quantifying landslide probability and the interpretation of their
results (Corominas et al., 2014). In statistical methods (e.g. Baeza and Corominas, 2001), there is no explicit accounting of
physical processes. Probabilistic methods could take physical processes into account and additionally quantify the reliability
of the results considering the probability distribution of values of one or more input parameters (Salvatici et al., 2018). The
output is a probability rather than a univariate result. A prime example of a probabilistic model in SINMAP (Pack et al.,

1998). Generally, these models perform better than deterministic ones (Park et al., 2013; Zhang et al., 2018), likely due to
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natural landslides having a mode of movement significantly controlled by internal inhomogeneities and discontinuities in the
soil (Varnes, 1978). These control mechanisms are unpredictable at small-scales, making it hard for deterministic models to
identify exact locations of instabilities and adjust the heterogeneous parametrization accordingly. Below we go into more detail
on the initiation of shallow landslides.

Initiation of instability is a process that combines mechanical and hydrological processes on different spatial and temporal
scales and can thereby be very localized, with successive movement increasing the magnitude of the event (Varnes, 1978).
In alpine environments, instabilities are typically triggered by rainfall, leading to soil wetting and ensuing increase of pore
pressure, which destabilizes the soil and can then initiate soil movement. An increase in pore pressure can build up in minutes
to months following a rainfall event (Bordoni et al., 2015; Lehmann et al., 2013), where rapid pore pressure changes are
attributed to macropore flow and slow pore pressure changes to the matrix water flow. The higher the horizontal hydraulic
conductivity of the soil, the faster pore pressure changes can develop (Iverson, 2000). The reaction of pore pressure to rainfall
is variable and highly dependent on soil type. A key experimental study is the work of Bordoni et al. (2015) in which in-situ
measurements were taken on a slope with clayey—sandy silt and clayey—silty sand soils that experienced a shallow landslide.
It showed that intense rainfall and a rapid increase of pore pressure were the triggering factors of the landslide. Over the
duration of the measurements, comparable saturation degrees have been reached both during prolonged and intense rainfall
events. Prolonged rainfall did not result in the pore pressure required to trigger a shallow landslide. Similar behaviour has been
observed in an artificially triggered landslide in Switzerland (Askarinejad et al., 2012; Lehmann et al., 2013; Askarinejad et al.,
2018). In the first wetting phase (year 2008), homogeneously induced rainfall with a duration of 3 days, an accumulated rainfall
of 1700 mm and an intensity of 35 mm/hr, induced a maximum pore water pressure of 2 kPa at 1.2 m soil depth, resulting in no
landslide. In the second phase of the experiment (year 2009), the rainfall was heterogeneous, with a maximum intensity of 50
mm/hr in the upper part of the slope that induced an increase of pore water pressure up to 5 kPa at 1.2 m soil depth, resulting
in the triggering of a shallow landslide. The triggering was reached after 15 hours with a cumulative rainfall of 150 mm. In
addition, a computational study by Li et al. (2013) showed that at a high rainfall intensity (80 mm/hr), the pore water pressure
at a depth of 1 m reached a constant value within 1 hour. For a lower intensity of 20 mm/hr, this took approximately 3 hours.
This shows that landslide triggering is related to a fast build up of pore water pressure proportional to rainfall intensity. The
work of Wiekenkamp et al. (2016) suggests that preferential flow dominates the runoff in a heterogeneous catchment during
extreme precipitation events. Water can move downslope very rapidly through macropores (in experimental conditions) under
both saturated and unsaturated conditions (Mosley, 1982). The role of macropores can be important in a closed soil structure
or in the presence of a shallow impermeable bedrock, where they control the soil hydrological behavior. Further examples of
the influence of macropores on hillslope hydrology in various soil types are presented in the work of Weiler and Naef (2003)
and Bodner et al. (2014). Additionally, Torres et al. (1998) demonstrates the strong role of macropore in preferential flow paths
for landslide triggering in an artificial rain experiment in a loamy sandy soil. Montgomery et al. (2002) and Montgomery and
Dietrich (2004) also underline the importance of macropore flow, but state that the vertical flow governs response time and

