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Abstract  

Riverine flood risk studies require the identification of areas prone to potential flooding. This process can be based on either 

(hydrologically-derived) flood hazard maps or (topography-based) hydrogeomorphic floodplain maps. In this paper, we derive 

and compare riverine flood exposure from three global products: a hydrogeomorphic floodplain map (GFPLAIN) and two 

flood hazard maps (JRC and GAR). We find an average spatial agreement between these maps of around 30 % at river basin 15 

level on a global scale. This agreement is highly variable across model combinations and geographic conditions, influenced 

by climatic humidity, river volume, topography, and coastal proximity. Contrary to expectations, the agreement between the 

two flood hazard maps is lower compared to their agreement with the hydrogeomorphic floodplain map. We also map riverine 

flood exposure for 26 countries across the Global South, by intersecting these maps with three human population maps (GHS, 

HRSL and WorldPop). The findings of this study indicate that hydrogeomorphic floodplain maps can be a valuable way of 20 

producing high-resolution maps of flood-prone zones to support riverine flood risk studies, but caution should be taken in 

regions that are dry, steep, very flat or near the coast.  

1 Introduction 

Flood disasters are a major cause of loss throughout the globe, claiming thousands of lives and causing substantial economic 

damage every year (CRED and UNDRR, 2020). Our ability to map population growth within flood-prone zones is important 25 

since increased exposure is a key driver of flood risk (Ceola et al., 2014; CRED and UNDRR, 2020; Jongman et al., 2012; 

Winsemius et al., 2016). Global maps of flood-prone zones and human settlements are useful for detecting risk hotspots across 

the world, and may also be used for local studies in data-poor regions (UN SDSN, 2020; Ward et al., 2020). Open-access 

global maps are providing a variety of alternative products (Lindersson et al., 2020), navigating among these offers might be 

challenging to the users.  30 
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Riverine flood risk studies traditionally outline flood-prone zones with hazard maps from hydrodynamic or hydraulic models 

(Ward et al., 2020). These hazard maps typically show flood extent corresponding to a certain probability, for example, the 

100-year flood (meaning it has a 1 % chance to occur any given year). This is, however, a computationally demanding method 

that requires a lot of data: estimating river flow corresponding to a certain probability requires long time series of 

meteorological or hydrological data, which is a rarity (Blöschl et al., 2013; Kidd et al., 2017). To subsequently map the two-35 

dimensional water extent with an inundation model requires a detailed topographic model, and information about the river 

profile and surface roughness (Dottori et al., 2013; Hunter et al., 2007). 

Hydrogeomorphic methods for mapping floodplains, on the other hand, distinguish the characteristic shapes of floodplains 

based on topography (Dodov and Foufoula-Georgiou, 2006; Nardi et al., 2006). Moreover, hydrogeomorphic terrain analysis 

is computationally efficient and scale-invariant, the floodplain maps can without difficulty be renewed whenever refined terrain 40 

models become available (Manfreda et al., 2014; Nardi et al., 2018; Tavares da Costa et al., 2019). Yet, a floodplain map does 

not provide the user with any information about flood extent probability, which is often needed in flood risk applications 

(Dottori et al., 2016; Sampson et al., 2015). Annis et al. (2019) and Tavares da Costa et al. (2019) suggest that hydrogeomorphic 

models can be useful for large-scale floodplain mapping in ungauged basins, in locations where reliable flood hazard maps are 

unavailable. Di Baldassarre et al. (2020) argue that flood hazard maps and hydrogeomorphic floodplain maps are 45 

complementary and should both be used for identifying flood-prone zones in data-scarce regions, following the precautionary 

principle (Foster et al., 2000). The recently developed global floodplain map GFPLAIN250m (Nardi et al., 2019), hereafter 

GFPLAIN, built by hydrogeomorphic terrain analysis, has raised interest due to its potential for large-scale riverine flood risk 

applications (Akhter et al., 2021; Mazzoleni et al., 2020; Nardi et al., 2019).  

What we know, however, is that the results of large-scale flood exposure analysis heavily depend upon the datasets used (Aerts 50 

et al., 2020; Dottori et al., 2016; Smith et al., 2019; Trigg et al., 2016; Ward et al., 2020). This is exemplified in the work 

undertaken by Trigg et al. (2016) showing that outputs from six individual global flood hazard models yield considerably 

different exposure estimates for the African continent.  While finding many areas of agreement, particularly in connection to 

large rivers with distinct floodplain boundaries, the overall model agreement was only 30 to 40 % for the entire African 

continent (Trigg et al., 2016). The flood models particularly disagreed in arid regions, deltas, and large wetlands (Trigg et al., 55 

2016). The floodplain map GFPLAIN has not been included in large-scale comparison studies, however, so the suitability of 

GFPLAIN compared to other global flood hazard maps for analysing riverine flood exposure remains unclear. 

Previous work comparing hydrogeomorphic floodplain maps with flood hazard maps have primarily been limited to local and 

regional case studies. Nardi et al. (2019) and Tavares da Costa et al. (2019) quantitatively compared the consistency between 

GFPLAIN and global flood hazard maps for several European rivers. Annis et al. (2019) found that the consistency between a 60 

hydrogeomorphic floodplain map and a flood hazard map was affected by the interplay of terrain model resolution, terrain 

analysis scaling parameter, and river stream order. Furthermore, the consistency increased with increasing return period of the 

flood hazard map, meaning that the hydrogeomorphic model delineates floodplains generated by high-magnitude, low-
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frequency events (Annis et al., 2019). Nardi et al. (2018) analysed how well hydrogeomorphic floodplain results mimicked 

flood hazard maps, and predominantly found consistencies in floodplain areas unaltered by humans.  65 

In this study, we build upon the existing literature comparing outputs of global flood models, by examining how the global 

floodplain map GFPLAIN (Nardi et al., 2019) compares to two commonly used global flood hazard maps when estimating 

riverine flood exposure (Dottori et al., 2016; CIMA Foundation, 2015). The aim of our analysis is to (a) examine the spatial 

agreement between GFPLAIN and global flood hazard maps across a range of geographic conditions, and (b) demonstrate 

how model differences affect the estimation of riverine flood exposure. We performed this comparison in three steps. First, 70 

we quantified the model agreement for all the river basins of the world covered by all three models. Second, we controlled if 

the model agreement is associated with specific hydro-environmental attributes. Third, we mapped riverine flood exposure for 

26 countries across the Global South, by intersecting the maps of flood-prone zones with three individual population datasets. 

The purpose of this paper is to shed light on the usability of hydrogeomorphic floodplain maps in flood risk studies, and how 

the usability varies across geographic conditions. 75 

2 Data 

This section describes the datasets used for comparing the usability of a global hydrogeomorphic floodplain map to two flood 

hazard maps for riverine flood exposure analysis. A technical summary of the flood and population maps can also be found in 

Table A1.  

2.1 Flood maps 80 

We represent riverine flood hazard by comparing three models of flood-prone zones: the global floodplain map GFPLAIN 

(Nardi et al., 2019), the Flood Hazard Map of the World by the European Commission’s Joint Research Centre, hereafter JRC 

(Dottori et al., 2016), and the flood hazard maps produced for the Global Assessment Report on Disaster Risk Reduction 2015, 

hereafter GAR (CIMA Foundation, 2015). The purpose of this comparison is to analyse how GFPLAIN, derived with 

hydrogeomorphic terrain analysis, represent riverine flood-prone zones compared to the flood hazard models of JRC and GAR.  85 

There are currently several outputs from global flood models available, as exemplified by the hazard maps of CaMa-Flood 

(Yamazaki et al., 2011), GAR (CIMA Foundation, 2015), Fathom Global Ltd (Sampson et al., 2015), JRC (Dottori et al., 

2016), and GLOFRIS (Winsemius et al., 2016). We used JRC and GAR since they are open-access datasets and are, like 

GFPLAIN, based on the global elevation model Shuttle Radar Topography Mission (SRTM) (Farr et al., 2007; Reuter et al., 

2007). This allows for a comparison of methods delineating flood-prone zones, rather than a comparison of underlying terrain 90 

model performance. Furthermore, JRC and GAR have been in high demand in flood exposure studies (Alfieri et al., 2017; 

Ehrlich et al., 2018; UNISDR, 2015; Zischg and Bermúdez, 2020), and included in previous inter-model comparison and 

validation studies (Aerts et al., 2020; Bernhofen et al., 2018; Trigg et al., 2016). The GAR model has also been referred to by 

previous literature as the CIMA-UNEP model (Bernhofen et al., 2018; Trigg et al., 2016). 
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The model structure of JRC and GAR differs in the sense that GAR builds upon one-dimensional hydraulic modelling, while 95 

JRC builds upon two-dimensional hydrodynamic modelling (Dottori et al., 2016; CIMA Foundation, 2015). The model chain 

of JRC used 33 years of reanalysed climate data (ERA-Interim) to calculate the probability of each pixel being flooded (Dottori 

et al., 2016). The model of GAR used statistical regionalization of gauged streamflow observations to calculate extreme flow 

values, which were then used as input to a hydraulic model for flood inundation mapping (CIMA Foundation, 2015). The maps 

of JRC differ from GFPLAIN and GAR in river network coverage: GFPLAIN and GAR include rivers with upstream drainage 100 

areas larger than 1000 km2, while the corresponding threshold for JRC is 5000 km2 due to the coarse spatial resolution of the 

climate data (Dottori et al., 2016; Nardi et al., 2019; CIMA Foundation, 2015).  

