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Abstract. The prediction of debris flows is relevant because this type of natural hazard can pose a threat to humans and

infrastructure. Debris-flow (and landslide) early warning systems often rely on rainfall intensity-duration (ID) thresholds.

Unfortunately, no standardized procedures
::::::
Multiple

::::::::::
competing

:::::::
methods

:
exist for the determination of such ID thresholds

:::
but

::::
have

:::
not

:::::
been

:::::::::
objectively

::::
and

:::::::::
thoroughly

:::::::::
compared

::
at
::::::::

multiple
:::::
scales, and a validation and uncertainty assessment is

often missing in their formulation. As a consequence, updating, interpreting, generalizing and comparing rainfall thresholds5

is challenging. Using a 17-year record of rainfall and 67 debris flows in a Swiss Alpine catchment (Illgraben), we determined

ID thresholds and associated uncertainties as a function of record length
::::::
duration. Furthermore, we compared two methods

for rainfall definition which consider both triggering and non-triggering events, based on linear regression and/or True Skill

Statistic
:::
true

::::
skill

::::::
statistic

:
maximization. The main difference between these approaches and the well-known frequentist method

is that non-triggering rainfall events were also considered here for obtaining ID-threshold parameters. Depending on the method10

applied, the ID-threshold parameters and their uncertainties differed significantly. We found that 25 debris flows are sufficient to

constrain uncertainties in ID-threshold parameters to ±30% for our study site. We further demonstrated the change in predictive

performance of the two methods if a regional landslide data set
:::
with

::
a
:::::::
regional

::::::
rainfall

:::::::
product was used instead of a local one

, with important implications for ID-threshold determination
::::
with

::::
local

::::::
rainfall

:::::::::::::
measurements.

::::::
Hence,

::
an

:::::::::
important

::::::
finding

::
is

:::
that

:::
the

:::::
ideal

::::::
method

:::
for

:::
ID

::::::::
threshold

::::::::::::
determination

:::::::
depends

:::
on

:::
the

::::::::
available

:::::::
landslide

::::
and

::::::
rainfall

::::
data

::::
sets. Furthermore,15

::
for

:::
the

:::::
local

::::
data

::
set

:
we tested if the ID-threshold performance can be increased by considering other rainfall properties (e.g.

antecedent rainfall, maximum intensity) in a multivariate statistical learning algorithm based on decision trees (random forest).

The highest predictive power was reached when the
::::
peak

:
30-min maximum accumulated rainfall

:::::
rainfall

::::::::
intensity was added

to the ID variables, while no improvement was achieved by considering antecedent rainfall for debris-flow predictions in

Illgraben. Although the increase in predictive performance with the random forest model
::::
over

:::
the

:::::::
classical

:::
ID

::::::::
threshold

:
was20

small, such a framework could be valuable for future studies if more predictors are available from measured or modelled data.
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1 Introduction

Debris flows are a common geomorphic process and hazardous phenomenon in mountain regions. They move rapidly as

a surging flow of saturated debris. In contrast to other mass movements, such as shallow landslides, debris flows follow25

an established flow path, along which they often entrain substantial amounts of sediment and water stored in the channel

(Hungr et al., 2014; de Haas et al., 2020). In Switzerland, where this study is conducted, landslides and debris flows caused

74 fatal accidents between 1946 and 2015 (Badoux et al., 2016). Globally, debris flows cause about 165 fatalities per year on

average, with most of them occurring in mountainous regions of developing countries (Dowling and Santi, 2014). Furthermore,

debris flows have the potential to damage property, infrastructure, managed forests and agricultural land (Hilker et al., 2009).30

Therefore, the development of early warning systems (EWS) for debris flows and other rapid gravitational mass movements,

involving novel measurement techniques and models, is a priority in many countries (Stähli et al., 2015). EWS often rely on

rainfall thresholds (Guzzetti et al., 2020). The most common rainfall thresholds are drawn in the rainfall duration (D) and mean

rainfall intensity (I, or cumulative rainfall) space, taking the form I = αD−β , which is a linear curve in logarithmic space

(Caine, 1980).35

In alpine settings, debris flows mostly develop following a shallow hillslope landslide caused by increased pore water pres-

sure (e.g. Iverson, 1997). Another cause can be runoff, where sediment deposits in the channel are mobilized as a mass move-

ment (Takahashi, 1978, 1981) or sediments are progressively bulked up (Fryxwell and Horberg, 1943; Johnson and Rodine,

1984; Tognacca, 1999; Gregoretti, 2000). Physically-based models considering these mechanisms can be used to infer ID

thresholds leading to debris-flow initiation (e.g. Berti and Simoni, 2005; Berti et al., 2020; Tang et al., 2019). However, be-40

cause such models require a great deal of input data of high quality, empirically determined ID thresholds are still more

common and are determined at the local, regional or global scale (e.g. Caine, 1980; Guzzetti et al., 2007; Coe et al., 2008;

Badoux et al., 2009; Staley et al., 2013; Abancó et al., 2016; Bel et al., 2017).

The problem with
:
A
::::::::
challenge

:::
in the use of ID thresholds is that there is no standardized procedure

:::
are

:::::::
multiple

:::::::::
competing

:::::::
methods

:
for their determination, and they

:::::
which

::::
have

::::
not

::::
been

::::::::::
objectively

:::
and

::::::::::
thoroughly

:::::::::
compared

::
at

::::::::
multiple

::::::
scales.45

::::::::::
Furthermore,

::::::::::::
ID-thresholds

:
are rarely validated

::::::::::::::::
(Segoni et al., 2018). Consequently, generalizing and updating ID thresholds

is challenging, as is comparing between them to hypothesize about the possible site-related differences in geomorphology,

lithology, terrain and soil properties that lead to a different response to rainfall forcing (Segoni et al., 2018). The sensitivities of