build up of pore pressure rather than the lateral flow in their study areas.
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The mechanical aspect of shallow landslide initiation usually results from local instabilities that could extend indefinitely in a
infinite constant slope if the shear resistance is low (Varnes, 1978). In complex topography, however, the passive earth pressure
at the bottom of the triggering zone reacts with a resisting force, contributing thereby to landslide stabilisation (Schwarz et al.,
2015; Cislaghi et al., 2018). It is important to note here that the passive earth pressure is activated in a later phase of the
triggering of a shallow landslide and should not be added to active earth pressure or tensile forces acting along the upper half
of the shallow landslide (Cohen and Schwarz, 2017).

Besides hydrology, slope and soil characteristics, vegetation plays a key role in landslide triggering (Salvatici et al., 2018;
Corominas et al., 2014; Greenway, 1987; Gonzélez-Ollauri and Mickovski, 2014). The role of vegetation can be subdivided
in hydrological and mechanical effects. Vegetation influences the effective soil moisture by interception, increased evapotran-
spiration and increased infiltration (Greenway, 1987; Masi et al., 2021). Over the short timescale with intense rainfall these
hydrological effects are negligible, but do play an important role in pre-event disposition of slope instability (Feng et al., 2020).
Among the mechanical effects, root reinforcement, mobilized during soil movement, is an essential component (Greenway,
1987; Schwarz et al., 2010). It is a leading factor in the failure criterion for many vegetated slopes (Dazio et al., 2018). In
modelling studies, the influence of root reinforcement on slope stability is often quantified as an apparent added cohesion
(Wu et al., 1978; Borga et al., 2002). This apparent cohesion in turn can be added in the limit equilibrium computation of a
Safety Factor (SF). Using a Monte Carlo approach of this method (Zhu et al., 2017), it was found that the SF can gain up to
37% stability when including vegetation root reinforcement. In another study in New Zealand, trees showed an effect on soil
stability up to 11 meter away from their position and had the ability to prevent 70% of instability events (Hawley and Dymond,
1988). Computational research furthermore shows that root reinforcement by the larger roots is dominant over the smaller
roots, even though they are far less numerous (Vergani et al., 2014). The planting pattern and management of the vegetation
can have a profound effect on root reinforcement and thus on slope stability (Sidle, 1992). Therefore a detailed approach to
calculate the spatial distribution of root reinforcement is important for slope stability calculations. Root reinforcement can be
subdivided into two major components: Basal root reinforcement and lateral root reinforcement. Basal root reinforcement is
the anchoring of tree roots through the sliding plane into the deeper soil. Lateral root reinforcement is the reinforcement from
roots on the edges of the potential slide that stick into the soil outside of the potential slide (Schwarz et al., 2010). In contrast,
the mechanical influence of vegetation weight on slope stability is often considered negligible (Reinhold et al., 2009). In cur-
rent shallow landslide probability modelling, whether deterministic or probabilistic, root reinforcement is generally modelled
in a simplified way, for example by including homogeneous root reinforcement (Montgomery et al., 2000). These methods
limit the evaluation of the effects of different forest spatial properties such as forest structure, and the contribution of different
root reinforcement mechanisms to slope stabilisation (Schwarz et al., 2012). In order to overcome this limitation, we develop
a shallow landslide probability model, named SlideforMAP. To ensure a wide applicability, SlideforMAP is designed for a re-
gional scale. In concrete terms this means SlideforMAP should be applied to study areas of 1 - 1000 km?. The main objectives

of this work are to:

— Present the SlideforMAP model as a tool for shallow landslide probability assessment.
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— Show a calibration of SlideforMAP through a performance indicator over three study areas with 78 field recorded shallow

landslide events in Switzerland
— Analyze the expected improvement in the performance of SlideforMAP with a detailed inclusion of vegetation