The flood model of JRC does not take into account flood protection infrastructure, overbank flow tends to result in floodplain 

inundation due to unconstrained lateral extents (Dottori et al., 2016). This should favour agreement with the floodplain 

delineation of GFPLAIN since the hydrogeomorphic terrain method does not capture disrupted connectivity between the river 105 

channel and floodplain either. The GAR hazard maps, on the other hand, have been post-processed based on the assumption 

that the design level of flood defence is a function of the maximum GDP of the area (CIMA Foundation, 2015). The modelled 

defence levels in GAR were assumed to partially fail if the design return period was exceeded (CIMA Foundation, 2015).  

The morphology of rivers, which the hydrogeomorphic models aim to capture, is predominantly shaped by high-magnitude, 

low-recurrence flood events (Annis et al., 2019; Bhowmik, 1984; Nardi et al., 2018). We, therefore, conducted all analyses in 110 

this study using the JRC and GAR hazard maps with return periods 100- and 500-years (hereafter JRC-100, JRC-500, GAR-

100 and GAR-500).  

The spatial resolution of GFPLAIN is 8.33 arcseconds (~250 m near the line of the equator) and the spatial resolution of JRC 

and GAR hazard maps are 30 arcseconds (~1 km). The GFPLAIN dataset is provided as one raster file per continent, covering 

a near-global extent (60° N, 56° S). JRC is offered as global (85° N, 85° S) seamless raster files; raster files of GAR also cover 115 

the near-global extent (60° N, 56° S). 

2.2 Population maps 

Throughout this paper, we use the term flood exposure to refer to the number of people located within flood-prone zones. 

Exposure analysis was conducted by intersecting GFPLAIN and JRC with three individual population maps: the High 

Resolution Settlement Layer, hereafter HRSL (Facebook Connectivity Lab and CIESIN, 2016), Global Human Settlement 120 

Population Layer, hereafter GHS (Schiavina et al., 2019) and the WorldPop population layer, hereafter WorldPop (Gaughan 

et al., 2013; Linard et al., 2012; Sorichetta et al., 2015; Tatem, 2017). 

We chose to conduct the exposure analysis with these population datasets since they represent diverse methodologies for 

mapping populations, each having individual advantages and limitations. We briefly describe these differences here, other 

studies have reviewed how the choice of population dataset affects exposure analysis (Leyk et al., 2019; Smith et al., 2019). 125 

First of all, the individual population maps offer a range of spatial resolutions: HRSL is 1 arcsecond (~30 m), WorldPop is 

3 arcseconds (~90 m) and GHS is 9 arcseconds (~250 m). 
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Dasymetric mapping refers to, in this case, the spatial reallocation of census data to individual pixels using information from 

ancillary data (Leyk et al., 2019; Wright, 1936). GHS used a binary dasymetric approach to map population count, allocating 

census data to built-up areas detected with Landsat satellite imagery (Schiavina et al., 2019). HRSL used convolutional neural 130 

networks for allocating census data to buildings that have been detected with DigitalGlobe high-resolution satellite imagery 

(Smith et al., 2019). WorldPop used a multivariate dasymetric approach to allocate population data to settlements detected 

with Landsat satellite imagery, with multiple ancillary data layers, e.g. land cover, built structures, infrastructure, travel time 

to major cities, nighttime lights (Lloyd et al., 2017). The multivariate modelling approach of WorldPop means that these 

covariate variables might prevent interaction studies. 135 

The main asset of GHS is the temporal depth of the dataset, enabling change detection analysis with its globally consistent 

population grids for 1975, 1990, 2000 and 2015 (Ehrlich et al., 2018). WorldPop currently offers population count maps for 

every year between 2000-2020. The rather coarse spatial resolution of Landsat means, however, that GHS and WorldPop tend 

to leave out dispersed rural settlements (Smith et al., 2019; UN SDSN, 2020). HRSL has shown to better represent settlements 

in rural areas (Smith et al., 2019; Tiecke et al., 2017) but is, however, presently only available as a static dataset. 140 

The population maps of HRSL and WorldPop are provided as one raster file per country, HRSL covers ~140 countries while 

WorldPop is global. GHS is offered as a global (85° N/85° S) seamless raster file. Population maps used in this study represent 

the year 2015 (GHS) and 2018 (HRSL and WorldPop).  

3 Methods 

3.1 Data homogenization 145 

The geospatial analysis has primarily been conducted using the cloud computation platform Google Earth Engine (Gorelick et 

al., 2017). GFPLAIN was tailored for analysis by merging the individual continental images into one single image. GFPLAIN, 

JRC and GAR were then reclassified to binary wet/dry maps. Normally wet areas were masked from GFPLAIN, JRC and 

GAR with the global water mask MOD44W, a product that combines waterbody data from SRTM and the satellite imagery of 

MODIS (Carroll et al., 2009). MOD44W shares the spatial resolution with GFPLAIN, 8.33 arcseconds (~250 m). 150 

The individual country images of HRSL and WorldPop were also merged into seamless global images, using the median pixel 

value where multiple images overlap. The metadata of the population maps were filtered to the year 2015 for GHS and the 

year 2018 for HRSL and WorldPop.  

3.2 Model agreement 

To quantify the model agreement between GFPLAIN, JRC and GAR, we used the Model Agreement Index (MAI), Eq. (1), as 155 

proposed by Trigg et al. (2016). This agreement index allows for an evaluation of multiple raster files. The maps from all three 

models were first aggregated (separately for each return period) into categories based on how many models agree that each 

pixel is flooded: 0 = all models are dry, 1 = one model is wet, 2 = two models are wet, 3 = all models are wet. This aggregation 
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was conducted at the finest spatial resolution of 8.33 arcseconds. MAI values, Eq. (1), were then calculated for all the basins 

in the world that are covered by all three models, resulting in 2776 river basins. By only including the basins covered by all 160 

three flood models we ensured that differences in spatial coverage did not affect the results. For instance, the individual flood 

maps have been post-processed to mask arid areas, to different degrees, since aridity poses a challenge for traditional flood 

model assumptions. The HydroBasins Level 5 dataset, based on 15 arcseconds resolution raster data, was used for outlining 

the river basin boundaries (Lehner and Grill, 2013). The output value of MAI, Eq. (1), ranges between 0 (no agreement) and 

1 (full agreement): 165 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑ 𝑖𝑖

𝑁𝑁 𝑎𝑎𝑖𝑖
𝑁𝑁
𝑖𝑖=2

𝐴𝐴
, (1) 

where; A is the total number of flooded pixels by all three models, ai is the number of pixels flooded by that particular 

aggregated category, N is the number of models in comparison, and i is the number of models in agreement for that particular 

category. This index does not assume that one model is preferable to the other and also ignores the large areas that are marked 

as dry, which would otherwise bias the performance measure. MAI values, Eq. (1), evaluating the agreement of the models 170 

GFPLAIN, JRC and GAR were calculated for all 2776 river basins, for the return periods 100- and 500-years separately, 

hereafter MAI-500 and MAI-100.  

Following this, we also quantified pairwise model agreement for each combination of flood model, Eq. (2). The pairwise model 

agreement in Eq. (2) corresponds to Eq. (1) when letting N = 2, and has frequently been recommended for evaluating binary 

maps of inundation models (Aronica et al., 2002; Bates and De Roo, 2000; Pappenberger et al., 2007; Schumann et al., 2009; 175 

Trigg et al., 2016). The agreement index in Eq. (2), also referred to as an F2 measure (Aronica et al., 2002; Pappenberger et 

al., 2007) or F-index (Annis et al., 2019), ranges between 0 (no agreement) and 1 (full agreement): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁=2 =
𝑎𝑎

𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐
, (2) 

where; a, b and c denote the number of pixels within each river basin according to the contingency table in Table 1. Each 

combination of GFPLAIN, JRC and GAR was evaluated with Eq. (2) for all 2776 river basins, for the return periods 100- and 180 

500-years separately: MAIGFPLAIN GAR-100, MAIGFPLAIN GAR-500, MAIGFPLAIN JRC-100, MAIGFPLAIN JRC-500, MAIGAR-100 JRC-100 and 

MAIGAR-500 JRC-500. 

 
Table 1: Contingency table for the pairwise model agreement evaluation as given by Eq. (2). The variables a, b, c and d relate to the 
number of pixels within each river basin. 185 

 

 

 

 Within Map 1 Outside Map 1 

Within Map 2 a b 

Outside Map 2 c d 
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3.2.1 Spatial agreement clusters  

We identified spatial clusters of basins with high and low model agreement relative to the mean, i.e. hot- and cold spots, using 190 

the MAI-500 value for each river basin. This local spatial autocorrelation analysis was carried out in the software GeoDa, 

version 1.18 (Anselin et al., 2006). Positive spatial autocorrelation was found in high-agreement basins also having high-

agreement neighbouring basins, or low-agreement basins with low-agreement neighbours. More specifically, we used a local 

Moran statistic (Anselin, 1995), with 9999 random permutations, to identify significant clusters with pseudo p-values > 0.05. 

The significant clusters were mapped together with the original MAI-500 values to exhibit global patterns of the model 195 

agreement between the three flood models. 

3.2.2 Hydro-environmental attributes  

The association between MAI-500 and several hydro-environmental attributes was then quantified for all 2776 river basins 

using statistic techniques in R (R Core Team, 2014). Basin level data for all attributes were retrieved from the datasets 

BasinATLAS version 1.0 (Linke et al., 2019) and HydroBasins Level 5 (Lehner and Grill, 2013). Non-parametric measures 200 

were used for this evaluation since the response variable, MAI-500, did not fulfil the normality assumption of general linear 

models. An alpha level of 0.05 was used for all statistical tests. 