ID thresholds have to be better understood and studied for such comparisons to be meaningful. Major uncertainties arise from

various issues related to the quality of the rainfall record used. ID thresholds often rely on rainfall data from rain gauges, which50

can be located on the valley floor or in a neighbouring valley rather than in the immediate vicinity of the debris-flow initiation

area. Studies in the Italian Alps have shown that in orographically complex areas, especially for short convective rainstorms,

precipitation intensities can decay significantly (30–60%) within short distances (5–10 km) from the centre of the rainfall cell

(Marra et al., 2016). This may lead to underestimations of α by up to 70%, and is one reason for the high false alarm rate of ID

thresholds (Nikolopoulos et al., 2014). Another factor causing ID-threshold underestimation is the coarse temporal resolution55

of the rainfall data. Landslide and debris-flow data sets going far back in time, or relying on satellite-based estimates of rainfall,
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can be strongly affected by a coarse temporal resolution. Especially if events are triggered by short-duration storms (minutes

to hours), the event mean rainfall intensity is considerably underestimated when daily rainfall records are used. In a study with

synthetic data, Marra (2018) showed that using daily data results in significant threshold underestimation. Gariano et al. (2020)

confirmed this effect for a real case study in Italy. However, the accuracy of ID thresholds based on rainfall data with a sub-daily60

resolution can also be limited, for example if the exact timing of the debris flows or landslides is unknown (Leonarduzzi and

Molnar, 2020). This is often the case, unless the area is closely monitored or damage was caused and immediately recognized.

Therefore, in studies where the landslide timing is only imprecisely known and sub-daily rainfall data are used, the entire

rainfall event or the rainfall until the highest intensity was reached is considered to be the triggering rainfall. This uncertainty

in event timing has been shown to lead to inflated triggering rainfall amounts and subsequently to overestimated ID thresholds65

(Staley et al., 2013; Leonarduzzi and Molnar, 2020; Bel et al., 2017). Additional uncertainties stem from the discretization

of the rainfall time series into rainfall events. Rainfall events are usually separated by a minimum inter-event time (MIT), a

period that is intended to mark separate, independent rainfall periods
:::::::::::::::
(Dunkerley, 2008). For studies in debris-flow torrents, the

MIT can range from 10 min
::::::::::::::::::
(e.g. Coe et al., 2008) to 6 h

::::::::::::::::::::::
(e.g. Deganutti et al., 2000) and is often chosen subjectively without

a sensitivity analysis. Bel et al. (2017) combined different MIT values with uncertainty in the timing of debris-flow detection in70

a French torrent. The obtained uncertainty bounds in ID thresholds encompassed almost all ID thresholds previously published

from other torrents. Despite their importance, uncertainties in ID curves are seldom used in prediction.

The inaccuracies in rainfall data used to establish ID thresholds are one source of uncertainty leading to the high false

alarm rate. ID thresholds are also criticized for ignoring other information contained in the rainfall time series, such as peak

intensities and antecedent rainfall. For debris flows, peak intensities at high temporal resolution (≤10 min) have been shown75

to have an especially high predictive power (e.g. Abancó et al., 2016; Bel et al., 2017). Multivariate statistical methods, such

as logistic regression, have been tested and applied to improve the prediction of post-wildfire debris flows in the US (Cannon

et al., 2010; Staley et al., 2017), and for
:::::
debris

:::::
flows

::
in
:

a French Alpine torrent (Bel et al., 2017). More advanced machine

learning techniques are also becoming an attractive tool in the geosciences as the availability of both measured and modelled

data increases, and the careful investigation of all possible physical interactions between the variables exceeds our capacities80

(Reichstein et al., 2019). For post-wildfire debris-flow prediction, machine learning algorithms have in fact been shown to

outperform logistic regression models and ID thresholds in predictions (Kern et al., 2017; Nikolopoulos et al., 2018).

Here, we address two research questions. First, what is the uncertainty associated with estimation methodsand with
:
, debris-

flow record length
:::::::
duration,

::::
and

::::
with

:::
the

::::::
hazard

::::
data

:::
set

:
in ID-threshold parameters? By resampling the Illgraben debris-

flow record using different time windows, we estimate the confidence bounds of the ID-threshold parameters. Furthermore,85

we compare the uncertainties of two methods that have been used recently for determining ID-threshold parameters (e.g.

Leonarduzzi et al., 2017; Leonarduzzi and Molnar, 2020; Nikolopoulos et al., 2018).
:::::
These

:::::::
methods

::::
use

:::::
linear

:::::::::
regression

:::::
and/or

::::
true

::::
skill

::::::
statistic

::
to

::::::::
determine

:::
the

:::::::::::
ID-threshold

:::::::::
parameters

::
α

:::
and

::
β.

::::
The

:::::::::
differences

::
of

:::::
these

:::::::
methods

:::
are

::::::::
evaluated

::::
both

::
for

::
a
::::
local

::::::
debris

::::
flow

::::::::
inventory

::::
with

::::
local

:::::::
rainfall

::::::::::::
measurements

:::
and

:
a
:::::::
regional

::::::::::::::::::
landslide/debris-flow

::::::::
inventory

::::
with

:::::::
gridded

::::::
rainfall

::::::::::
information.

:
Second, how do traditional ID-threshold-curve methods compare with machine learning algorithms? We90

extend the analysis of debris-flow prediction with additional rainfall event attributes in a random forest algorithm (Breiman,
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2001), test the predictive skill, and discuss the pros and cons of the multivariate approach for local debris-flow detection based

on different rainfall event properties (e.g. peak rainfall intensity, number of lightning events) and other seasonal proxies, for

example those related to sediment recharge.

2 The Illgraben study site95

Illgraben is a north-facing catchment located in the Rhône valley in the Swiss canton of Valais .
::::
(Fig.

:::
1).

:
It consists of two

subcatchments: the eastern Illbach (4.15 km2) is hydrologically and geomorphologically disconnected, while the western

Illgraben (4.83 km2) produces on average ∼5 debris flows a year. The Illgraben sub-catchment has a maximum elevation

of 2645 m a.s.l.
::::::::::
2645 m a.s.l.