— Provide a qualitative sensitivity analysis and identify the parameters that are of greatest influence on the slope stability

Strong emphasis within the SlideforMAP framework and this paper is put on the quantification of root reinforcement on a
regional scale. We will show the effect of accurate, quantitative, representation of root reinforcement has on slope stability
over three study areas. Simplifications, lack of a temporal component and calibration constraints make it impossible to use
SlideforMAP as an exact forecast tool. The main application for SlideforMAP is as a tool to quantify the effects of vegetation

planting, growth and/or management for land managers in relation to shallow landslides.

2 Methods: SlideforMAP
2.1 Probabilistic modelling concept

SlideforMAP is a probabilistic model that generates a 2D raster of shallow landslide probability (Pj). It is an extension of
the approach of Schwarz et al. (2010) and Schwarz et al. (2015). It generates a large number of hypothetical landslides (HLs,
singular: HL) within the limits of a pre-defined region of interest. These HLs are assumed to have an elliptic shape and are
characterized by a mix of deterministic and probabilistic parameters, from which the landslide stability is computed following
the limit equilibrium approach (section 2.2). The probabilistic parameters are the HL location, its surface area and its soil
cohesion, internal friction angle and soil thickness parameters (drawn from appropriate random distributions). The location
and surface area are approached in a probabilistic way to compute a spatial probability distribution. The soil parameters
are probabilistic because we assume their variation is high and important in mountainous environments. The deterministic
parameters include several vegetation parameters and hydrological soil parameters. A key originality of the approach stems
from the fact that the vegetation parameters can be derived from single-tree scale information (section 2.5). The number of
generated landslides is high enough such that each point in a region of interest is overlain by multiple HLs from which a relative
P can be estimated by considering the ratio of unstable HLs. A general flow chart of SlideforMAP is given in Fig. 1. More

details on the modules follow in the subsequent sections.
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Figure 1. Flowchart of the computational steps in SlideforMAP. Separate sections are outlined in colors. The central workflow is highlighted

in red.

2.2 Stability estimation

The estimate of the stability of each HL is calculated following the limit equilibrium approach (described well in the work of
Day (1997)). In this method, a landslide is assumed to be stable if its safety factor (SF) is greater than 1.0. The SF is computed

as the ratio of the parallel to slope stabilizing forces and the destabilizing ones:

Fres
SF=——, (1
Fpar

where Fp,,r [N] is the force parallel to the slope, Fies [N] is the maximum mobilized resistance force. The assumed forces that

act upon a hypothetical landslide are schematically shown in Fig. 2.
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Figure 2. Schematic overview of the forces acting upon a hypothetical landslide, as assumed in SlideforMAP. Blue indicates the stabilizing
forces and orange indicates the destabilizing forces. Lateral root reinforcement only acts upon the green part of the hypothetical landslide,
where tension takes place. In the red is the compression zone in the shallow landslide. Basal root reinforcement and soil shear strength act

on the whole potential failure surface.

As seen in Fig. 2, all landslides are assumed to be elliptical (Rickli and Graf, 2009) with a ratio between length and width, Iy,
= 2. The forces assumed in SlideforMAP are typical for the second stage of the activation phase: the displacement at which
lateral root reinforcement is maximized under tension along the tension crack and at which passive earth pressure, lateral root
compression and lateral soil cohesion are assumed to not be fully mobilized (Cohen and Schwarz, 2017). The magnitude of
the stabilisation’s effects of the above mentioned mechanisms considerably change depending on the stiffness of the landslide
material and the dimension of the landslide. The quantification of those effects are still a challenge for slope stability calculation
at large scales. In order to develop a conservative approach, we neglect those effects in the stability calculations of SlideforMAP.
The tension crack is assumed to span the entire upper half of the circumference of the HL and has an assumed length in the
range of 0.01 - 0.1 m (Schwarz et al., 2015) depending on the root distribution. This behaviour of progressive shallow landslide