The Kruskal-Wallis test by ranks (Hollander and Wolfe, 1973) was performed to control differences in MAI-500, Eq. 1, for 

the following factors: geographic region, river stream order (Lehner and Grill, 2013), and freshwater major habitat type (Abell 

et al., 2008). The freshwater major habitat types entail a combination of topographic, climatic and hydrological properties 205 

since this classification is based on similarities in biological, chemical and physical characteristics (WWF and TNC, 2019). 

All Kruskal-Wallis tests were supplemented with post hoc Wilcoxon rank-sum tests, performing pairwise comparisons 

between the groups. The Kruskal-Wallis tests used the Benjamini and Hochberg (1995) correction method for controlling false 

discovery rate. We also performed Kruskal-Wallis and Wilcoxon rank-sum tests to evaluate differences between the pairwise 

model agreement distributions (MAIGFPLAIN GAR-100, MAIGFPLAIN GAR-500, MAIGFPLAIN JRC-100, MAIGFPLAIN JRC-500, MAIGAR-100 JRC-210 

100 and MAIGAR-500 JRC-500). 

We then quantified the level of association between the model agreement and individual hydro-environmental attributes. 

Spearman rank-order correlation coefficients (Harell Jr and Dupont, 2021; Hollander and Wolfe, 1973; Spearman, 1904) were 

calculated for MAI-500, MAIGFPLAIN GAR-500, MAIGFPLAIN JRC-500, MAIGAR-500 JRC-500 and 23 control variables listed in Table 2. 

The resulting correlation coefficients were plotted in a correlogram, ordered according to a hierarchical clustering method 215 

(Wei and Simko, 2017). 

 

 

 

 220 
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Table 2 Control variables for which the association with the model agreement between the flood maps was evaluated. All control 
variables were retrieved from the dataset BasinATLAS version 1.0 (Linke et al., 2019), except river stream order and basin area, 
being imported from the HydroBasins dataset (Lehner and Grill, 2013). The upstream watershed is the total upstream watershed 
directly connected to the basin. 

Attribute Description Unit 
Spatial 

dimension 
Source 

River stream order Classification according to a classical river ordering system. Order 0 is used 

for coastal basins. 

Classes (4) Basin 

classification 

HydroBasins (Lehner and Grill, 

2013) 

Freshwater major 

habitat types 

Classification based on freshwater ecoregions. Classes (11) Spatial majority Freshwater Ecoregions of the 

World (Abell et al., 2008) 

Basin area Area of the individual basin, and the upstream watershed respectively. Square kilometres Sum HydroBasins (Lehner and Grill, 

2013) 

Natural discharge 

annual 

Long-term (1971-2000) naturalized discharge at the basin pour point. Cubic meters per 

second 

Annual average WaterGAP v2.2 (Döll et al., 2003) 

Land surface runoff 

annual 

Long-term (1971-2000) naturalized runoff within basin. Millimetres Annual average WaterGAP v2.2 (Döll et al., 2003) 

River volume River volume within the basin and the upstream watershed respectively. Thousand cubic 

meters 

Sum HydroSHEDS & WaterGAP 

(Lehner and Grill, 2013) 

Elevation average Terrain elevation average within the basin outlines. Meters above sea 

level 

Average EarthEnv-DEM90 (Robinson et 

al., 2014) 

Slope average Terrain slope average within the basin outlines. Degrees Average EarthEnv-DEM90 (Robinson et 

al., 2014) 

Stream gradient 

average 

The ratio between the elevation drop and the length of the river reach. Decimetres per 

kilometre 

Average EarthEnv-DEM90 (Robinson et 

al., 2014) 

Precipitation annual Long-term (1950-2000) precipitation within the basin. Millimetres Annual average WorldClim v1.4 (Hijmans et al., 

2005) 

Aridity Index Ranges from 0 to 1: a value of 0 represents areas with no precipitation and 

1 represent areas where P >= PET. 

Index value Average Global Aridity Index (Zomer et al., 

2008) 

Climate moisture 

index 

Ranges from -1 to 1: wet climates yield positive values and dry climates 

yield negative values. 

Index value Average WorldClim & Global-PET (Hijmans 

et al., 2005) 

Snow cover annual Represents the period 2002-2015. Percent cover Annual average MODIS/Aqua (Hall and Riggs, 

2016) 

Forest cover extent Combines the land classes 1 to 8 in the GLC2000 land cover map. Percent cover Spatial extent GLC2000 (Bartholomé and 

Belward, 2005) 

Cropland extent Represents the year 2000. Percent cover Spatial extent EarthStat (Ramankutty et al., 

2008) 

Pasture extent Represents the year 2000. Percent cover Spatial extent EarthStat (Ramankutty et al., 

2008) 

Irrigated area extent Area equipped for irrigation the year 2005. Percent cover Spatial extent HID v1.0 (Siebert et al., 2015) 

Glacier extent Based on a global glacier inventory between 1950 and 2015. Percent cover Spatial extent GLIMS (Raup et al. 2007) 

Permafrost extent Modelled occurrence of permafrost using estimates for the period 1961-

1990. 

Percent cover Spatial extent PZI (Gruber, 2012) 

Population count 

2010 

Population count for the year 2010 within the basin and the upstream 

watershed respectively. 

Count (thousands) Sum GPW v4 (CIESIN, 2016a) 

Population density 

2010 

Population density for the year 2010 within the basin and the upstream 

watershed respectively. 

People per square 

kilometre 

Average GPW v4 (CIESIN, 2016b) 

Urban extent Combining the low-density clusters (class 2) and high-density clusters (class 

3) in the settlement model grid GHS-SMOD for the year 2015. 

Percent cover Spatial extent GHS S-MOD v1.0 (Pesaresi and 

Freire, 2016) 

GDP sum 2015 The GDP total for the year 2015, within the basin and upstream watershed 

respectively. 

U.S. dollars Sum GDP PPP v2 (Kummu et al., 

2018) 

 225 
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3.2 Country selection 

The subsequent exposure and area analyses have been conducted for 26 countries in the Global South: Bangladesh, Bolivia, 

Brazil, Cambodia, Central African Republic, Colombia, Republic of the Congo, Ecuador, Ghana, Guatemala, Honduras, India, 

Indonesia, Kenya, Lao People's Democratic Republic, Liberia, Malawi, Mozambique, Nicaragua, Nigeria, Peru, Sri Lanka, 

Thailand, Uganda, United Republic of Tanzania, and Viet Nam. These countries are situated in the Eastern, Middle and 230 

Western parts of Africa, South-Eastern Asia, Southern Asia, Central America and South America. 

The countries were selected based on four criteria. First, we only included countries fully covered by all six datasets used for 

the comparative exposure analysis (GFPLAIN, JRC, GAR, GHS, HRSL and WorldPop). Second, only countries belonging to 

the low-, lower middle- and upper middle-income groups were selected (Figure 1), here classified using GNI per capita for the 

year 2015 (The World Bank, 2021b). The assumption was that, in general, the high-income countries have less need for global 235 

flood products since they tend to be more well-equipped with national flood maps. Third, the selected countries all have a 

relatively high degree of riverine flood risk (Figure 1), here represented by the combination of the population within the 100-

year flood hazard map (intersecting GHS and JRC) and actual disaster reports of people affected by riverine floods 1900-2020 

(Guha-Sapir et al., 2014). Finally, we excluded countries with the main climate classification being arid or snowy according 

to the World Map of Köppen-Geiger (Beck et al., 2018).  240 

3.3 Exposure and area analysis 

The number of people located in flood-prone zones was calculated for each country by intersecting the binary and masked 

images of GFPLAIN, JRC-500, JRC-100, GAR-500, and GAR-100 with the population maps of GHS, HRSL and WorldPop. 

Country boundaries were outlined with The Global Administrative Unit Layers (GAUL) dataset for the year 2015 (FAO UN, 

2015). The number of people living in flood-prone zones was then exported for all countries and dataset combinations. The 245 

population maps were also used for calculating country population totals, which have been compared to numbers provided by 

the World Bank in Table A6. The percentage of the country population living in flood-prone zones were then derived for each 

country and dataset combination.  

For all area calculations of raster images, we used a pixel area function in Google Earth Engine (Gorelick et al., 2017) that 

minimizes projection distortions, which otherwise may be an issue when calculating areas over large regions. The function 250 

first calculated the area of each pixel, using individual Lambert Azimuthal Equal Area projections for each block of pixels. 

The resulting grid of pixel areas was subsequently multiplied with the masked and binary images, for which the sum could be 

exported for each region of interest.  
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Figure 1: Flood risk in the 26 countries for which we conducted the comparative riverine flood exposure analysis, here marked with 255 
black text labels. Flood risk is here represented as the combination of the country population within the 100-year flood hazard map 
(intersecting the Global Human Settlement Population count for 2015 with the JRC flood hazard map) and actual disaster reports 
of people affected by riverine floods 1900-2020 as included in the Emergency Events Database EM-DAT. Please note that the axes 
have logarithmic scales. The country income classification is based on GNI per capita for the year 2015, given by the World Bank. 