:
at the summit of the Illhorn mountain. In this region, the main Rhône-Simplon fault line changes

its orientation, resulting in numerous smaller faults in highly fractured bedrock and affecting the Illgraben catchment (McArdell100

and Sartori, 2021). The main sediment source area is a highly active hillslope underlain by quartzite bedrock, ranging from

1250 to 2370 m a.s.l.
:::::::::::
2370 m a.s.l. and with slopes of up to 80°, where frequent landslides occur and deposit sediments in the

trunk channel (Bennett et al., 2012; Berger et al., 2011). The main debris-flow channel starts just below this hillslope and is

5.2 km long. The first half is characterized by a mean slope of 16% until the fan apex at 886 m a.s.l. (Badoux et al., 2009). The

second half is flatter (10%) and confined by check dams, before it joins the Rhône river at 605 m a.s.l.105

In 1961 a large rock avalanche on the northern slope provided abundant sediment and increased the debris-flow frequency

in the following years (Hürlimann et al., 2003). However, since then this part of the catchment has produced sediment at much

lower rates than the main source area (Schlunegger et al., 2009). The rock avalanche prompted the construction of 30 concrete

check dams to stabilize the channel, with the most upstream one being 48 m tall (Lichtenhahn, 1971). This upstream check dam

was effective in stabilizing the toe of the rock avalanche deposit and reducing the number of debris-flow events in subsequent110

years (Hürlimann et al., 2003).

Since 2000 the Swiss Federal Research Institute WSL
::
for

::::::
Forest,

:::::
Snow

::::
and

:::::::::
Landscape

::::::
(WSL)

:
has been operating an ob-

servation network in the Illgraben catchment
:::
(Fig.

:::
1), including rain gauges (added in 2001), geophones, depth sensors and a

force plate (Rickenmann et al., 2001; Hürlimann et al., 2003; McArdell et al., 2007; McArdell, 2016). In this study, we use the

rain gauge data
:::
used

:::
the

::::
data

::::
from

::::
rain

:::::
gauge

:
1
:
and a debris-flow inventory including events up to the year 2017 (McArdell and115

Hirschberg, 2020).
::::
The

::::
other

::::
two

:::
rain

::::::
gauges

:::
are

:::
not

:::::
ideal

::
for

::::
this

:::::
study

::::::
because

::::
rain

:::::
gauge

::
2
:::
has

:::::::
changed

:::::::
location

::::::
during

:::
the

::::
study

::::::
period

:::
and

::::
rain

:::::
gauge

::
3

:
is
::::::::
sheltered

:::
by

::::
trees.

:::::
Rain

:::::
gauge

:
1
::
is

:::::::
suitable

::::
here

:::::::
because

:
it
::
is

:::::
close

::
to

::
the

::::::::::
debris-flow

::::::::
initiation

:::
area

::::
and

:::
has

::::
been

:::::::::
measuring

::::::::::
consistently.

:

Illgraben has an alarm system that operates independently from the debris-flow observation station. It serves the villages

of Susten and the Pletschen-subdivision on the eastern side of the fan and protects the people visiting the Pfynwald nature120

park on the western side. Furthermore, hiking trails and sports fields close to the riparian zone make the fan a vulnerable

area. Geophones mounted on check dams detect debris flows and activate alert lights and acoustic signals downstream in the

riparian zone. After an initial phase of testing and optimization by WSL , the station was operated for about 10 years before

the geophones and depth sensors described in Badoux et al. (2009) were replaced with sensors requiring less maintenance.
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The
::::::::::::::::::::
(see Badoux et al., 2009),

:::
the

:
alarm system is now operated by the local municipality in cooperation with an engineering125

company. For a detailed description of the original alarm system, the reader is referred to Badoux et al. (2009).

The mean annual precipitation at mean catchment elevation (1600 m a.s.l.) computed for the time period 1981–2010 was

900 mm y−1 (HAD, 2015) and the mean annual temperature for the same period was 5.9°C (Hirschberg et al., 2021). Debris

flows generally occur from May to October. Although climate change scenarios project longer debris-flow seasons in the future

(Hirschberg et al., 2021), and recently debris flows have also been recorded in April (2020) and December (2018), most debris130

flows occur in response to convective rainstorms between June and August. Snowmelt likely plays a role in spring
:::
can

::::
add

::::::::::
considerable

::::::::
amounts

::
of

:::::
liquid

:::::
water

::
to
::::

the
:::::
debris

::
in

:::::
other

::::::
places

::::::::::::::::::::::::
(e.g. Mostbauer et al., 2018) but has never been observed

to be the sole trigger for the recorded debris flows
:::::::::
debris-flow

::::::
trigger

::
in

:::::::::
Illgraben,

:::::::
although

::
it
:::::
likely

::::::
affects

:::
the

::::::::::
antecedent

::::::::
conditions

::
in
::::::

spring. Debris flows overflowing the banks are only expected in the case of the failure of a landslide-generated

dam, levee failing or breaching, or if the channel conveyance capacity is reduced. Such a large debris flow was only observed135

after the failure of the dam formed by the 1961 landslide (Badoux et al., 2009).

3 Methods

3.1 Data

The timing and volume of debris flows were derived from the local observation system and are reported in McArdell and

Hirschberg (2020). The debris-flow data set contains 75 entries from the years 2000 to 2017, with 1–8 debris flows occurring140

every year and bulk volumes ranging from 2000 to over 100,000 m3 (median 25,000 m3). The debris-flow mean bulk density

was typically 1800–2200 kg m−3 (Schlunegger et al., 2009). Because the local rain gauge
::::::
gauges (Fig. 1) was

:::
were

:
installed

in June 2001, only 67 of these debris flows overlap with the rainfall record and were used in this study. The local rain gauge is

a 0.2 mm resolution tipping bucket with a 10-min sampling rate. It is not heated and therefore only measurements in the period

from May to October are considered, which coincides well with the debris-flow season. During this period, 480 mm of rainfall145

is measured annually on average, corresponding to about half of the total annual precipitation. The majority of debris flows are

triggered by events with cumulative rainfall exceeding 5 mm. Although this amount is exceeded by about 30 storms each year,

only 4.2 debris flows are triggered annually on average.

