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Abstract. Werldwide;—shallowlandshides—repeatedly-Shallow landslides pose a risk to infrastructure and residential areas.

bty s

¢ —Therefore, we developed ShideforM:e —whieh-is-SlideforMAP, a probabilistic model that
allows for a regional assessment of shallow landslide probability while considering the effect of different scenarios of forest
cover, forest management and rainfall intensity. SfM-SlideforMAP uses a probabilistic approach by distributing hypothetical
landslides to uniformly randomized coordinates in a 2D space. The surface areas for these hypothetical landslides are derived
from a distribution function calibrated frem-on observed events. For each randemly-generated landslide, StM-SlideforMAP
calculates a factor of safety using the limit equilibrium approach. Relevant soil parameters +e—angle-of-internal-friction;soil
eohestonand-soil-depth;-are assigned to the generated landslides from aermal-log-normal distributions based on mean and
standard deviation values representative for the study area. The computation of the degree of soil saturation is implemented
using a stationary flow approach and the topographic wetness index. The root reinforcement is computed based-on-by root
proximity and root strength derived from single tree detection data. Ultimately;-the-fraction-The ratio of unstable landslides to
the number of generated landslides, per raster cell, is calculated and used as an index for landslide probability. Tnputsfer-the

opographic-wetness-index-and-a-file-containing-positions-and-dimensions-of-trees—We

performed a calibration of SfM-SlideforMAP for three test areas in Switzerland with a reliable landslide inventory, by randomly
generating 1000 combinations of model parameters and then maximising the Area Under the Curve (AUC) of the reeeiver
operation-eurve(ROC)—These-Receiver Operation Curve, The test areas are located in mountainous areas ranging from 0.5 —
7.5 km? -with-varying-with mean slope gradients ¢from 18 - 28°). The density of inventoried historical landslides varied-varies
from 5 — 59 slides/km?. AUC values between 6-67-ard-0:92-0.72 and 0.94 indicated a good model performance. A qualitative
sensitivity analysis indicated that the most relevant parameters for accurate modeling of shallow landslide probability are the

soil depththickness, soil cohesion and the root reinforcement. Further;-the-use-Furthermore, we show that the inclusion of single
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tree detection i

improves overall model performance. In conclusion, our
study shewed-shows that the approach used in SfM-SlideforMAP can reproduce observed shallow landslide occurrence at a

catchment scale.
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1 Introduction

Landslides pose serious threats to inhabited areas world-wide. They are the cause of 17% of the fatalities due to natural hazards
in the period of 1994-20143-1994-2013 (Kjekstad and Highland, 2009). Average annual monetary losses over the period of 2640
—2649-2010-2019 are approximately 25 billion US dollars (Munich RE, 2018). In addition, Swiss Re Institute (2019) notes
a significant increase in damages by hydrologically related natural hazards over the past 5 years, including hydrologically-
triggered shallow landslides. This has been attributed to increased urbanization in risk-prone areas and to an increase in heavy
rainfall events. Furthermore, Swiss Re Institute (2019) notes that the modelling of shallow landslides is underdeveloped com-
pared to the severity of the danger they pose. In mountainous regions, landsliding is a prominent natural hazard. For instance,
in the atpine-Alpine parts of Switzerland, 74 people have died as a result of landslide events between 1946 and 2015 (Badoux
et al., 2016). The annual cost of landslide protective measures alone is approximately 15 million CHF each year (Dorren and
Sandri, 2009). No distinction is made between deep-seated and shallow landslides in these numbers. Rain induced shallow
landslides are one of the most important and dangerous types of mass movement in mountainous regions (Varnes, 1978).
Shallow landslides are defined as translational mass movement with a maximum soil thickness of 2 m and are the main focus
in this paper. Fortunately, improvements in hazard assessment have significantly decreased the number of shallow landslide
related deaths over the past decades (Badoux et al., 2016). This general trend is also supported by long-term data (Munich RE,
2018). The fatality decrease is related to better organizational measures regarding hazards, such as warning based evacuations
and road closures. Biological measures, such as management of protection forests, also play a role in mitigation of natural
hazards. The latter role is especially important for (shallow) landslides, rockfall, snow avalanches and debris flows (Corominas
et al., 2014).