failure with a tension crack opening up in the upper half of a shallow landslides is described in detail in Cohen et al. (2009) and
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Askarinejad et al. (2012). This is different from the assumptions taken in most landslide models involving root reinforcement
(e.g. Montgomery et al., 2000; Schmidt et al., 2001), that assume lateral root reinforcement to be activated at the same time
along the entire landslide perimeter. Quantification of the forces in the safety factor calculation follows the limit equilibrium

assumptions. This method is outlined in equations 2 to 5 below:

Fpar = g(Misoit + My + Myeg) - sin(s), 2)
Fros = 3 Riat+ Fossus: 3)
Frespas = Als - Coil + Als - Roas + Fpereft - tan(e), 4
Frereft = g - (Misoil + My + Miyeg) - €05(S) — Puagers 5

In these equations, M is the soil mass [kg], my, is the mass of the water [kg], my., is the vegetation mass [kg], g is the
gravitational acceleration assumed at 9.81 [m/s?], s is the slope [°], ¢js is the circumference of the landslide [m], Rj, is the
lateral root reinforcement [N/m], Fiespas is the basal resisting force, Ay [m?] is the area of the landslide, Cyo;i [Pa] is the soil
cohesion [Pa], Ry, is the basal root reinforcement [Pa], Fperefr is the effective perpendicular resisting forces [N], ¢ is the angle

of internal friction [°] and Py is the water pressure [Pa].
2.3 Placement and extent

The location of the center of mass of the HLs is generated from two uniform distributions covering the latitudinal and longitu-
dinal extent of the study area. HLs on the edge of the study area are taken into account as well, though cut to the extent of the
study area in the later spatial processes of SlideforMAP. The total number of HLs is determined by multiplying the landslide
density parameter (p;s) with the total surface area of the study area. This number is then uniformly sampled with replacements
from the latitudinal and longitudinal distribution. The value of pjs should be high enough such that each raster cell of the study
domain is covered by several HLs. The HL surface area is sampled from an inverse gamma distribution following the work
of Malamud et al. (2004), which showed that the probability distribution of shallow landslide surface areas follows an inverse
gamma distribution (Johnson and Kotz, 1970). The parameterization of a three parameter inverse gamma distribution is shown

in equation 6 below.

(b+1)
_ ! a (%)
Pa= a-T(b) <Als—c) ¢ ’ ©



190

195

200

205

210

215

where Aj; is the area of the landslide, P, is the probability of A, I" is the gamma function, a, b and ¢ are the scale, shape
and location parameters. These distributional parameters are estimated using the landslide surface area data of the inventory
(section 3). The estimation is based on minimizing the Root Mean Square Error (RMSE) between the histogram counts (size
of histogram bins = 10) of the surface areas from the inventory and the distribution of equation 6. Users can follow this
approach with an inventory or use a custom parametrization. The maximum HL surface area is set for all case studies based
on the maximum surface area observed in the landslide inventory. This maximum is set to 3000 m?, based on the rounded up

maximum value of a well-distributed landslide inventory in Switzerland (section 3.3), but users can vary this parameter.
2.4 Soil parameters