Temperature data was provided by the Swiss Meteorological Office (MeteoSwiss) from the Montana meteorological station,

located about 11 km northwest of the study area.
::::::::
Although

:::
the

::::
local

::::
rain

:::::::
gauges

:::::::
measure

:::::::::::
temperature,

:::
the

::::::
sensors

:::
are

::::
not150

:::::::
properly

:::::::
shielded

::::
and

:::
the

::::::::::::
measurements

:::::::
therefore

::::::::::
unreliable. The measurements were interpolated using local lapse rates to

account for the difference in elevation of about 200 m, as described in Hirschberg et al. (2021). The 10 min total of recorded

lightning strikes at a distance of 3–30 km was also derived from the Montana station and used as a secondary variable for

the convective character of storms (Gaál et al., 2014) in the machine learning algorithm. The local predictive power of debris

flows in Illgraben was also compared with a regional prediction of slope failure using a regional data set on shallow land-155

slides in Switzerland including associated rainfall events (Leonarduzzi et al., 2017). It is based on a gridded daily rainfall

product (RhiresD) and the Swiss flood and landslide damage database (WSL). This
:::::::
RhiresD

:::::::
consists

::
of

:
a
::::::::::
1km x 1km

:::::::
gridded
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Figure 1. Aerial view of the Illgraben study site located in
::::::
(Federal

::::::
Office

::
of

::::::::::
Topography)

::::
with

:
the Swiss Rhône valley

::::::::
debris-flow

::::::::
observation

::::::
system. Large amounts of sediment

:::
Most

::::::::
sediments

:
are generated on the active hillslope. Debris flows mostly initiate in the

channel below this slope , and volumes are
:::::::
identified

:::
with

:::::::::
geophones

::::::
mounted

::
to

:::
the

::::
check

:::::
dams

:::::::::
downstream.

:::::::
Volumes

::
are

:
calculated based

on data collected at the location of the force plate(source: Federal Office of Topography).
:::
Data

::::
from

::::
rain

::::
gauge

::
1
::::
were

::::
used

:
in
:::
this

:::::
study

::
to

:::::::::
characterize

:::::
rainfall

::::::
events.

::::::
product

::
of

:::::
daily

:::::::::::
precipitation

:::::
sums

:::::::
obtained

:::
by

:::::::::::
interpolation

::
of

::::
rain

::::::
gauges

:::
(ca.

:::::
420),

::::::::::
accounting

::
for

:::::
local

::::::::::
climatology

::::
and

::::::::::::::::::::
precipitation-topography

:::::::::::
relationships

::::::::::::::::::
(Frei and Schär, 1998).

::::
The regional data set consists of 2137 landslides which occurred

in Switzerland between 1972 and 2018 and for which damage was reported. Only the data from 2001 to 2017 was used, to be160

consistent with the local data set.
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3.2 Performance statistics for debris-flow prediction

Confusion matrix and receiver operating characteristic (ROC) curves were used to compare models and optimize thresholds

for debris-flow triggering
:::::::::::::
(Fawcett, 2006). A confusion matrix can be computed for any binary classifier by counting the true

positives
:::
True

::::::::
Positives

:
(TP), false negatives

:::::
False

::::::::
Negatives

:
(FN), true negatives

::::
True

::::::::
Negatives

:
(TN) and false positives165

::::
False

::::::::
Positives (FP). Various performance statistics can be calculated from the confusion matrix. The most common measures

in debris-flow and landslide forecasting are the following (e.g. Staley et al., 2013; Gariano et al., 2015; Leonarduzzi et al.,

2017; Leonarduzzi and Molnar, 2020; Mirus et al., 2018):

Sensitivity (hit rate or true positive rate): SE =
TP

TP +FN
(1)

170

Specificity (complement of false positive rate): SP = 1− FP

FP +TN
(2)

True skill statistic (Peirce skill score or Hannsen and Kujpers discriminant:)
::::
True

::::
Skill

:::::::
Statistic: TSS = SE+SP − 1 (3)

Threat score (critical success index):
:::::
Threat

:::::
Score

:::::::
(critical

::::::
success

:::::::
index): TS =

TP

TP +FN +FP
(4)175

::
In

::::::::
literature,

::::
TSS

:
is
::::
also

:::::::
referred

::
to

::
as

:::
the

:::::
Peirce

::::
Skill

:::::
Score

::::::::::::
(Peirce, 1884)

:
,
:::::::
Youden’s

:::::
index

::::::::::::::
(Youden, 1950)

:
or

:::
the

:::::::
Hanssen

::::
and

::::::
Kuipers

:::::::::::
discriminant

:::::::::::::::::::::::
(Hanssen and Kuipers, 1965)

:
. The benefit of using the specificity over the false positive rate (FPR= FP/(FP +TN))

::::
FPR

:
=
:::::::::::
FP/(FP+TN))

:
is that in a perfect model TSS, sensitivity and specificity all equal 1. As noted by others (e.g. Leonarduzzi et al.,

2017; Postance et al., 2018; Mirus et al., 2018), optimizing TS leads to more conservative (higher) thresholds, while optimiz-

ing TSS yields more balanced rainfall thresholds. The choice of score used in practice is therefore the user’s decision. In this180

study, TSS was optimized to calibrate thresholds and to compare classifiers, mainly because it is less sensitive to data sets with

unbalanced class prevalence. In particular, TSS was used in the following analyses:

1. In the determination of thresholds for single predictors (section 3.3)

2. In the determination of the ID-threshold parameters (section 3.4)

3. In the determination of probability thresholds from the random forest classifier (section 3.5)185

4. In the comparison of these predictive models

Another metric for predictive model comparison is the area under the ROC curve
::::
Area

::::::
Under

:::
the

:::::
ROC

:::::
Curve

:
(AUC). To

estimate the AUC, sensitivity and 1-specificity
::
SE

::::
and

::::
1-SP

:
are calculated and plotted for all possible threshold values. AUC

equals 1 if there is a threshold that can perfectly separate triggering and non-triggering events. A model with an AUC of 0.5

has no predictive power.190

7



Table 1. List of models and single predictors evaluated on their predictive performance for debris-flow triggering. Data source “Illgraben”

refers to the local rain gauge, “Montana” to the MeteoSwiss weather station located 11 km from the catchment, and "Debris flows" to the

Illgraben debris flow data set.