Modelling of shallow landslide triggering has been an ongoing process. Shallow landslide probability has been mod-
elled mostly using a deterministic approach t(Cerominas-etal;2044)—(Corominas et al., 2014). The deterministic approach

is defined by using average values of risk components and resulting in a univariate result (Corominas et al., 2014). An example
of a deterministic approach in this sense is the SHALSTAB model Bietrich-and-Montgomery-(1998)—
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Ha-of Dietrich and Montgomery (1998). Other contemporary examples are TRIGRS (Baum et al., 2002) and SLIP (Montrasio et al., 2011

the latter showing good results in assessing soil saturation in a spatial heterogeneous way. In a comparative research it

was noted that the SHALSTAB approach was not representative for the spatial variability of the parameters at a small scale
Cervi et al., 2010). In recent decades, the development of probabilistic models and statistical methods has improved model

performance for quantifying landslide probability and the interpretation of their results (Corominas et al., 2014). In statistical
methods (e.g. Baeza and Corominas, 2001), there is no explicit accounting of physical processes. In contrast, probabilistic
methods take physical processes into account and additionally quantify the reliability of the results considering the probability
distribution of values of one or more input parameters (Salvatici et al., 2018). The output is a probability rather than a univariate
result. A prime example of a probabilistic model in SINMAP (Pack et al., 1998). Generally, these models perform better than
deterministic ones (Park et al., 2013; Zhang et al., 2018), likely due to natural landslides having a mode of movement signif-
icantly controlled by internal inhomogeneities and discontinuities in the soil (Varnes, 1978). These control mechanisms are
unpredictable at small-scales, making it hard for deterministic models to identify exact locations of instabilities and adjust the
heterogeneous parametrization accordingly. Below we will-go into more detail on the initiation of shallow landslides.
Initiation of instability is ;#n—faet-a process that combines mechanical and hydrological processes on different spatial and
temporal scales and can thereby be very localized, with successive movement increasing the magnitude of the event (Varnes,
1978). In alpine environments, instabilities are typically triggered by rainfall, leading to soil wetting and ensuing increase
of pore pressure, which destabilizes the soil and can then initiate soil movement. An increase in pore pressure can build

up in minutes to months following a rainfall event sen; Bordoni et al., 2015; Lehmann et al., 2013), where rapid

pore pressure changes are attributed to maere-pore-macropore flow and slow pore pressure changes to the matrix water flow.

The higher the horizontal hydraulic conductivity of the soil, the faster pore pressure changes can develop (Iverson, 2000).

The reaction of pore pressure to rainfall is variable and highly dependent on soil type. Pere-pressure-developmenthas-been
studied-experimentally—A-key-A key experimental study is the work of Bordoni et al. (2015) in which in-situ measurements

were taken on a slope with clayey—sandy silt and clayey—silty sand soils that experienced a shallow landslide. Fhey-It showed
that intense rainfall and a rapid increase of pore pressure were the triggering factors of the landslide. Over the duration of
the measurements, comparable saturation degrees have been reached both during prolonged and during-intense rainfall events.
In-this-ease-however,prolonged-Prolonged rainfall did not result in the pore pressure required to trigger a shallow landslide.
Similar behaviour has been observed in an artificially triggered landslide in Ritdhingen(CH)-Switzerland (Askarinejad et al.,
2012; Lehmann et al., 2013; Askarinejad et al., 2018). In the first wetting phase (in the year 2008), homogeneously induced

rainfall with a duration of 3 days, an accumulated rainfall of 1700 mm and a-peak-an intensity of 35 mmv/hr, induced a max-
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imum pore water pressure of 2 kPa at 1.2 m soil depth, resulting in no landslide. Whereas;—n-In the second phase of the
experiment (2009), the rainfall was heterogeneous—With-, with a maximum intensity of 50 mm/hr in the upper part of the
slope that induced an increase of pore water pressure up to 5 kPa at 1.2 m soil depth, resulting in the triggering of a shallow
landslide. The triggering was reached after 15 hours with a cumulative rainfall of 150 mm. In addition, a computational study
by Li et al. (2013) showed that at a high rainfall intensity (80 mm/hr), the pore water pressure at a depth of 1 m reached
a constant value within 1 hour. For a lower intensity of 20 mm/hr, this took approximately 3 hours. This shows that land-
slide triggering is related to a fast build up of pore water pressure proportional to rainfall intensity. The work of Wiekenkamp
et al. (2016) ;-suggests that preferential flow dominates the runoff in a heterogeneous catchment during extreme precipitation
events. Water can move downslope very rapidly through macropores (in experimental conditions) under both saturated and
unsaturated conditions (Mosley, 1982). The role of macropores can be very-strorg-important in a closed soil structure or in

presenee-of-the presence of a shallow impermeable bedrock, where maeropere-eentrol-of-they control the soil hydrological
behaviorean-be-very-preneuneed. Further examples of the influence of macropores on hillslope hydrology in various soil types

are presented in the work of Weiler— : : ok : : ok ‘Weiler and Naef (2003)
and Bodner et al. (2014). Additionally, Torres et al. (1998) demonstrates the strong role of macropore geverned-in preferen-
tial flow paths for landslide triggering in an artificial rain experiment in a loamy sandy soil. Montgomery et al. (2002) and

Montgomery and Dietrich (2004) also_underline the importance of macropore flow, but state that the vertical flow governs
response time and build up of pore pressure rather than the lateral flow in their study areas.