 260 

The total land surface area was calculated for all 26 countries by subtracting the total country area, as outlined by the polygons 

in the GAUL dataset (FAO UN, 2015), with the area of permanent surface water as given by the raster water mask MOD44W 

(Carroll et al., 2009). The area estimations of flood-prone zones, given by the binary and masked images of GFPLAIN, JRC-

500, JRC-100, GAR-500 and GAR-100, were finally exported for all countries. The percentage of country area that is flood-

prone was then derived for all countries and flood maps.  265 
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4 Results and discussions 

In this section, we first discuss the model agreement between the flood maps in Sect. 4.1 and then turn to the implications on 

riverine exposure analysis in Sect. 4.2.  

4.1 Model agreement of flood-prone zones 270 

4.1.1 Model agreement across model combinations 

The overall spatial pattern of the floodplain map GFPLAIN resembles the flood hazard maps of GAR more than the flood 

hazard maps of JRC (Figure 2). A possible explanation of this is that GFPLAIN and GAR cover larger parts of each river 

network compared to JRC since they exhibit lower inclusive thresholds for the upstream drainage area. Figure 2 shows that 

the model agreement between the floodplain map GFPLAIN and the flood hazard maps of GAR is, on average, around 35 %. 275 

The corresponding agreement between GFPLAIN and the flood hazard maps of JRC is around 30 %. These agreement levels 

are in line with the results of Trigg et al. (2016) when comparing the outputs of six global flood models for the African 

continent, finding an average model agreement around 30 to 40 %. It is also clear from Figure 2 that there is a large spread of 

agreement scores across all 2776 river basins: all pairwise comparisons range between the maximum model agreement value 

100 % and very close to the minimum value of 0 %.  280 

The pairwise model agreement evaluation also confirms that the model agreement between GFPLAIN and the hazard maps is 

higher for the return period of 500-years compared to 100-years. This is consistent with previous findings in the literature 

about how the morphology of rivers, which the hydrogeomorphic floodplain maps delineate, is predominantly shaped by high-

magnitude, low-recurrence flood events (Annis et al., 2019; Bhowmik, 1984; Nardi et al., 2018). Figure 2 pinpoints, however, 

that choice of hazard model has a greater influence on the degree of model agreement with GFPLAIN, compared to the choice 285 

of return period.  

Contrary to expectations, the model agreement between the hazard maps of JRC and GAR is lower compared to their agreement 

with GFPLAIN. The median agreement values across all river basins are found to be 0.34 for GFPLAIN and GAR-500, 0.27 

for GFPLAIN and JRC-500 and 0.20 for GAR-500 and JRC-500. The reasons for this result are not evident, but it supports 

earlier findings of significant disagreement among individual global flood models (Trigg et al., 2016; Ward et al., 2015). All 290 

distributions from the pairwise model agreement evaluation show positive skewness, meaning that the bulk of river basins 

have low values (Figure 2). The portion of river basins having low agreement scores is highest for the GAR and JRC 

comparison, illustrated by the relatively big differences between the average and median values. A Kruskal-Wallis test showed 

that there is a significant difference in model agreement between the distributions, H(5) =1217, p < 0.001, the pairwise 

comparisons from the post hoc test can be found in Table A2. 295 
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Figure 2 Pairwise evaluation of model agreement between the hydrogeomorphic floodplain map GFPLAIN and the flood hazard 
maps GAR and JRC, with 100- and 500-year return period. A higher return period shows higher agreement with GFPLAIN, but 
the choice of flood model influences the level of agreement even more. The flood hazard maps GAR and JRC show the lowest level 300 
of agreement. The index has here been calculated for the 2776 river basins across the world that are covered by all three models. 

4.1.2 Model agreement across geographic conditions 

We also analysed how MAI-500, the model agreement between GFPLAIN, GAR-500 and JRC-500, varies across space and a 

set of hydro-environmental groups. We chose to represent the model agreement with MAI-500 since we generally found a 

higher model agreement using the 500-year return period, compared to the 100-year return period. Figure 3 provides the spatial 305 

distribution of MAI-500 across all 2776 river basins, and local clusters of high and low model agreement basins as identified 

from the spatial autocorrelation analysis. These maps suggest that the model agreement is associated with factors related to 

climate, topography, and coastal proximity.   
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Figure 3: (a) Spatial distribution of MAI-500, the model agreement between the hydrogeomorphic floodplain map GFPLAIN and 310 
the flood hazard maps GAR and JRC with a 500-year return period. The model agreement index ranges between 0 % (no agreement) 
and 100 % (full agreement) and was here calculated for all the river basins of the world that are covered by all three models. (b) Local 
clusters of river basins with high or low agreement values relative to the mean, identified from the spatial autocorrelation analysis. 
Poor model agreement is particularly found in dry climate regions, as exemplified by the snow and ice regions in North America 
and Asia, and the desert regions in Africa. The highest agreement is generally found in humid regions.  315 

The river basins with the highest model agreement are generally located in humid regions (Figure 3). For instance, it is the 

equatorial humid climate regions that exhibit the highest model agreement in the South American continent, including the 

north-western part of Brazil and the north-eastern part of Peru. The high agreement cluster in North America, near the 

Mississippi River Delta, as well as the high agreement cluster in Southeast Europe, are also situated in warm temperate and 
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fully humid regions. On the contrary, a poor model agreement is generally found in dry regions. The snow and ice regions in 320 

North America entail large basin clusters with a low model agreement. Arid desert regions also exhibit low model agreement 

clusters, such as the Kalahari Desert in Southern Africa. 

Relating to topography, Figure 3 also shows that alpine regions like the Andes in South America and High-mountain Asia 

exhibit poor model agreement. This can, at least partly, be explained by the same regions being dry in the sense that they are 

snow-covered. It also seems possible that very steep regions would be prone to error. However, very flat regions also tend to 325 

exhibit poor model agreement, across climate types. This may be exemplified by the flat grassland of the humid region Pampa 

in Argentina, and the flat inland areas in the tropical islands of Indonesia. 

Figure 3a furthermore illustrates that coastal river basins seem to exhibit low model agreement, visible as white lines along 

many coastlines. This tendency is not captured well by the clusters in Figure 3b since one single low agreement basin near the 

coast would not count as a cluster. A possible explanation for the low agreement in coastal river basins might be that the 330 

individual riverine flood maps differ in how they mask coastal areas. For instance, GFPLAIN tends to mask areas near the 

coast, while JRC does not. Another possible explanation may be due to complex flood hydraulics, in line with previous findings 

of low agreement in deltas (Trigg et al., 2016). However, it can also be seen in Figure 3 that major river deltas often exhibit 

high model agreement on basin level, as exemplified by the Mississippi River Delta in the U.S. and the Mekong River Delta 

in Viet Nam and Cambodia. This is an indication that the volume of the river also affects the model agreement, which seems 335 

possible since large river discharge imposes large forces on the surrounding landforms, the very shapes that GFPLAIN aims 

to capture.  

Thus far, we have elaborated on what might cause the spatial variation of MAI-500 based on a visual inspection of the global 

maps in Figure 3. We also quantified these results by assessing how the MAI-500 value varies between a set of factoring 

groups: geographic region, river stream order, and freshwater major habitat type. Across the basins situated on each geographic 340 

region, Figure 4a conveys that the highest model agreement can, on average, be found in South America (39 %) and Asia 

(39 %), while North America (29 %) and Africa (32 %) exhibit the lowest model agreement. This supports, again, that humid 

regions tend to perform better compared to dry regions. The Kruskal-Wallis test showed that there is a significant difference 

in model agreement between the regions, H(6) =146, p < 0.001, the pairwise comparisons from the post hoc test can be found 

in Table A3. 345 
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Figure 4: How the model agreement between GFPLAIN, GAR-500 and JRC-500 varies with (a) geographic region, (b) river stream 
order, and (c) freshwater major habitat type. The model agreement index ranges between 0 % (no agreement) and 100 % (full 
agreement) and was here calculated for all the river basins of the world that are covered by all three models. The number of river 
basins corresponding to each group is indicated in numbers and box width. Coastal river basins tend to have lower model agreement 350 
scores, compared to inland river basins. The freshwater major habitat type specifies the spatially dominating habitat type in each 
river basin (WWF and TNC, 2019). The habitat type “Large river deltas” only includes regions that exhibit both deltaic physical 
features and deltaic fauna. The habitat type “Large lakes” includes river basins that are dominated by large lentic systems.  
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Figure 4b illustrates how MAI-500 varies with river stream order, supporting that model agreement tends to be negatively 

associated with coastal proximity. Furthermore, the Kruskal-Wallis test showed that the model agreement significantly varies 355 

between river stream orders, H(3) = 101, p < 0.001. More specifically, the model agreement in coastal basins, stream order 0, 

was identified as significantly lower compared to inland stream order groups, verified by the post hoc Wilcoxon rank test (p-

values < 0.001, see Table A4).  

We now move on to the freshwater major habitat types, a classification based on the spatially dominating habitat type in each 

river basin (WWF and TNC, 2019). Before presenting the model agreement variations between the habitat types, however, we 360 

point out that a classification on river basin level will inevitably contain multiple smaller habitat types. For instance, the habitat 

type “Large lakes” includes river basins that are dominated by large lentic systems, in our case covering three large regions: 

Lake Baikal in Siberia, Lake Malawi in Africa and Michigan-Huron in North America. But a river basin of this habitat type 

can, for example, also contain grassy savannas or swamps (WWF and TNC, 2019). Another point is that the habitat type “Large 

river deltas” only include regions that exhibit both deltaic physical features and deltaic fauna (WWF and TNC, 2019). This 365 

habitat type covers four large regions within our analysed river basins: the Niger Delta in Nigeria, the Mekong Delta in 

Viet Nam and Cambodia, the Orinoco Delta in Venezuela, and Brazilian delta regions between the rivers Amazon and Mearim. 