Model name Description

ID LR&TSS

place holder

place holder

Intensity-duration threshold where the shape parameter was determined by

linear regression on the triggering events, and the scale parameter was set to

maximize TSS

ID TSS&TSS Intensity-duration threshold where both parameters were set to maximize TSS

RF_ID Random forest model with rainfall event duration and mean intensity as input

RF_all Random forest model with all single predictors as input

RF_ID+1
:
X RF_ID and one additional input (best single predictor, i.e. highest AUC)

RF_ID+var RF_ID with four additional inputs: best Rmax, best Rant
::::::
(highest

:::::
AUC)

::::
I-Tm,

::::
best

:::::
Ra-Td, best Ta and lightning strikes

Single predictor name Description Data source

Duration Rainfall event duration in hours Illgraben

Rmean
:::::
I-mean Mean rainfall intensity in mm Illgraben

Rtot Total event rainfall in mm Illgraben

RmaxTm
::::
I-Tm

:
Maximum rainfall accumulation in

::::::
intensity

::::
over T minutes within the event in mm

::
/h (10 ≤ T ≤ 120) Illgraben

RantTd
:::::
Ra-Td Antecedent rainfall within T days prior to the rainfall event in mm (3

:
1
:
≤ T ≤ 90) Illgraben

Tamin, Tamean, Tamax
:::::

Ta_min,
::::::::
Ta_mean,

::::::
Ta_max

:
Minimum, mean and maximum air temperature at the day of the rainfall event in °C Montana

Taspan
::::::
Ta_span Tamax

:::::
Ta_max

:
- Tamin

:::::
Ta_min

:
Montana

lightings
:::::::
lightnings

:
Number of lightning strikes recorded within a radius of 3–30 km from the station Montana

Freezing Days The number of freezing days in the winter prior to the debris-flow season Montana

time w/o DF Elapsed time since the last debris flow in days Debris flows

month, dayofyear The month and the day of the year of the rainfall event Debris flows

3.3 Rainfall event definition and other properties

The precipitation time series was discretized into rainfall events, which were separated by a minimum inter-event time
::::::::
Minimum

:::::::::
Inter-event

::::
Time

:
(MIT). Rainfall events were considered independent if no rainfall was recorded during this time.

::
For

:::::::::
triggering

::::::
events,

:::
the

:::
end

::
of

:::
the

:::::::
rainfall

::::
event

::::
was

:::
set

:::::
either

::
to

:::
the

::::
day

::
of

:::
the

:::::
event

:::
(for

:::
the

:::::::::::::::
regional data set)

::
or

::
to

:::
the

:::::::
10-min

:::::::
instance

:::::
before

:::
the

:::::
event

:::
was

:::::::
recorded

::::
(for

:::
the

::::::::::::
local data set).

::::
This

::::::::
procedure

:::::
avoids

::::::::
threshold

::::::::::::
overestimation

:::::::::::::::::::::::::::::::::::::
(Staley et al., 2013; Leonarduzzi et al., 2017)195

:
.
:::
For

:::
the

:::::::::::::
regional data set

:::
we

:::::::
defined

::::::::
MIT = 1 d

:::
as

::
in

::::::::::::::::::::::::::
Leonarduzzi and Molnar (2020).

::::
This

:::::::::
definition

::
of

:::::
events

::::::::::::
overestimates

::::
event

:::::::
duration

::::
and

::::::::::::
underestimates

:::::
mean

:::::::
intensity

:::::::::
compared

::
to

::::::
hourly

::::
data,

:::
but

:::::::::::
compensates

::
for

::::
this

::
by

::::::
longer

:::
and

:::::
more

:::::
dense

::::::
records

::::::::::::::::::::::::::::::
(see Leonarduzzi and Molnar, 2020).

:::
For

:::::::
rainfall

::::::
records

::::
with

::::::::
sub-daily

::::::::::
resolution, MIT is often chosen subjectively

and varies between 10 min at Chalk Cliffs (USA) to 6 h at Moscardo (Italy) for local debris-flow analyses (?Deganutti et al., 2000)
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Figure 2. ID thresholds and their predictive performance statistics as a function of rainfall event definition (minimum inter-event time, MIT).

(a) Sensitivity
::::::
Analysis

:
of true skill statistic (TSS), threat score (TS), sensitivity (SE), and specificity (SP) to

::
as

:
a
:::::::

function
::
of

:
MIT. The

number of rainfall events
:::
also varies as a function of

:::
with MIT and is shown in grey. (b) Sensitivity

:::::::
Analysis of ID-threshold parameters to

:
as
::

a
::::::
function

::
of

:
MIT. (c) Visualization of ID thresholds for different values of MIT. MIT = 3 h (red) was chosen for this study (see text).

::::::::::::::::::::::::::::::::
(Coe et al., 2008; Deganutti et al., 2000). In Switzerland, a MIT of 2–3 h

::::
2–3 h

:
has been shown to be appropriate for the sepa-200

ration of thunderstorms (Gaál et al., 2014) and storms initiating bedload transport in an Alpine watershed (Badoux et al., 2012).