The mechanical aspect of shallow landslide initiation usually results from local instabilities that could extend indefinitely.
pressure at the bottom of the triggering zone reacts with a resisting force, contributing thereby to landslide stabilisation
(Schwarz et al., 2015; Cislaghi et al., 2018). Tt is important to note here that the passive earth pressure is activated in a later
phase of the triggering of a shallow landslide and should not be added to active earth pressure or tensile forces acting along the
upper half of the shallow landslide (Cohen and Schwarz, 2017).

Besides hydrology, slope and soil characteristics, vegetation plays a key role in landslide triggering (Salvatici et al., 2018;

Corominas et al., 2014; Greenway, 1987; Gonzalez-Ollauri and Mickovski, 2014). Ameng-otherpossible-vegetation-effeets;

The role of vegetation can be subdivided in hydrological and mechanical effects. The hydrological effect influences effective
, 1987; Masi et al., 2021). Over

the short timescale with intense rainfall these hydrological effects are negligible (Feng et al., 2020). Among the mechanical

effects, root reinforcement, mobilized during soil movement, is an essential component (Greenway, 1987; Schwarz et al.,

soil moisture by interception, increased evapotranspiration and increased infiltration (Greenwa

2010). It is a leading factor in the failure criterion for many vegetated slopes (Dazio et al., 2018). In modelling studies, the
influence of root reinforcement on slope stability is often quantified as an apparent added cohesion (Wu et al., 1978; Borga
et al., 2002). This apparent cohesion in turn can be added in the limit equilibrium computation of a Safety Factor (SF). Using
a Monte Carlo approach of this method (Zhu et al., 2017), it was found that the SF can gain up to 37% stability frem-when
including vegetation root reinforcementtZhuet-al5204+7). In another study in New Zealand, trees showed an effect on soil
stability up to 11 meter away from their position and had the ability to prevent 70% of instability events (Hawley and Dymond,
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1988). Computational research furthermore shows that root reinforcement by the larger roots is dominant over the smaller
roots, even though they are far less numerous (Vergani et al., 2014).

The planting pattern and management of the vegetation can have a profound effect on root reinforcement and thus on slope
stability (Sidle, 1992). Therefore a detailed approach to vegetation-modeHing-is-important-calculate the spatial distribution of
root reinforcement is important for slope stability calculations. Root reinforcement can be subdivided into two major com-
ponents: Basal root reinforcement and lateral root reinforcement. Basal root reinforcement is the anchoring of tree roots
through the sliding plane into the deeper soil. Lateral root reinforcement is the reinforcement from roots on the edges of
the potential slide that stick into the soil outside of the potential slide (Schwarz et al., 2010). In exchangecontrast, the me-
chanical influence of vegetation weight on slope stability is often considered negligible (Reinhold et al., 2009). In current
shallow landslide probability modelling, whether deterministic or probabilistic, root reinforcement is generally modelled in
a simplified wayor unrealistic way. for example, including homogeneous and displacement independent root reinforcement
et al., 2000). This method limits the evaluation of the effects of different forest
structure, and the contribution of different root reinforcement mechanisms to slope stabilisation (Schwarz et al., 2012). This
limits-the-types-of forest-management-practices-that-can-be-evaluated—In order to overcome this ;-we-developed-limitation,

we develop a shallow landslide probability model, named ShdeforMap-tabbreviated-to-StvHSlideforMAP. To ensure a wide
applicability, SfM-SlideforMAP is specifically designed to be applied on a scale of 1 - 1000 km?. The main objectives of this

Montgome spatial properties such as forest

work are to:

— Present the SM-SlideforMAP model as a tool for shallow landslide probability assessment.

— Show a calibration of SfM-SlideforMAP through a performance indicator over three study areas with 78 field recorded

shallow landslide events in Switzerland

— Provide a qualitative sensitivity analysis and identify the parameters that are of greatest influence on the slope stability

of a given area.