Steep-sloped mountainous areas are prone to extreme and unpredictable heterogeneity in soil parameters (Cohen et al., 2009).
This makes a heterogeneous deterministic parameterization inaccurate, even if based on observations. To overcome this lim-
itation, a probabilistic approach in the parameterization of soil parameters of the model is applied. Values of soil cohesion
and internal friction angle of each HL are randomly generated from independent probability distributions. This is an approach
similar to the one taken in Griffiths et al. (2009), who use the log-normal distribution for soil cohesion only and Pack et al.
(1998) who use a uniform distribution for soil cohesion and friction angle. We choose the log-normal distributions in our
parametrization because it has shown to give a good fit (Fig. A1 with a comparison to a normal distribution in the Appendix;
Corresponding code in the supplementary material), it ensures generating positive values only and its accuracy has been shown
in Griffiths et al. (2009). The distribution is parametrized by the mean and the standard deviation of observed samples. The
mean and the standard deviation are based on different information such as field soil classification or a geotechnical analysis.
The soil cohesion in our computations is assumed to be representative for saturated, drained and unconsolidated conditions.
Soil thickness is parametrized following a different approach to account for the shallow soils found on steep slopes. An initial
soil thickness (hg) is derived from a log-normal distribution. This is then multiplied by a correction factor which is a function
of slope inclination as shown in equation 7. Soil thickness is defined here perpendicular to the slope as opposed to soil depth,

that is measured in the vertical direction.

Hsoil:hs0i1<1fpj\/’(5§5|ﬂ1701))7 (7)

where Hy,; [m] is the soil thickness and s is the observed slope, extracted for the HL. Pp/(S < s|pu1,071)] is the cumulative
normal distribution of the slope S with 1y = a-my, and o1 = b-oj. my, and o}, are the mean and standard deviation of the slope
angle of shallow landslides from an inventory or a best guess. a and b are estimated by fitting data from a landslide inventory
containing slope angle and soil thickness. Other relations than used by SlideforMAP to correct the soil thickness to the slope

(e.g. Prancevic et al., 2020) are possible as well.
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2.5 Mechanical effects of vegetation

Three properties of vegetation are included in the model. These are vegetation weight, lateral root reinforcement and basal
root reinforcement. SlideforMAP only incorporates trees and ignores possible effects by shrubs, grasses and other vegetation.
This choice is due to the fact that trees are predominant in influencing slope stability (Greenway, 1987). Single tree detection
(Korpela et al., 2007; Menk et al., 2017) serves as a basis to estimate these properties. Single tree position and dimensions
are derived from a Canopy Height Model (CHM), which is the difference between the Digital Surface Model (DSM) and the
Digital Elevation Model (DEM), using a local maxima detection method (LMD) described in the work of Eysn et al. (2015)
and Menk et al. (2017). First, the trees are rasterized. The resolution of this raster has to exceed the effective radial dimension
of the trees, in order to calculate representative vegetation parameter values at stand scale. The weight of the tree is calculated
by using the tree height and the Diameter at Breast Height (DBH), assuming that the trees are cone shaped. The tree mass,
Myeg, Used in equation 2 and 5, is calculated assuming a mean tree density (pgee) of 850 kg/m3. Root reinforcement is added
in the model using the method proposed by Schwarz et al. (2012), which relates the root reinforcement to the distance to a
tree, the size of the tree and the tree species. Two rasters are computed. A raster with the nearest distance to a tree (Dyrees)
and a raster with the average DBH of all trees within an assumed maximum distance of root influence (Dyrees max), Set at 15 m.
We compute actual lateral root reinforcement for a given grid cell as a function of maximum lateral root reinforcement and
soil thickness, which reduces maximum lateral root reinforcement. The maximum lateral root reinforcement, R R,,,x [N/m], is

computed as a function of Dy..s and DBH (Moos et al., 2016; Gehring et al., 2019) according to equation 8 below:

Dtrees

max = (¢- DBH)-T e
Rt = (¢ )-Tror (DBH-18.5

0&1,51) ; ®)

In equation 8§, c is a fitting parameter in N/m? based on the work of Schwarz et al. (2010). DBH is in [m]. The Tppr(x|aq,51)
is the gamma probability density function (I'ppr) evaluated as function of x with shape parameter «; and scale parameter
1. Both o and 7 are dimensionless. The parameters should ideally reflect any knowledge about how root reinforcement

decreases with distance for specific tree species. The 'ppr is written as:

Ippr(z|a,B) =

BF(a) ,L>,LL,’}/7ﬂ>0, (9)