However, as the subjectivity in the rainfall event definition complicates the comparison of rainfall thresholds, we followed the

suggestion of Bel et al. (2017) to choose MIT
:::
for

:::
the

:::::::::::
local data set as the duration where the number of rainfall events sta-

bilizes, which indicates its independence from MIT duration. In this process, the sensitivity of rainfall threshold performance

scores to the choice of MIT was also evaluated (Fig. 2a). The measures SE, SP and TSS from fitting ID curves were found205

to decrease with increasing MIT as the number of events drops. However, in absolute terms, the number of false alarms is

higher at a short MIT because of the large total number of rainfall events, and this also reflects in the TS statistic. At MIT =

3 h
::::::::
MIT = 3 h, the number of rainfall events stabilizes. This is seen in the stable TS, meaning that there are no additional false

alarms. The shape parameter of the ID threshold (β) also stabilizes at this
::::::
reduces

:::
its

:::::::::
increasing

::::
trend

::
at
:::
the

:::::
same

:
MIT (Fig.

2b). The scale parameter (α) increases because the rainfall events become longer with increasing MIT and therefore the rainfall210

amounts increase. Consequently, MIT = 3 h
:::::::::
MIT = 3 h was used throughout this study and it was confirmed that in the Alps an

:
a MIT of 2–3 h is an appropriate time period for separating rainfall into independent events for various applications, as found

in independent studies by Badoux et al. (2012), Gaál et al. (2014) and Bel et al. (2017). Nevertheless, a suitable MIT should be

objectively tested for each study site if possible.

Once MIT was defined, other rainfall-event properties were extracted in addition to the duration and mean intensity (Table 1,215

single predictors). Maximum cumulative rainfall was computed for accumulation
:::::::
Multiple

::::::::
maximum

:::::::
rainfall

::::::::
intensities

:::::
were

::::::::
computed

::::
over periods of 10 min to 2 h. Antecedent rainfall was defined as cumulative rainfall from 3

::::
prior

::
to

:::
the

::::::
rainfall

:::::
event

:::
and

::::::::
computed

:::
for

:
a
:::::
range

::
of

:::::::
periods

::::
from

::
1 to 90 days prior to the rainfall event. These event properties can be computed from

9



any rainfall time series and are important for the soil moisture saturation and the likelihood of runoff formation in response to

rainfall.220

Furthermore, event properties related to air temperature were added. The daily mean, minimum and maximum temperature

was computed for the day of each rainfall event. If an event spanned several days, the day the event started was considered.

In the case of low temperatures, it could be snowing in the higher parts of the catchment, reducing the amount of liquid water

contributing to subsequent runoff.
::
In

:::
this

:::::
case,

::
the

::::
rain

:::::
gauge

:::
can

:::::::
possibly

:::
not

:::
be

:::::
trusted

:::::::
because

::
it

:
is
:::
not

::::::
heated.

::::::::
However,

:::::
most

:::::
debris

:::::
flows

::::
occur

::
in
::::::::
summer,

::::
when

:::::
solid

::::::::::
precipitation

::
is

::::
rare

::::
even

::
in

::
the

::::::
higher

::::
parts

::
of

:::
the

:::::
basin.

:
As an indicator of convective225

rainfall, the daily temperature span and the number of lightning strikes were added. To account for seasonality effects, the day-

of-year and the month of each event were included. As proxies for sediment availability, the time elapsed since the last debris

flow was added and the number of freezing days of the current hydrological year (November–October) was computed from

the temperature time series. The aim of the latter was to account for sediment recharge related to frost-weathering processes

(Hirschberg et al., 2021).230

3.4 Rainfall
:::::::::::::::
intensity-duration

::
(ID)

:
thresholds

::
ID

:::::::::
thresholds

:::
are

:::::::
defined

:::
as

:::::::::
I = αD−β

::::::::::::
(Caine, 1980)

:
.
::
In

:::
the

:::::::
log-log

:::::
space

::::
this

:::::::
relation

::::::::
becomes

:::::
linear

::::::
where

:::
the

:::::
scale

::::::::
parameter

::
α

::::::
defines

:::
the

::::::::
intercept

::
of
::::

the
::::::::
threshold

:::
line

::::
and

:::
the

:::::
shape

:::::::::
parameter

::
β

:::
its

:::::
slope.

:
The best way to determine the

scale (α) and shape (β) parameters of rainfall ID curves and their uncertainties is an ongoing discussion. Brunetti et al. (2010)

presented a statistical (frequentist) approach
:::::::
approach

::::::::::
(frequentist

:::::::
method)

:
involving estimating β with a linear regression (in235

logarithmic space) fitted to all triggering rainfall events and decreasing α by an amount which is equal to the distance of the

median residual to a chosen lower percentile. While this method is objective and, when applied as an EWS, makes it possible

to control the hit rate, it neglects the information from the non-triggering rainfall events
:::
and

::::
thus

::::
does

:::
not

:::::::
consider

:::
the

:::::
false

::::::
positive

::::
rate. Lately, confusion matrix and ROC methods (see section 3.2) have been used as objective measures to determine

threshold parameters and compare
:::::
assess the predictive performance of different models

::
ID

:::::::::
thresholds

:::
and

::::
also

::
as

::
an

:::::::::
alternative240

:::
way

::
to
:::::::::
determine

:::
the

::
α

:::
and

::
β.

For the ID thresholds computed here, sensitivity (Eq. 1) and specificity (Eq. 2) were calculated. The threshold performance

was then evaluated in terms of TSS (Eq. 3). Two approaches were applied to optimize the ID-threshold parameters. In the

first approach, as in the frequentist method, the shape parameter β is determined in the log-log space with a linear least-

squares approximation of the debris-flow triggering ID pairs. In a next step, the scale parameter α is tuned to maximize245

TSS. This method is called LR&TSS hereafter. In the second approach, the scale parameter α and the shape parameter β are

simultaneously tuned to maximize TSS. This approach is hereafter referred to as TSS&TSS (Table 1, models).
:::
The

:::::::::::
fundamental

::::::::
difference

::
of
:::::

these
::::

two
::::::::::
approaches

::
is

::::
that

::::::::
LR&TSS

::::
only

::::::
relies

::
on

:::::::::
triggering

::::::
rainfall

::::::
events

:::
to

:::::
define

::
β
::::::

while
:::::::::
TSS&TSS

::::::::
considers

::::
both

::::::::
triggering

:::
an

::::::::::::
non-triggering

::::::
rainfall

::::::
events.