Meoreover;strong-Strong emphasis within the SfM-SlideforMAP framework and this paper is put on the quantification of root
reinforcement on a regional scale. We will show the influenee-that-an—aeceurateeffect of accurate, quantitative, representation
of root reinforcement has on slope stability over the-three study areas. Simplifications and calibration constraints make it hard

to use SlideforMAP as an exact forecast tool. The main application for SlideforMap is as a tool to quantify the effects of
vegetation planting, erowth and/or management for land managers in relation to shallow landslides.

2 Methods: SlideforMap
2.1 Probabilistic modelling concept

StM-SlideforMAP is a probabilistic model that generates a spatial-distribution-2D raster of shallow landslide probability (pst.).

It is an extension of the approach of Schwarz et al. (2010) and Schwarz et al. (2015). It generates a large number of hypothetical



landslides (HLs, singular: HL) within the limits of a pre-defined region of interest. These HLs are assumed to have an elliptic
155 shape and are characterized by a mix of deterministic and probabilistic parameters, based-on-from which the landslide stability
is computed following the limit equilibrium approach (see-section 2.2). The probabilistic parameters are the HL location, its
surface area and its soil cohesion, internal friction angle and soil depth-thickness parameters (drawn from appropriate ran-

dom distributions):-the-. The location and surface area are approached in a probabilistic way to compute a spatial probabilit

distribution. The soil parameters are probabilistic because we assume their variation is high and important in mountainous

160 environments. The deterministic parameters include several vegetation parameters and hydrological soil parameters. A key
originality of the approach stems from the fact that the vegetation parameters are-can be derived from single-tree scale infor-
mation (see-section 2.5). The number of generated landslides is seleeted-high enough such that each point in a region of interest
is overlain by multiple HLs from which a relative ps;, can be estimated by considering the ratio of unstable HLs. A general

flow chart of SfM-SlideforMAP is given in Fig. 1. More details on the modules follow in the subsequent sections.

2.3: Placement and extent 2.4 Soil parameters _

‘ Soil parameter data or estimates |

Landslide inventory

Y

Estimate P(A) - Eq. 6

Estimate parameter
Log-normal distribution

Rainfall scenario

Calibration of Csoil

Transmissivity

Draw surface area
samples from P(A)

Draw parameter samples

\_/j\ Calculate Pwater -

> Append NS Eg. 12, per HL

Sample HL latitude
and longitude

' 2.2: Stability estimation

SF-Eq1l
computation, per HL

Start

Define number of HLs

1 1

Tree inventory (location, DBH and height)
Compute psL- Eq 13

2.5 Vegetation mechanical effects

Result
Raster of shallow
landslide probability

Figure 1. Flowchart of the computational steps in SfMSlideforMAP. Separate sections are outlined in colors. The central workflow is

highlighted in red.



165 2.2 Stability estimation

The estimate of the stability of each HL is calculated following the limit equilibrium approach (described in the work of Day
(1997)). In this method, a landslide is assumed to be stable if its safety factor (SF) is fess-greater than 1.0. The SF is computed

as the ratio of the perpendicular (stabilizing) forces and the parallel (destabilizing) forces:

FFCS

SF:= oot (1

170 where I, [N] is the force parallel to the slope, Fy.s [N] is the maximum mobilized resistance force. The assumed forces that

act upon a hypothetical landslide are schematically shown in Fig. 2.

HL lengt

Figure 2. Schematic overview of the forces acting upon a hypothetical landslide, as assumed in SfMSlideforMAP. Blue indicates the stabi-
lizing forces and red-orange indicates the destabilizing forces. Lateral root reinforcement only acts upon the green part of the hypothetical

landslide—Wheteas, basal-where tension takes place. In the red is the compression zone in the shallow landslide. Basal root reinforcement

and soil shear strength act on the whole potential failure surface.
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As seen in Fig. 2, all landslides are assumed to be elliptical (Rickli and Graf, 2009) with a ratio between length and width, l,,, =
2. The forces assumed in SlideforMap are typical for the second stage of the activation phase, as described in the introduction

where minor movement has occurred. This coincides with the maximum mobilization of lateral root reinforcement under

tension along the tension crack and the absence of passive earth pressure, lateral root compression and lateral soil cohesion.