In other words, deltas without the characteristic deltaic fauna do not belong to this habitat type. For instance, the river basins 

containing the Mississippi River Delta belong to the habitat type “Temperate floodplain rivers and wetland complexes”. 

Another point is that the difference between rivers classified as floodplain rivers and upland rivers is the presence of cyclically 370 

flooded floodplains. Floodplain rivers are characterised by having cyclically flooded floodplains (today or historically), while 

the upland rivers are not (WWF and TNC, 2019). Upland rivers can for instance be tributaries of large river systems.  

Figure 4c shows how the model agreement varies between the freshwater major habitat types. Floodplain rivers, in temperate 

and tropical climate regions, exhibit higher model agreement compared to upland rivers, followed by coastal rivers. We can 

also see, as previously discussed, that freshwaters in arid, here expressed as xeric, and montane regions exhibit poor model 375 

agreement. The group “Large river deltas” is ranked as having the highest model agreement, clearly influenced by the high 

agreement in large river deltas, like the Mekong. These results should be interpreted with caution, however, due to the 

unbalanced sample sizes between the groups (Figure 4c). Nonetheless, the inherent order between the groups supports previous 

discussion about how factors related to climate, topography, coastal proximity and river volume affect MAI-500 values. The 

Kruskal-Wallis test showed that the agreement difference is significant between the habitat types, H(10) = 478, p < 0.001. The 380 

pairwise comparisons from the post hoc test can be found in Table A5. 

 

 

 

 385 
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4.1.3 Model agreement association with hydro-environmental attributes 

Section 4.1 has so far demonstrated that MAI-500, the level of model agreement between GFPLAIN, GAR-500 and JRC-500, 

is linked to factors related to climate, topography, coastal proximity and river volume. We have done this by visually exploring 

the spatial pattern of the model agreement, and by grouping the values according to geographic region, river stream order and 390 

freshwater major habitat type. Each of these habitat groups contains a variety of geographic characteristics, so we also analysed 

the level of association between model agreement and individual hydro-environmental attributes and investigated whether the 

association differs between the model agreement pairs. 

Figure 5 presents the Spearman rank-order correlation coefficients in a correlogram, where the variables have been ordered 

according to a hierarchical clustering method. The correlogram in Figure 5 supports the statement that wet regions tend to 395 

exhibit higher model agreement compared to dry regions. Precipitation, land surface runoff, the aridity index and the climate 

moisture index positively associate with the level of model agreement. Precipitation exhibit the strongest positive association 

among these variables, especially for MAIGFPLAIN JRC-500. The association levels between MAIGAR-500 JRC-500 and these climatic 

variables are, however, relatively weak or even insignificant (the aridity index and the climate moisture index). In other words, 

the level of agreement between GFPLAIN and the hazard maps seems to be positively influenced by a wet climate, while the 400 

agreement between JRC and GAR seems to be controlled by other factors. This result further supports the comment that the 

skill of hydrogeomorphic floodplain maps to represent flood hazard depends on the availability of water. 

The variables that represent the magnitude of river discharge also exhibit a positive association with the model agreement, in 

an even stronger sense compared to the previously mentioned climatic variables (Figure 5). This is particularly evident for the 

variables natural discharge and upstream river volume, having moderate to strong positive association with all model 405 

agreement distributions. For the very same reason, we can see that the size of the upstream drainage area exhibit a positive 

association with the model agreement, but to a moderate degree. As previously discussed, increased discharge means larger 

forces forming the landscape, and hence more well-defined floodplains. The size of the river basin being evaluated, on the 

other hand, co-variates with the model agreement in a weak negative direction. One explanation for this is that very small river 

basins get maximum model agreement scores when they are fully covered by all three flood models. 410 

The association between model agreement and the variables elevation, slope and stream gradient is significant in a negative 

direction (Figure 5). This finding supports previous discussion about how high altitude and steep regions tend to exhibit poor 

model agreement. The association between these topographic variables is strongest for the model agreement between 

GFPLAIN and GAR, whereas the association is weakest for the agreement between GFPLAIN and JRC. The reason for this 

result is not evident, but one explanation could be that the one-dimensional hydraulic modelling of GAR tends to be sensitive 415 

to these topographic variations. These findings may also be somewhat limited since the relationship between model agreement 

and, for instance, the slope is not monotonic: we have already observed how many very flat areas also exhibit poor model 

agreement (Figure 3).  
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Figure 5 Spearman rank-order correlation coefficients between the flood model agreement scores and 27 hydro-environmental 420 
attributes. Wetter conditions due to climate (precipitation, land surface runoff) and river size (e.g. river volume, natural discharge) 
are positively associated with the model agreement between the flood maps. Topographic variables like high altitude (elevation) and 
steep slope (e.g. slope and stream gradient) are negatively associated with the model agreement, especially between GFPLAIN and 
GAR-500. The correlogram is using a hierarchical clustering order. Please note that the Aridity index increases with humidity.  

The overall association between model agreement and the anthropogenic influences (population count, GDP) and the land 425 

cover characteristics (e.g. urban extent, cropland extent) is weak. These results are likely to be related to the scale of the 

analysis, any possible association would be averaged out on the aggregated basin level. Nardi et al. (2018) predominantly 

found consistencies between a hydrogeomorphic floodplain map and flood hazard maps in areas unaltered by humans.  
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4.2 Implications on exposure analysis 430 

Our analysis has shown that the level of agreement between GFPLAIN and the flood hazard maps GAR and JRC is, on average, 

higher compared to the agreement between GAR and JRC. Furthermore, we have shown that the model agreement is linked to 

factors related to climate, topography, river size and coastal proximity. We further analysed how these differences affect 

riverine flood exposure analysis, which we have conducted for 26 countries using the population maps GHS, WorldPop and 

HRSL.  435 

The flood hazard maps GAR-500 and GAR-100 cover an area of  ~3.3 M km2 and ~3.18 M km2 across the 26 countries, while 

the floodplain map GFPLAIN covers ~3.17 M km2. The hazard maps JRC-500 and JRC-100 cover an area of ~1.77 M km2 

and ~1.63 M km2 respectively. One explanation for this large difference is that GAR and GFPLAIN include smaller rivers 

compared to JRC. Figure 6 shows the flood exposure estimates of each map combination, aggregated across all 26 countries. 

Interestingly, GFPLAIN yields a larger exposure estimate compared to GAR and JRC, even though GAR-500 covers a larger 440 

total area than GFPLAIN. One explanation of the higher population estimate given by GFPLAIN is that the floodplain map 

covers a larger area of densely populated regions in India, resulting in 44 M more exposed people with GFPLAIN compared 

to GAR-500 (using the population map HRSL). This difference is, however, counteracted by the instances where GAR-500 

yields larger exposure estimates, for example, 21 M more exposed people in Bangladesh.  

 445 
Figure 6 Total exposed population (millions) across all 26 countries, comparing the hydrogeomorphic floodplain map GFPLAIN 
with the flood hazard maps GAR and JRC with 100- and 500-year return periods. The population estimates are given by the Global 
Human Settlement Layer, the High Resolution Settlement Layer and WorldPop. The floodplain map GFPLAIN yields the highest 
exposure estimates, even though GAR-500 covers a slightly larger total area. The choice of flood and population maps affect the 
results more than the choice of the return period. 450 
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We would like to highlight that 1) the choice of flood model influences the exposure estimates to a higher degree than the 

choice of the hazard return period. We think that this finding provides an important perspective to end-users of global flood 

maps; 2) we observe an inherent order across the population maps (GHS > HRSL > WorldPop), which can be explained by 

the varying population totals across these datasets (Table A6). WorldPop, for instance, exhibits considerably lower population 

values for all 26 countries. Scaling the country totals would enable a more consistent comparison of the exposure hit between 455 

the individual population datasets. We did not scale the population estimates, however, since this study aims to capture how 

dataset choice affects exposure estimates. 

Let us now turn to discuss how the riverine exposure estimates vary across individual countries and map combinations. Figure 

7 presents the flood-prone area and exposed population as proportions for each country. Among our analysed 26 countries, 

countries in Southern and South-East Asia stand out as having the highest riverine flood exposure. For instance, the largest 460 

number of people living within riverine flood-prone zones can be found in India (346 M), Bangladesh (100 M), Viet Nam 

(53 M) and Indonesia (37 M). The proportion of exposed people is largest for Bangladesh (59 %), Viet Nam (54 %), Cambodia 

(53 %) and Laos (50 %). The proportion of land area that is flood-prone is largest for Bangladesh (57 %), Cambodia (28 %), 

Bolivia (26 %) and Thailand (21 %). The numbers listed here represent the intersection of GFPLAIN and HRSL. All results 

of the area calculations and exposure estimations have been made available in Table A7, Table A8 and Table A9. 465 

It can also be seen in Figure 7 that GAR-500 covers the largest area in 17 countries, whereas GFPLAIN covers the largest area 

in the remaining 9 countries. Honduras is the only country where JRC covers a larger area compared to GFPLAIN, also 

resulting in larger exposure estimates. This is explained by the fact that coastal areas make up a large part of this country, and 

these are more often masked from GFPLAIN compared to JRC. This tendency is not consistent, however, and for instance, 

does not apply to Sri Lanka. One of the issues emerging from this finding is that masked areas near the coast can affect the 470 

exposure analysis result. Even though one would not expect the usage of riverine flood maps for estimating coastal flood risk, 

it might still affect riverine exposure estimations on, say, country level, since the coastal areas also tend to be densely 

populated. This is most certainly the case in Liberia. GFPLAIN covers a larger area compared to JRC, but misses parts of the 

densely populated coastal city Monrovia, resulting in a 0.43 M smaller exposure estimate compared to JRC. At the same time, 

variations among the flood maps can also affect the coverage of inland cities, as in the case of Colombia. GAR-500 covers a 475 

larger area compared to GFPLAIN, but GFPLAIN yields a 4.5 M larger exposure estimate from covering a larger part of the 

capital city Bogotá. 