::::::
Hence,

::::::::
different

:::::
values

::::
and

::::::::::
sensitivities

:::
for

:
β
::::
can

::
be

::::::::
expected

:::
for

::::
these

::::
two

:::::::::
approaches

:::::::::
depending

:::
on

:::
e.g.

:::
the

:::::::
number

::
of

:::::::::
triggering

::::::
rainfall

::::::
events

:::
and

:::
the

:::::
ratio

::
of

::::::::
triggering

:::
to

::::::::::::
non-triggering250

::::::
rainfall

::::::
events.
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To test the sensitivity
:::::::::
uncertainty of these two methods to the record length, resampled (bootstrapped)

:::::::::
associated

::::
with

:::
the

:::::
record

::::::::
duration,

:::::::::
resampled

:::::::::::::::::::::::::::::
(bootstrapped, James et al., 2013a) time series of rainfall and debris-flow

::::::::
/landslide

:
events from 1

to 30 years were produced. Thus, only entire years were resampled, to avoid breaking up any natural intra-annual patterns.

One sampled year consisted of all debris-flow
::::::::
/landslide

:
triggering and non-triggering rainfall events. For example, for a record255

length
:::::::
duration

:
of 5 years,

:
a
::::::
sample

:::::::
consists

::
of

:
5 annual samples were drawn with replacement from the

::::
years

::
of

::::::::::::
measurement.

::::
Each

::::
year

::
of

::::::::::::
measurement

:::
was

::::::
drawn

::::
from

:::
the

::::
full 17-year observation period

:::
with

:::::::::::
replacement. This means that a specific

year could occur multiple times in one 5-year sample. This procedure was repeated
:::
The

:::::::
multiple

:::::::::
occurrence

::
of
:::
the

:::::
same

::::
year

::
in

:
a
::::::
sample

::
is

::::::::::
fundamental

::
to

:::
the

::::::::::
uncertainty

:::::::::
assessment

:::
and

::
is
::
of

::::::
course

:::::
more

:::::
likely

::
for

::::::
longer

::::
than

:::
for

::::::
shorter

:::::
record

:::::::::
durations.

:::
For

::::
each

:::::
record

::::::::
duration, 100 times for each record length.

:::::::
samples

::::
were

:::::::
obtained

:::
by

::::::::
following

:::
this

:::::::::
procedure,

:::
e.g.

::::
100

:::::::
samples260

::::
with

:
a
::::::
record

:::::::
duration

::
of

::
5
:::::
years.

:
Finally, the bias in ID-threshold parameters was estimated for each sample. The bias was

defined as the relative deviation of estimates of α and β from the corresponding reference values, i.e. the ones calculated from

the original
:::::::
complete

::::::::
(17-year) record using LR&TSS and TSS&TSS.

3.5 Random forests for debris-flow prediction

Much of the information contained in the rainfall time series, such as antecedent rainfall and peak intensity, is lost when265

discretized into events and characterized only by mean rainfall intensity and duration. As an alternative, random forests
:::::::
Random

::::::
Forests (RF, Breiman, 2001) were used to include more rainfall event properties (Table 1) for the classification of rainfall events

into debris-flow triggering and non-triggering. Random forests are based on a statistical learning algorithm that uses multiple

decision trees. Each of these trees is trained with a subset of the predictor variables in the training data set. This procedure

(also called bagging) is fundamental to the algorithm because it decreases the correlation among the trees and makes random270

forests suitable for capturing complex interactions and structures in the data. For detailed information, the reader is referred

to Breiman (2001) and ?
::::::::::::::::
James et al. (2013b). The Scikit-learn module in Python was used to develop a random forest

:::
RF

classifier (Pedregosa et al., 2011).

For the prediction of debris flows, logistic regression models have been used extensively in regional post-fire debris-flow

studies to account for rainfall threshold variability due to spatial differences in slope and burned area (e.g. Cannon et al., 2010;275

Staley et al., 2017). Moreover, Bel et al. (2017) showed, for a French debris-flow torrent, that when ID thresholds were used in

conjunction with a logistic regression model including variables for peak rainfall intensity, antecedent rainfall conditions and

the number of days since winter, the number of false alarms could be reduced. RF was
::::
were

:
used instead in the present study

, because of its
::::::
because

:::
of

::::
their ability to consider multiple predictor variables with non-linear relationships and correlating

predictors. To our knowledge, the predictive power of RF has
::::
have

:
not yet been tested for local debris-flow or landslide280

predictions. Nikolopoulos et al. (2018) used RF for regional post-fire debris-flow predictions in the western United States and

showed that RF improved debris-flow predictions when a variable representing the location was added.

Here, four RF models – with the number of predictor variables ranging from 2 to 24
::
26

:
– were tested, with the first being

the equivalent of the traditional ID threshold (RF_ID, Table 1). The model output included the probability of being debris-flow

triggering for every rainfall event. The probability threshold for classification had to be tuned because the threshold-optimizing285
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TSS is likely not 50% but rather somewhat smaller (Nikolopoulos et al., 2018). The predictive performance was then compared

with the classical ID threshold
::
ID

::::::::
threshold

:::::::
obtained

::
as

:::::::::
described

::
in

::::::
section

:::
3.4, and with all single predictors (Table 1).