This is different from most landslide models involving root reinforcement (e.g. Montgomery et al., 2000; Schmidt et al., 2001

that assume lateral root reinforcement along the entire landslide perimeter. Quantification of the forces in the safety factor
calculation follows the limit equilibrium assumptions. This method is outlined in equatiorequations 2 to 5 below:

Foar = g(Msoil + My + Myey) sin(s) 2)
Fres = 5 Riat + Fres pas 3)
Fres,bas = A1sCsoit + Ats Roas + Fper eitan(e) 4
Foer,eft = 9(Msoit + M + Myeg) 08(s) — Pyater (5)

In these equations, g is the soil mass [kg], m, is the mass of the groundwater [kg], m,., is the vegetation mass [kg], g is the
gravitational acceleration assumed at 9.81 [m/s?], s is the slope [°], cjs is the circumference of the landslide [m], Rjyera is the
lateral root reinforcement [N/m], Fspqs 1S the basal resisting force, Ajg [@3] is the area of the landslide, Cii [Pa] is the soil
cohesion [Pa], Rpasar is the basal root cohesion [Pa], Fyer, ff is the effective perpendicular resisting forces [N], ¢ is the angle of

internal friction [°] and Py, is the water pressure [Pa].
2.3 Random landslide placement and extent

The location of the center of mass of the HLs is generated from two uniform distributions covering the latitudinal and longi-
tudinal extent of the study area. HLs on the edge of the study area are taken into account as well, though cut to the extent of
the study area in the later spatial processes of StMSlideforMAP. The total number of HLs is determined by multiplying the
landslide density parameter (pjs) with the total surface area of the study area. This number is then uniformly sampled with
replacements from the latitudinal and longitudinal distribution. The value of ps should be high enough such that each raster
cell of the study domain is covered by several HLs. The HL surface area is sampled from an inverse gamma distribution 5

following the work of Malamud et al. (2004), which showed that the probability distribution of shallow landslide surface ar-
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eas follows an inverse gamma distribution (Johnson and Kotz, 1970). The used-parameterization of a three parameter inverse

gamma distribution is shown in equation 6 below.

(b+1)
1 a ( —a )
Pr= —— —— A-—c
AT Al (b) (Als—c) e ©

where Ay is the landslide surface area, Py is the probability of A, I is the gamma function, a, b and c are the scale, shape and

location parameters. These distributional parameters are estimated using the landslide surface area data of the inventory (section
3). The estimation is based on minimizing the Root Mean Square Error (RMSE) between the histogram counts (distanee-of
size of histogram bins = 10) of the surface areas from the inventory and the distribution of equation 6. Users can follow this
approach with an inventory or use a custom parametrization. The maximum HL surface area is set for all case studies based
on the maximum surface area observed in the landslide inventory. This maximum is set to 3000 m?, based on the rounded up

maximum value of a well-distributed landslide inventory in Switzerland (section 3.3), but users can vary this parameter.
2.4 Soil parameters

Steep-sloped mountainous areas are prone to extreme and unpredictable heterogeneity in soil parameters (Cohen et al., 2009).
This makes a spatialty-heterogeneous deterministic parameterization inaccurate, even if based on observations. To overcome
this limitation, a probabilistic approach in the parameterization of soil parameters of the model is applied. Values of soil
cohesionand-, internal friction angle and initial soil thickness of each HL are randomly generated using-independent-normal
from independent probability distributions. Fhe-mean-and- This is an approach similar to the one taken in Griffiths et al. (2009)
who use the log-normal distribution for soil cohesion only and Pack et al.
cohesion and friction angle. We choose the log-normal distributions in our parametrization because it has shown to give a good
fit (example for soil thickness in the Appendix; Fig. Al), it ensures generating positive values only and its accuracy has been
shown in Griffiths et al. (2009). The two parameters of the log-normal distribution can be estimated from the mean and the

standard deviation of the-distributions-may-be-defined-observed samples; here we define the mean and the standard deviation
based on different information such as field soil classification or a geotechnical analysis. Only-pesitive-generated-values-are

1998) who use a uniform distribution for soil

our computations is assumed to be representative for saturated, drained and unconsolidated conditions. Valuesforsoil-depth

Definitive values for soil thickness are generated following a slightly different approach to account for the shallow soils found

on steep slopes. A—random-soil-depth-foreach-Hlis-obtained-byfirst sampling-The initial soil thickness (hsojfrom-anermal

inventory—This-fgsris-then) is transformed as a function of slope inclination +-as shown in equation 7. Soil thickness is defined
here perpendicular to the slope as opposed to soil depth, that is measured straight down.