As far as the influence of the return period is concerned, the difference between the exposure estimates of JRC-500 and JRC-

100 is largely proportional to the corresponding area difference. This is also the case for the hazard maps of GAR, with some 

exceptions. The area ratio between GAR-500 and GAR-100 in Thailand, for example, is 1.09, while the corresponding 480 

exposure ratio using HRSL is 1.83. Similar results can be found for Indonesia (1.04 compared to 1.22), Brazil (1.03 compared 

to 1.17) and Colombia (1.02 compared to 1.13). This finding might reveal how populations in these countries tend to live 

outside, but close to, the 100-year flood hazard zone. 
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Figure 7 Riverine flood exposure estimates, aggregated at country level, using the hydrogeomorphic floodplain map GFPLAIN and 485 
the flood hazard maps of JRC and GAR with a 500-year return period. The green, orange and pink bars indicate the percentage 
country population in flood-prone zones using the population maps Global Human Settlement, High Resolution Settlement Layer 
and WorldPop respectively. The blue bars indicate the percentage of land area that is flood-prone. Country boundaries are outlined 
by the GAUL 2015 dataset and permanent water is masked by the product MOD44W. 
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Figure 8 illustrates some of the implications that the dataset differences have on riverine exposure analysis. Figure 8a covers 490 

a part of the Amazon River in Brazil and was previously, in Sect. 4.1.2, identified as a high model agreement cluster. The 

spatial pattern of GFPLAIN, JRC-500 and GAR-500 are quite similar for this major river. GFPLAIN and GAR cover smaller 

river tributaries compared to JRC, but this difference does not affect the exposure estimates since the population is clustered 

in the city of Manaus near the main river. Figure 8b illustrates a major discrepancy in handling of coastal regions between the 

individual models, exemplified by the Niger Delta in Nigeria. JRC covers the entire river basin, while both GFPLAIN and 495 

GAR have masked the coastal areas to different degrees. These discrepancies affect the exposure hits in cities like Port Harcourt 

and Warri.  

Figure 8c covers a part of the Krishna River in India. This map also illustrates how GFPLAIN and GAR include smaller rivers 

than JRC, as the case for the river tributaries north of the city Khammam. We can also see how GFPLAIN has masked the 

coastal area in the southeast corner. The spatial pattern of GFPLAIN reaches the city of Guntur, nonetheless, in contrast to 500 

GAR and JRC. Figure 8d covers a part of the Mekong River in Cambodia, also identified as a high model agreement cluster 

in Sect. 4.1.2. The spatial pattern is indeed quite similar between the flood maps for this large river, but with some discrepancy. 

For instance, GFPLAIN does not exhibit the same gaps in the flood extent, as can be seen in the north part of the JRC and 

GAR flood maps. These gaps represent hilly areas that in reality would be unlikely to flood, and could be an artefact of the 

hydrogeomorphic delineation method. GFPLAIN furthermore covers a larger portion of the capital Phnom Penh, affecting the 505 

exposure hits.  

In closing this section, we want to pinpoint one last remark from the findings illustrated by Figure 7 related to the inherent 

order between the population maps (GHS > HRSL > WorldPop). As discussed, a scaling of the country totals would enable a 

more consistent comparison of the exposure hit between the individual population datasets. Nonetheless, we have indeed 

conducted a form of scaling in Figure 7 when normalizing the exposed population estimates with the population totals. The 510 

proportion of the exposed population is still generally highest for the population map GHS, whereas the results vary for HRSL 

and WorldPop. This can be contrasted to the study of Smith et al. (2019), finding considerably lower exposure estimates for 

HRSL, compared to GHS and WorldPop, when scaling the demographic datasets to share the country totals. But an important 

factor of their finding, besides the scaling of country totals, is that the hazard data needs to be high resolution to make use of 

the detailed settlement representation of HRSL (Smith et al., 2019). We think that this also highlights an important aspect of 515 

the usability of hydrogeomorphic floodplain maps in riverine exposure analysis. The opportunity to delineate high-resolution 

floodplain maps from new terrain models can play an important role in conducting riverine flood exposure estimations in data-

poor regions, if one wishes to make the best use of the detailed representations of new population maps, like HRSL. 

 

 520 
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Figure 8 Spatial patterns of the hydrogeomorphic floodplain map GFPLAIN compared to the flood hazard maps JRC and GAR 
with a 500-year return period, for the rivers (a) Amazon in Brazil, (b) Niger in Nigeria, (c) Krishna in India, and (d) the Mekong in 
Cambodia. The brown pixels indicate settlements mapped with the High Resolution Settlement Layer. The black pixels indicate the 525 
permanent water mask. GFPLAIN and GAR cover more rivers compared to JRC due to having lower thresholds of upstream 
drainage area. There is a major discrepancy between the treatment of coastal regions between the individual models, here 
particularly evident for the Niger Delta (b).  
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5. Conclusions 

In this paper, we evaluated model agreement between the hydrogeomorphic floodplain map GFPLAIN with the flood hazard 530 

maps of JRC and GAR across geographic conditions and a set of hydro-environmental attributes. We demonstrated that the 

level of model agreement between GFPLAIN and the flood hazard maps is linked to climatic conditions, topography, coastal 

proximity and river volume. We also conducted riverine exposure analysis for 26 countries by intersecting the flood maps with 

three demographic datasets to explore how model differences affect riverine flood exposure estimations. Our findings can be 

summarized by three main points. 535 

First, our results confirm that the consistency between GFPLAIN and the flood hazard maps increases with the return period. 

The choice of model for the flood hazard map is, nevertheless, more important for evaluating model agreement on river basin 

level and, also, for affecting the results of exposure analysis.  

Second, our study confirms that the results of riverine exposure analysis are highly dependent upon the choice of datasets. 

Contrary to expectations, the model agreement between the JRC and GAR hazard maps is lower compared to their agreement 540 

with GFPLAIN. The median agreement values across all river basins are found to be 0.34 for GFPLAIN and GAR-500, 0.27 

for GFPLAIN and JRC-500 and 0.20 for GAR-500 and JRC-500. There is a large spread across all basins, however, ranging 

between the maximum model agreement value 1 and very close to the minimum value 0. This finding (yet again) stresses the 

uncertainties of global flood models. 

Third, the agreement level between GFPLAIN and the flood hazard maps suggests that hydrogeomorphic terrain analysis can 545 

indeed be viewed as a valuable way of estimating flood-prone zones, especially in data-poor regions. The highest model 

agreement was generally found for large rivers in temperate or tropical climate regions. However, we do not wish to reduce 

hydrogeomorphic methods as mere substitutes for global flood models: the individual methodologies ultimately serve different 

purposes. Furthermore, floodplain maps built by hydrogeomorphic terrain analysis should be used with caution in regions that 

are dry, steep, very flat or near the coast. The tendency by GFPLAIN to not cover coastal areas may in many cases affect the 550 

riverine flood exposure estimates, even on country level, since coastal areas also tend to be densely populated. 

Inter-model comparisons like this study do not answer the question of how well the individual flood layers agree with actual 

flood events. Future research can build upon this comparative study by conducting a validation analysis using flood delineation 

from satellite imagery, similar to the recent work by Bernhofen et al. (2018). Future studies can also investigate how model 

agreement varies with the fluvial geomorphology of the rivers (e.g. as given by the global river classification dataset GloRiC 555 

(Ouellet Dallaire et al., 2019)) or land cover (e.g. as given by the ESA CCI 2015 Land Cover Map (Defourny et al., 2017)).  

To conclude, this study provided initial insights on how and where hydrogeomorphic floodplain maps could serve as candidates 

for identifying flood-prone areas in riverine flood risk studies. One particular benefit of hydrogeomorphic terrain analysis is 

that it does not require hydrological information to produce high-resolution floodplain maps whenever refined terrain models 

become available. This could particularly play an important role in riverine flood exposure analysis, as the detail of the hazard 560 
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layer needs to meet the detail of the settlement layer to avoid overestimations of flood exposure, which is especially important 

in dispersed rural regions.  

Appendix A 

Table A1: A technical summary of the datasets used for riverine flood exposure analysis. 

Dataset Credit Variable Format Input data description Model description 

GFPLAIN250m 

(GFPLAIN) 
(Nardi et al., 2019) Binary map of river 

floodplains. 

 

GeoTIFF, 8.33 arcsec 

(~250 m), 60° N, 

56° S 

Digital Elevation Model SRTM 

version 4.1. 

Identifies alluvium extent with geomorphic terrain 

analysis. Only includes river basins with a contributing 

area > 1000 km2. 

Flood Hazard Map of 

the World (JRC) 
(Dottori et al., 2016) Pixel values indicate 

maximum water 

depth (m) of flood-

prone areas for flood 

event with the 

corresponding return 

period. 