The location parameter 4 is defined as zero in our application. Soil thickness reduces the effects of lateral root reinforcement
that contributes to stabilize a shallow landslide. This decrease of lateral root reinforcement with soil thickness is obtained as

follows:

Hil
Ri = RRoma - / Teor (H
0

CYQ,BQ) dH7 (10)

10
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In this equation I'ppr(H |, B2) is the I'ppr for the normalized root distribution over the soil thickness with shape parameter
a2 and scale parameter (5. In this equation 2 has the unit [m] in order to make the integral of the I'ppr dimensionless. Slide-
forMAP computes this integral by numerical approximation. This method computes the root reinforcement where only one tree
can influence a cell. A spatially representative minimum root reinforcement value is calculated in a stand assuming a triangular
lattice (Giadrossich et al., 2020). Under this assumption, three root systems interact additively. Basal root reinforcement, Ry,
is assumed to be proportional to lateral root reinforcement and dependent on soil thickness according to the relation shown in

equation 11:

Ryas = RRumax - I'por (Hoil| 2, B2) (11)

where I'ppr ( Hyoit| v, B2) is the normalized root distribution in the vertical direction. The I'ppr in this application the unit [m!]

which leads to a unit of [Pa] for the term Ry,s, under the assumption of isotropic conditions.
2.6 Hydrology

The hydrological module in SlideforMAP is based on the TOPOG model (O’Loughlin, 1986), which includes a specific to-
pographic index as inspired by Kirkby (1975). In this framework we specifically assume macropore flow dominates hillslope
hydrology. The identical model is used in the SHALSTAB stability model (Montgomery and Dietrich, 1994) and SINMAP
(Pack et al., 1998). It is assumed that the saturated soil fraction of each cell holds a relation to its specific catchment area,
its slope angle, a constant precipitation intensity and the soil transmissivity (equation 12). This is in close correspondence
to the parameterization used in the widely used TOPMODEL (Beven and Kirkby, 1979). Limitations of this approach is the
assumption of uniform soil transmissivity, no inclusion of initial conditions, steady state flow and lateral flow governing of soil
moisture pattern. These limitations and generalizations make the model insufficient in capturing detailed hydrological pattern,
especially in mountainous regions modelled by SlideforMAP. Despite this, we assume the approach to be suitable for a general
pattern of saturated fraction and subsequent pore pressure. In addition to this shortcoming we ignore the apparent hydrolog-
ical cohesion (Chae et al., 2017) prominent in unsaturated fine and clayey soils, but of little prominence in other conditions

(Montrasio and Valentino, 2008). The saturated soil fraction, i}, [-], of a soil column is defined in equation 12 below:

I-a
= — 12
T b sin(s)’ (12)
I [m/s] is the constant precipitation intensity, T’ [m?/s] is the transmissivity, a is the contributing catchment area [m?], s is the
slope inclination [°], and b is the contour length [m] that in our model corresponds to the cell size (see Section 3.2 for details

on its computation). We assume dominant macropore flow, which has the ability to quickly drain a catchment and potentially

*

reach a state of stationary flow. Using this estimated h;,

pore water pressure is computed as:

Pyater = Hyoir * COS(S) : h:at * g Pwater, (13)

11
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where Py [Pa] is the pore water pressure (used in equation 5), Hy; [m] is the soil thickness, s is the slope angle, g=9.81 m/s?
is the gravitational acceleration, pyaer is the density of water assumed equal to 998 kg/m?. The same value for water density is

used in the computation of the water mass in the HL.
2.7 Model initialisation

The model has a total of 3 probabilistic parameters and 15 deterministic parameters (Table 1). The deterministic parameters
as well as the distributional parameters for the probabilistic parameters are determined from in-situ data or from literature
(Section 3). In a first step of the workflow for the application of SlideforMAP, after assigning the deterministic parameter
values and sampling a value for each probabilistic parameter, a minimum value of soil c