Haoit = hsoit (1 — Pn (S < s|p1,01)), (7
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where Hyoi [m] is the soil depth-thickness and s is the observed slope, extracted for the HL. Pps(S < s|u1,01)] is the cumula-
tive normal distribution of the slope S with p1 = 1.35-my, and 01 = 0.75- 0p,. my, and o, are the assumed mean and assumed

standard deviation of the slope angle of shallow landslides from an inventory or a best guess. Other relations than used b
SlideforMap to correct the soil thickness to the slope (e.g. Prancevic et al., 2020) are possible as well.

2.5 Mechanical effects of vegetation

Three properties of vegetation are included in the model. These are vegetation weight, lateral root reinforcement and basal

root reinforcement. SlideforMap only incorporates trees and ignores possible effects by shrubs, grasses and other vegetation.
This choice is due to the fact that trees are predominant in influencing slope stability (Greenway, 1987). Single tree detection
{Kerpelaet-al;2007: Menk-et-al520617))-(Korpela et al., 2007; Menk et al., 2017) serves as a basis to estimate these proper-

ties. Single tree position and dimensions are derived from a Canopy Height Model (CHM), which is the difference between
the Digital Surface Model (DSM) and the Digital Elevation Model (DEM), using a local maxima detection method (LMD)
described in the work of Eysn et al. (2015) and Menk et al. (2017). First, the trees are rasterized. The resolution of this raster
has to exceed the effective radial dimension of the trees, in order to calculate representative vegetation parameter values at
stand scale. The weight of the tree is calculated by using the tree height and the Diameter at Breast Height (DBH), assuming
that the trees are cone shaped. The tree mass, 1y, used in equation 2 and 3, is calculated assuming a mean tree density (pirec)

of 850 kg/m?. Root reinforcement is added in the model using the method proposed by Schwarz et al. (2015), which relates the
root reinforcement to the distance to a tree, the size of the tree and the tree species. The-mean-maximum-distance-of separation

treesSubsequently two rasters are computed. 1) A raster with the nearest distance to a tree (Dy;ees). butnottoolarge-to-prevent
- 2) a raster with the average DBH of all trees within a (maximum) distance

radius. In SlideforMAP, 7 m is the default setting for this

10
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reinforcement, R).¢ [NArgi], is then computed assuming that it is a function of theratio-of-Dy,ces and DBH (Moos et al., 2016)
according to equation 8 below:

Hgoil
Dtrees
Riay =c (DBH'Dtrces,max a1751) / (9&@%)6& ®)
0

A~~~

where c is a fitting parameter, I'(x|aq, 1) is the gamma density function evaluated at « with shape parameter «; and scale
parameter [31. Prrocsis-the-mean-maximum-distance-to—trees—and-DBH is-the DBH—Di ces, max 18 the coefficient between
the DBH of a tree and the distanee-maximum radial distance of the root system from the tree stem (Gehring et al., 2019),
This is set t0 Dyrees,max = 18.5 based on the work of Schwarz et al. (2010). The parameters of the gamma density function
should be selected such that the function has a strictly decreasing behavior to avoid that R),; increases with Dy,ees. These
parameters should ideally reflect any knowledge about the-how root reinforcement decreases with distance for specific tree
species. I'(vp, 37) Is the general gamma probability density function for the normalized root distribution through the soil
thickness with shape parameter «; and scale parameter 35. The parameters ais and 3o should be selected such that the function
is decreasing with increasing [0y This method computes the root reinforcement where only one tree can influence a cell.
A spatially representative minimum root reinforcement value is calculated in a stand assuming a triangular lattice. Under this

assumption, three root systems interact additively. The Gamma probability density function is used to calculate the effect of
lateral root reinforcement ., within the soil thickness of each HL. Basal root reinforcement, Ry,s [anl'iis assumed to be

proportional to lateral root reinforcement and dependent on soil depth-thickness according to the relation shown in equation 9:

Rbas = Ii'RlatP (Hsoil‘OéQaﬁZ)l (9)

density function. A correction factor (k= 1 [m'1]) is used to convert the value of lateral root reinforcement in [N/m] to the basal
root reinforcement in Pa under the assumption of isotropic conditions.