GeoTIFF, 30 arcsec 

(~1 km), Global 

ERA-Interim meteorological data 

1980-2013. HydroSHEDS (based 

on SRTM), digital elevation model 

GTOPO30, surface roughness 

values from the Global Land Cover 

2000 map, river width from the 

Global River Width Database. 

Uses hydrological simulations of GloFAS to derive river 

discharge. Gumbel extreme value distribution is used 

for fitting the daily annual discharge maxima to peak 

discharge maps for the respective return periods, for all 

river basins with an upstream drainage area 

> 5000 km2 and river width >100 m. Streamflow is 

downscaled on the river network HydroSHEDS and 

used as input for local flood inundation simulations with 

a 2-D hydraulic model CA2D.  

Global Assessment 

Report on Disaster 

Risk Reduction 2015 

flood hazard maps 

(GAR) 

(CIMA Foundation, 

2015) 

Pixel values indicate 

maximum water 

depth (cm) of flood-

prone areas for flood 

event with the 

corresponding return 

period. 

GeoTIFF, 30 arcsec 

(~1 km), 60° N, 56° S. 

River discharge station data (e.g. 

GRDC, RivDIS, GHCDN) covering 

> 8000 stations. The Global 

Reservoir and Dam Database 

(GRanD). SRTM version 2, SRTM 

water body data, HydroSHEDS. 

Land cover data (GLC 2000, ESA, 

GLWD) for specifying basin 

characteristics for statistical 

analysis, and estimate surface 

roughness. Climate datasets (CRU 

TS and CHIRPS) for specifying 

basin characteristics for statistical 

analysis.  

Uses statistical regionalization techniques on river 

discharge measurements to compute extreme 

discharge values, which are used as input to a one-

dimensional hydraulic flood inundation model.  Only 

includes river basins with a contributing area > 1000 

km2. The native model resolution is 3 arcsec (~ 90 m), 

the hazard maps have subsequently been resampled 

to 30 arcsec. 

High Resolution 

Settlement Layer 

(HRSL) 

(Facebook 

Connectivity Lab and 

CIESIN, 2016) 

Pixel values indicate 

the number of 

inhabitants for the 

year 2018.  

GeoTIFF, 1 arcsec 

(~30 m), available for 

>140 countries. 

 

Population census data, satellite 

imagery of Digital Globe (0.5 m). 

Uses convolutional neural networks to detect buildings 

from high-resolution satellite data. Population 

estimates from census data are allocated to the 

buildings via a binary dasymetric modelling approach. 

Global Human 

Settlement Layer - 

Population Grid 2015, 

version R2019A 

(GHS) 
 

(Schiavina et al., 

2019) 

Pixel values indicate 

the number of 

inhabitants for the 

year 2015.  

GeoTIFF, 9 arcsec 

(~250 m), Global 

Population estimates of CIESIN 

Gridded Population of the World 

version 4.10. Built-up land of 

GHSL, detected by satellite 

imagery of Landsat (30 m). The 

population estimates are 

disaggregated from census or 

administrative units through the 

distribution and density of built-up 

land. 

Uses a binary dasymetric modelling approach for 

allocating subnational census data to built-up areas. 

WorldPop Estimated 

Residential 

Population per 

100x100m Grid 

Square (WorldPop) 

(Gaughan et al., 

2013; Linard et al., 

2012; Sorichetta et 

al., 2015; Tatem, 

2017) 

Pixel values indicate 

the number of 

inhabitants for the 

year 2018.   

GeoTIFF, 3 arcsec 

(~90 m), Global 

Uses a range of input datasets, 

e.g. land cover, roads, slope, 

nighttime lights. Built-up is 

detected by satellite imagery of 

Landsat (30 m).  

Uses a random forests-based dasymetric modelling 

approach for allocating census counts to built-up areas.  
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Table A2: Summary statistics and pairwise comparisons of the model agreement between each pair of flood maps. A Kruskal-Wallis 565 
test showed that there is a significant difference in model agreement between groups, H(5) =1217, p < 0.001.  The pairwise 
comparisons, for detecting significant differences between the groups, have been conducted using the Wilcoxon rank-sum test with 
continuity correction. 

 n Mean S.D. (1) (2) (3) (4) (5) 

1. MAIGFPLAIN GAR-500 2776 0.357 0.178 -     

2. MAIGFPLAIN JRC-500 2776 0.292 0.199 *** -    

3. MAIGAR-500 JRC-500 2776 0.253 0.194 *** *** -   

4. MAIGFPLAIN GAR-100 2776 0.344 0.174 ** *** *** -  

5. MAIGFPLAIN JRC-100 2776 0.278 0.194 *** ** *** *** - 

6. MAIGAR-100 JRC-100 2776 0.237 0.187 *** *** *** *** *** 

Note. *p < .05, **p < .01, ***p < .001 

 570 
Table A3: Summary statistics and pairwise comparisons of how MAI-500 (the model agreement index of GFPLAIN, GAR-500 and 
JRC-500) varies with different geographic regions. A Kruskal-Wallis test showed that there is a significant difference in model 
agreement between the regions, H(6) =146, p < 0.001. The pairwise comparisons, for detecting significant differences between the 
regions, have been conducted using the Wilcoxon rank-sum test with continuity correction. 

 n Mean S.D. (1) (2) (3) (4) (5) (6) 

1. Africa 662 0.323 0.162 -      

2. Europe 327 0.365 0.162 *** -     

3. Siberia 132 0.323 0.133 n.s. n.s. -    

4. Asia 515 0.387 0.198 *** n.s. ** -   

5. Australia 216 0.354 0.166 ** n.s. n.s. n.s. -  

6. South America 454 0.392 0.181 *** n.s. *** n.s. * - 

7. North America 470 0.291 0.149 *** *** *** *** *** *** 

Note. *p < .05, **p < .01, ***p < .001 575 

 
Table A4: Summary statistics and pairwise comparisons of how MAI-500 (the model agreement index of GFPLAIN, GAR-500 and 
JRC-500) varies with different river stream orders. A Kruskal-Wallis test showed that there is a significant difference in model 
agreement between the river stream orders, H(3) =101, p < 0.001. The pairwise comparisons, for detecting significant differences 
between the stream orders, have been conducted using the Wilcoxon rank-sum test with continuity correction. 580 

 n Mean S.D. (1) (2) (3) 

1. Stream order 0 (coast) 420 0.283 0.169 -   

2. Stream order 1 (inland) 1147 0.372 0.184 *** -  

3. Stream order 2 (inland) 910 0.355 0.167 *** n.s. - 

4. Stream order 3 (inland) 299 0.327 0.123 *** ** n.s. 

Note. *p < .05, **p < .01, ***p < .001 
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Table A5: Summary statistics and pairwise comparisons of how MAI-500 (the model agreement index of GFPLAIN, GAR-500 and 585 
JRC-500) varies with the freshwater major habitat types that spatially dominate the river basin. A Kruskal-Wallis test showed that 
there is a significant difference in model agreement between freshwater habitat types, H(10) =478, p < 0.001.  The pairwise 
comparisons, for detecting significant differences between the habitat types, have been conducted using the Wilcoxon rank-sum test 
with continuity correction. 

 n Mean S.D. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

1. Large lakes 87 0.286 0.140 -          

2. Large river deltas 37 0.532 0.232 *** -         

3. Montane freshwaters 65 0.286 0.129 n.s. *** -        

4. Xeric freshwaters and endorheic basins 304 0.260 0.176 * *** * -       

5. Temperate coastal rivers 424 0.258 0.118 n.s. *** n.s. n.s. -      

6. Temperate upland rivers 164 0.321 0.146 n.s. *** n.s. *** *** -     

7. Temperate floodplain rivers and wetlands 494 0.429 0.180 *** * *** *** *** *** -    

8. Tropical and subtropical coastal rivers 366 0.343 0.149 *** *** ** *** *** n.s. *** -   

9. Tropical and subtropical upland rivers 303 0.388 0.149 *** *** *** *** *** *** ** *** -  

10. Tropical and subtropical floodplain rivers and 

wetlands 
433 0.408 0.182 *** ** *** *** *** *** * *** n.s. - 

11. Polar freshwaters 99 0.309 0.117 n.s. *** n.s. *** *** n.s. *** n.s. *** *** 

Note. *p < .05, **p < .01, ***p < .001 590 
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Table A6: Total country population (millions) using data from World Bank (The World Bank, 2021a), GHS, HRSL and WorldPop 
for 26 countries.  