2.6 Hydrology

—Fhis-methed-assumes-maeropoere-flow-dominationin-The hydrological module in SlideforMAP is based on the TOPOG model

Montgome: ietri ichi i ici inspi i 1975). In this framework

we specifically assume macropore flow dominates hillslope hydrology. The identical model is used in the SHALSTAB stabilit
model (Pack et al., 1998). It is assumed that the saturated soil fraction of each cell holds a relation to its specific catchment

area, its slope angle, a constant precipitation intensity and the soil transmissivity —In-SfM;—this-relationship-is-parameterized

11
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s-(equation 10). This is in close correspondence to the param-
eterization used in the widely used TOPMODEL (Beven and Kirkby, 1979):-

PO
hiy = =
Usat T’

where-. Limitations of this approach is the assumption of uniform soil transmissivity, steady state flow and lateral flow
governing of soil moisture pattern. These limitations and generalizations make the model insufficient in capturing detailed
hydrological pattern, especially in mountainous regions modelled by SlideforMAP. Despite this, we assume the approach to be
suitable for a general pattern of saturated fraction and subsequent pore pressure. In addition to this shortcoming we ignore the
apparent hydrological cohesion (Chae et al., 2017) prominent in unsaturated fine and clayey soils, but of little prominence in
other conditions (Montrasio and Valentino, 2008). The saturated soil fraction, hg, [-lis-the-fraction-of saturation-of, of a soil
column +is defined in equation 10 below:

Pa
Y= —— 10
8t Thsin(s)’ (10)

P [m/s] is the constant precipitation intensity, T [m? /s] is the transmissivity, a is the contributing catchment area [mf]sz

the slope inclination [°], and #-) is the contour length [ryn] is-the-topegraphie-wetness-index TWHin-m’ per-metercontour
length-that in our model corresponds to the cell size (see Section 3.2 for details on its computation). Fhis-index—combines

dratnage-of-intenserainfal-is-dominated-by-We assume dominant macropore flow, which has the ability to quickly reach an
equilibrium state with the precipitation input. In-the-subsequent-computationsBased on the literature data discussed in the
introduction, we assume that this equilibrium state is reached in-with an order of magnitude of one hour. Using this estimated

hZ..> pore water pressure is computed as:

Pwater :Hsoil'eesg()\sf(s)'h:at'g'pwv (11)

where Pyater [Pa] is the pore water pressure (used in equation 5), Hyoq [m] is the soil depththickness, s is the slope angle,
g = 9.81 m/s? is the gravitational acceleration, p.q¢er is the density of water assumed equal to 998 kg/m?>. The same value for

water density is used in the computation of the water mass in the HL.
2.7 Model initialisation

The model has a total of 3 probabilistic parameters and 16 deterministic parameters (Table 2?1). The deterministic parameters
as well as the distributional parameters for the probabilistic parameters are determined from in-situ data or from literature (see

Section 3). In a first step of the workflow for the application of StMSlideforMAP, after assigning the deterministic parameter
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values and sampling a value for each probabilistic parameter, a minimum value of soil cohesion is computed for each HL to
obtain stable conditions (safety factor, SF >= 1.0) under uniform a precipitation intensity of 28.3 mm/day or 1.2 mm/hr. This
threshold of precipitation intensity is chosen according to {Eeonarduzzi-et-al; 2647 Leonarduzzi et al. (2017), who statistically
analyzed 2000 landslides in Switzerland over the period 1972-2012 and found this as a triggering threshold. The minimum
value of soil cohesion is obtained by equating F},., (equation 2) and F.s (equation 3). If the minimum value of soil cohesion

is larger than the sampled soil cohesion, the soil cohesion is updated to the minimum value. This procedure can be altered b
users when another threshold or no threshold at all applies.

Table 1. An overview of all variable model parameters of SfMSlideforMAP. The second to last column indicates how the parameters are

estimated (from data or literature). The last column indicates whether the default is general or specific for this research in Switzerland (CH)

Parameter | Description Default value | Unit Source
mq, 04 Soil depththickness, mean and standard deviation 1,0.25 m Estimate
mg, Oc Soil cohesion, mean and standard deviation 2,0.5 kPa Estimate
Mg, Og Angle of internal friction, mean and standard deviation 30, 4 °© Estimate
Pls Density of the random generated landslides 0.1 HL/m? Estimate
Psoil Dry soil density 1500 kg/m3 Estimate
T Soil transmissivity 0.1 m?/s Estimate
P The precipitation event that is tested 10 mmm/s-hr | Estimate
Prin Precipitation intensity threshold for instability 1.2 mmm/s-hr | Literature
Dy Raster resolution for the tree distance computation 15 m Estimate
Ty Raster resolution of the SlideforMap run 2 m Estimate
lwr Ratio between length and width of the elliptical landslides 2 - Estimate
c Fitting parameter for the lateral root reinforcement 25068.54 - Literature
a1,B1 Gamma function shape and scale parameter-of the lateral root reinforcement | 0.862, 3.225 - Literature
Dyrees,max | maximum distance for influence of tree roots 18.5 m Literature
s, Gamma function shape and scale parameter-of the basal root reinforcement 1.284, 3.688 - Literature
Dtree Density of a tree 850 kg/m3 Estimate
Pwater Density of water 998 kg/m? Estimate

13



320

325

330

2.8 Landslide probability computation

After model initialisation, SF (equation 1) is computed for each of the generated HLs. Based on the SF for all generated HLs,

landslide probability per raster cell (with the resolution of the original DEM), pg , is computed as:

Tys

PsL = (12)

THL
where n,,, is the number of unstable HLs, i.e. of HLs with SF<1.0 and ng, is the total number of generated HLs (the HLs are

overlapping). Finally, this results in a raster of shallow landslide probability on a resolution of the input DEM.

3 Data

3.1 Study areas

Three study areas were chosen to test SfM-SlideforMAP based on the availability of elevation data and detailed records en-of
historical shallow landslide events (Fig. 3), each varying in size and location to test the robustness and the general applicability

of the model.

2: Trub

Figure 3. Locations of the study areas in Switzerland with observed Shallow landslide occurrence over the period 1997 - 2012 (blue dots);
the case study names are given according to nearby villages: Trub, St. Antonien {short:-StA)-and Eriz. Forest covered area is presented in

green (source: Swisstopo, 2020).

The geological formations in the Eriz study area vary from Oligocene freshwater Molasse in the lower northern part, morainic
material in the central part and Cretaceous Limestone in the highest parts. Forests are dominated by spruce (Picea abies),

except for the lower regions where broad-leaved trees are dominant. In the Trub study area, the dominant geological formation
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is Miocene Marine Molasse and forests are dominated by spruce. In the St. Ant6nien (from here forward abbreviated to ’StA’)

study area, the dominant geological formation is Flysch (Prittigauer Flysch), partially covered by till (Moos et al., 2016). The

forest in this study area is also dominated by spruce (Moos et al., 2016). Further characteristics of the study areas are given in
335 Table 2.

Table 2. Study area characteristics. Meteorological data is from the HADES yearly average precipitation for the time period 1981 - 2010

(Frei et al., 2020). Shallow landslide number and density from the inventory in section 3.3.

Name Centre coordinate Surface area Mean prec. Elevationrange Inventoried-Number of slides Slide density Me

lat;lon (WGS84) km? mm/year m.a.s.l. Slides/km?* °
Eriz 7.81;46.78 7.54 1700 960 - 1750 37 49 20.
Trub  7.90; 46.96 1.00 1620 820 - 1020 8 8.0 18.
StA 9.80; 46.98 0.56 1310 1540 - 2010 33 58.9 27.

A

3.2 Input data
To accurately measure pgy. for each study area, the following data are required.

— Digital Surface Model (DSM) and Digital Elevation Model (DEM)
— Average and standard deviation values for soil cohesion, depth-thickness and friction angle
340 — A representative landslide inventory containing at least:

o Average landslide soil depth-thickness

e Landslide surface area

In addition to the DEM, the DSM is applied in the vegetation section of SfMSlideforMAP. The DEM and the DSM are both
acquired from the SwissAlti3D database (Swisstopo, 2018), which makes use of aerial laserscanning (ALS). Both the DSM
345 and DEM are available at a resolution of 0.5 m. For the computation of the maximum distance from trees (equation ??), the
DEM is (nearest neighbour) resampled to 15 m to ensure a stable computation, since a too high raster resolution would result
in too strong differences between raster cells with trees and raster cells without trees. As an alternative to the use of a landslide
inventory and the DSM for single tree identification, users can also use synthesized values for the parameters derived from this
data. After pit filling, the DEM is used to compute a slope map following the method of Zevenbergen and Thorne (1987). The

350 topographic wetness index € for equation 10 is computed on a raster cell basis based on the 2 m DEM using equation 13-,

Acat

; (13)
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where A, is the specific upslope catchment area and s is the slope angle. To avoid numerical problems for elongated catch-
ments, 6 is computed using a 2 km buffer around the catchment. The large buffer size is chosen arbitrarily, but can be reduced by
other users. The standard D8 method is applied for the computation of the upslope catchment area from the DEM (O’ Callaghan,
J and Mark, D, 1984). For single tree detection, the FINT algorithm (Menk et al., 2017) is used. Since the results of such detec-
tion metho<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>