 595 

 

 
  

 World Bank 2015 GHS 2015 World Bank 2018 HRSL 2018 WorldPop 2018 

Bangladesh 156.3 175.7 161.4 170.4 137.1 

Bolivia 10.9 11.1 11.4 11.4 9.8 

Brazil 204.5 219.4 209.5 219.2 181.8 

Cambodia 15.5 15.8 16.2 16.5 15.4 

Cent. Afr. Rep. 4.5 4.9 4.7 5.2 4.4 

Colombia 47.5 48.5 49.7 51.2 51.3 

Congo 4.9 4.6 5.2 4.9 3.2 

Ecuador 16.2 15.9 17.1 17.1 14.6 

Ghana 27.8 27.6 29.8 29.3 26.8 

Guatemala 15.6 17.0 16.3 17.4 15.0 

Honduras 9.1 8.3 9.6 8.6 7.9 

India 1310.2 1408.3 1352.6 1376.8 1158.0 

Indonesia 258.4 253.7 267.7 269.4 232.2 

Kenya 47.9 46.4 51.4 49.0 44.3 

Laos 6.7 6.9 7.1 6.8 6.3 

Liberia 4.5 4.5 4.8 4.8 3.7 

Malawi 16.7 18.0 18.1 18.3 15.0 

Mozambique 27.0 28.8 29.5 29.7 24.8 

Nicaragua 6.2 6.2 6.5 6.5 5.7 

Nigeria 181.1 184.0 195.9 193.6 174.9 

Peru 30.5 32.0 32.0 33.3 29.3 

Sri Lanka 21.0 20.8 21.7 21.9 18.1 

Thailand 68.7 70.4 69.4 72.3 62.7 

Uganda 38.2 39.1 42.7 41.5 34.1 

Tanzania 51.5 53.4 56.3 56.7 45.7 

Viet Nam 92.7 97.4 95.5 99.1 82.6 
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Table A7: Total land area and flood-prone area (square kilometres) using GFPLAIN, JRC-100, JRC-500, GAR-100 and GAR-500. 
Land area is the total country area minus surface water area, given by the water mask MOD44W. The percentage of country area 600 
that is normally occurring surface water is less than 5 % for all countries, except Uganda with Lake Victoria (15 %) and Malawi 
with Lake Malawi (20 %).  

 

  

 Total land GFPLAIN GAR-100 GAR-500 JRC-100 JRC-500 

Bangladesh 133255 75291 81469 85451 58237 61949 

Bolivia 1073122 283994 226717 234136 108318 119279 

Brazil 8403158 963993 1133095 1161675 549877 594106 

Cambodia 177699 49628 48407 50342 27490 29069 

Cent. Afr. Rep. 621613 49434 41201 41738 20128 22344 

Colombia 1130606 172221 178504 181772 87246 94759 

Congo 339743 66827 45277 46018 23487 27041 

Ecuador 255003 14367 25775 26306 5841 6444 

Ghana 233261 25815 18243 18485 6603 7288 

Guatemala 108183 14325 14090 14584 3590 3898 

Honduras 111452 7458 15194 15780 7255 7947 

India 2940760 385664 354450 375427 251512 274302 

Indonesia 1862962 253940 268564 278633 110383 121199 

Kenya 572913 72052 52158 54522 21850 24488 

Laos 229519 23940 32232 33597 10586 11353 

Liberia 96230 8252 12316 12471 1812 1908 

Malawi 95161 7325 7611 7721 2034 2238 

Mozambique 775817 70647 76199 78920 32177 34706 

Nicaragua 118971 12616 21336 22389 5716 6312 

Nigeria 905864 170522 110735 115619 73731 80413 

Peru 1281244 136202 152788 155400 79743 88004 

Sri Lanka 64722 3898 6811 7086 693 770 

Tanzania 883844 112606 75055 77959 22289 24367 

Thailand 511152 105223 97805 106312 57068 59844 

Uganda 205777 25341 16703 17428 5700 6231 

Viet Nam 323857 62585 72180 75512 53951 55392 
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Table A8: Population estimates within flood-prone areas (millions) intersecting GFPLAIN, GAR-500 and JRC-500 with GHS, HRSL 605 
and WorldPop for 26 countries.  

 GHS HRSL WorldPop 

 GFPLAIN GAR-500 JRC-500 GFPLAIN GAR-500 JRC-500 GFPLAIN GAR-500 JRC-500 

Bangladesh 104.1 126.0 84.5 100.5 121.4 83.5 81.9 98.5 70.0 

Bolivia 2.1 2.1 0.6 1.8 1.6 0.4 1.5 1.4 0.4 

Brazil 28.8 36.3 11.3 29.1 36.6 11.7 24.6 30.6 9.9 

Cambodia 8.4 8.8 5.5 8.7 9.2 5.7 7.9 8.0 5.4 

Cent. Afr. Rep. 1.3 0.9 0.4 1.4 1.0 0.4 1.1 0.8 0.4 

Colombia 14.4 10.5 3.4 13.8 9.3 3.0 13.0 9.3 3.1 

Congo 1.1 1.4 0.8 1.1 1.5 0.7 1.0 0.7 0.6 

Ecuador 3.3 4.5 1.3 3.1 4.3 1.3 2.5 3.5 1.1 

Ghana 2.3 2.3 0.9 1.7 1.9 0.4 1.8 1.7 0.5 

Guatemala 1.6 2.5 0.6 0.9 1.4 0.2 0.8 1.2 0.2 

Honduras 0.8 1.6 0.5 0.6 1.2 0.4 0.6 1.2 0.4 

India 379.9 337.7 251.6 345.6 301.5 231.2 306.9 260.8 213.6 

Indonesia 43.7 45.0 20.7 37.2 40.7 19.1 31.1 34.0 15.9 

Kenya 3.8 3.8 1.1 3.3 3.8 0.7 3.1 3.3 0.8 

Laos 4.0 3.5 2.4 3.4 3.2 2.0 2.7 2.7 1.6 

Liberia 0.5 1.1 0.9 0.5 1.2 0.8 0.4 0.9 0.8 

Malawi 2.0 2.0 0.5 1.6 1.9 0.4 1.4 1.5 0.4 

Mozambique 4.9 5.4 2.6 2.9 3.3 1.3 2.7 2.8 1.7 

Nicaragua 0.8 1.1 0.3 0.4 0.8 0.1 0.4 0.7 0.1 

Nigeria 37.7 29.1 21.2 31.7 23.1 17.3 31.0 23.4 18.2 

Peru 4.2 6.2 2.0 3.6 5.5 1.7 2.8 4.7 1.3 

Sri Lanka 2.7 3.9 0.1 2.6 4.1 0.1 2.3 3.5 0.1 

Thailand 34.7 37.4 27.7 33.3 36.1 27.3 29.5 31.7 25.2 

Uganda 3.2 3.0 0.6 2.8 2.6 0.3 3.2 2.5 0.6 

Tanzania 6.8 4.6 1.4 5.4 3.5 0.5 4.7 3.1 0.7 

Viet Nam 54.9 58.4 42.7 53.4 57.4 43.6 43.5 46.0 35.8 

 

  

https://doi.org/10.5194/nhess-2021-136
Preprint. Discussion started: 17 May 2021
c© Author(s) 2021. CC BY 4.0 License.



31 
 

Table A9: Population estimates within flood-prone areas (millions) using a return period of 100 years compared to 500 years, 
intersecting GAR and JRC with the HRSL population dataset.  610 

 GAR-100 GAR-500 JRC-100 JRC-500 

Bangladesh 116.14 121.38 76.99 83.52 

Bolivia 1.48 1.56 0.36 0.39 

Brazil 31.37 36.57 10.77 11.71 

Cambodia 8.93 9.21 5.38 5.69 

Cent. Afr. Rep. 0.94 0.96 0.38 0.44 

Colombia 8.25 9.29 2.71 2.95 

Congo 1.46 1.53 0.64 0.70 

Ecuador 3.93 4.28 1.20 1.32 

Ghana 1.83 1.91 0.38 0.41 

Guatemala 1.34 1.37 0.21 0.23 

Honduras 1.17 1.22 0.35 0.37 

India 279.11 301.54 208.74 231.19 

Indonesia 33.39 40.71 18.05 19.11 

Kenya 3.67 3.81 0.63 0.75 

Laos 3.05 3.23 1.87 1.96 

Liberia 1.14 1.16 0.76 0.81 

Malawi 1.82 1.85 0.31 0.38 

Mozambique 3.18 3.26 1.17 1.29 

Nicaragua 0.72 0.76 0.12 0.13 

Nigeria 22.21 23.14 14.97 17.33 

Peru 4.94 5.55 1.63 1.74 

Sri Lanka 3.85 4.13 0.04 0.05 

Thailand 19.75 36.08 26.43 27.34 

Uganda 2.28 2.58 0.24 0.29 

Tanzania 3.36 3.48 0.43 0.49 

Viet Nam 50.76 57.42 41.69 43.58 
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Code availability 

The geospatial analysis has primarily been conducted in Google Earth Engine, and the statistical analysis has been conducted 

in R. The corresponding codes are made available upon request.  615 

Data availability 

The floodplain layer GFPLAIN250m is available at https://figshare.com/articles/GFPLAIN250m/6665165/1. The JRC Flood 

hazard map of the World is available at https://data.jrc.ec.europa.eu/collection/id-0054. The Global Assessment Report 2015 

flood hazard maps can be accessed via the PREVIEW Global Risk Data Platform https://preview.grid.unep.ch/. HydroBASINS 

and HydroATLAS are available at https://www.hydrosheds.org/. The remaining datasets were all accessed through the Google 620 

Earth Engine Data Catalog (Gorelick et al., 2017): 

 Global Administrative Unit Layers: ee.FeatureCollection("FAO/GAUL/2015/level0") 

 Global Human Settlement Layer: ee.ImageCollection(“JRC/GHSL/P2016/POP_GPW_GLOBE_V1”) 

 High Resolution Settlement Layer: ee.ImageCollection(“projects/sat-io/open-datasets/hrslpop”) 

 HydroBASINS: ee.FeatureCollection(“WWF/HydroSHEDS/v1/Basins/hybas_5”) 625 

 MOD44W Land Water Mask: ee.Image(“MODIS/MOD44W/MOD44W_005_2000_02_24”) 

 WorldPop: ee.ImageCollection(“WorldPop/GP/100m/pop”) 
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