4 Results & Discussion

4.1 Debris-flow ID thresholds and their seasonality

In the study period from 2001 to 2017, 21 debris flows were triggered in spring and early summer (May and June, with the290

local influence of snowmelt), 38 in summer (July and August) and 8 in autumn (September and October) (Fig. 3). The monthly

inter-annual variability was especially high in July, when between 0 and 6 debris flows occurred. This was also the month with

the most extreme 30-min rainfall due to convective storms. The debris-flow activity dropped considerably in autumn, when

the monthly rainfall also reduced by about 50%. Such seasonality is typical for Alpine debris-flow torrents (e.g. Schneuwly-

Bollschweiler and Stoffel, 2012; Bel et al., 2017). In spring, snowmelt generates additional runoff and saturates the debris,295

which may lower the rainfall threshold for debris-flow initiation. This likely played a role in the events which were triggered

at low rainfall amounts (30-min duration) before mid-June. There were also some lower-intensity events in July and August

which still triggered debris flows. However, at this time of the year, inaccurate rainfall measurements and high spatial variability

during convective storms are a more likely explanation. The most intensive 30-min rainfall event
::::::
rainfall

:::::
event

::::
with

::
the

:::::::
highest

::::
peak

::::::
30-min

:::::::
rainfall

:::::::
intensity

:
that did not trigger a debris flow was in October, possibly indicating sediment supply-limited300

conditions.

Debris-flow triggering threshold curves in Illgraben showed the typical negative power-law relationship between mean inten-

sity and duration (Fig. 4). Debris flows occurred mostly during high rainfall intensities. However, triggering and non-triggering

events could not be separated perfectly. There were a few outliers at very short (<1 h) and very long rainfall durations (>16 h),

which were triggered by comparably little rainfall. ID thresholds were computed with two methods (TSS&TSS and LR&TSS)305

for the entire data set and for individual seasons (Fig. 4). The scale parameter α had values between 2.6 and 7.3, with lower

values for TSS&TSS (2.6–5.4) and higher values for LR&TSS (5.2–7.3). The shape parameter β was consistently smaller for

TSS&TSS (0.26–0.93) than for LR&TSS (0.52–0.94) and varied considerably between the seasons.
::::
These

:::::::::
parameter

::::::
ranges

::::::
largely

:::::::
comprise

::::::
values

:::::::
reported

:::
for

::::
other

::::::::::
debris-flow

::::::
torrents

::::::::::::::
(Bel et al., 2017)

:
. Only in spring, the thresholds were practically

identical (Fig. 4b). For the entire data set, this resulted in the median TSS&TSS threshold being lower for short durations (≤4.5310

h) and higher for long durations. The LR&TSS threshold was very similar to a curve defined earlier for Illgraben, with α= 5.4

and β = 0.79 (McArdell and Badoux, 2007), although there α was set to detect all triggering events. If the same procedure had

been used for the data set used here, the ID threshold would also be lower.

The seasonal ID thresholds differed, but direct comparison is difficult because of differences in the number of events (Fig.

4b–c). In autumn, it is clearer than in other seasons that only high-intensity rainfall events triggered debris flows. This may315

be due to (a) rainfall measurements being more representative and accurate for the initiation area than in summer when more

convective events take place; (b) sediment availability being exhausted at the end of the debris-flow season (Berger et al.,

2011; Bennett et al., 2014); or (c) grain size coarsening throughout the wet season, increasing the hydraulic conductivity in the
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Figure 3. (a) Mean number of debris flows per month (orange bars) and mean monthly rainfall (blue line) in the Illgraben catchment. The thin

orange lines
::::
error

:::
bars

::::::
(black) and the blue shaded area

::::
(blue)

:
show the inter-annual variability, i.e. the observed minimum and maximum in

each month between 2001 and 2017. (b) Maximum
::::
Peak 30-min rainfall accumulation

::::::
intensity in debris-flow triggering and non-triggering

rainfall events. The threshold (3.6 mm 30 min−1, corresponding to 7.2 mm h−1) was determined by optimizing the TSS (0.75).

channel bed and therefore also the rainfall threshold that must be exceeded to generate runoff (Domènech et al., 2019). As a

consequence, the false alarm rate was lower in autumn than in other seasons.320

For longer durations, larger rainfall amounts are required for debris-flow triggering
::::
(Fig.

:::::
4b-d), and this reflects the balance

of infiltration, storage and drainage of water. However, for short and long rainfall durations ID pairs fail to plausibly describe

the hydrological processes leading to landslide initiation (Bogaard and Greco, 2018). However, here it was not clear if this was

also the reason for the outliers triggered by lower mean rainfall intensities. There were two debris flows in summer at rainfall

durations of 10 and 30 min which were triggered by significantly lower mean rainfall intensities than the other debris-flow325

events associated with these durations. One possible reason is that rain gauges, although close to the initiation area (∼1 km),

are prone to not capturing peak intensities, especially of convective storms, even at short distances (Nikolopoulos et al., 2014;

Marra et al., 2016). These two events were
:
,
::::::::
however, also characterized by high antecedent rainfall, however, which could

have lowered the triggering threshold. In spring, three events were triggered at low mean rainfall intensities (<1 mm h−1)

:::::::::::
(<1 mm h−1) and after more than 16 h. It could be that the MIT parameter does not separate rainfall events accurately in these330

cases, that the rainfall threshold was lower due to snowmelt, that there were errors in the rainfall data, or simply that these

debris flows were triggered by other mechanisms than rainfall excess, such as the breaching of a small landslide dam.

Debris flows occur at a wide range of 14-day antecedent rainfall conditions, with many events occurring with very low

values for this variable (Fig. 4a). Antecedent rainfall does not appear to be a significant precondition for debris-flow triggering
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Figure 4. ID thresholds for the Illgraben catchment computed with two methods. (a) ID thresholds for the entire data set. For the 67 triggering

events, the 14-day antecedent rainfall (blue colour) and the (relative) bulk volume (marker size) of the debris flows are also shown. (b)–(d)

ID thresholds for each season, where the lines are the thresholds computed using TSS&TSS (black) and LR&TSS (grey).
:::
The

:::::
marker

::::
size

::::::
indicate

::
the

::::
total

::::::
rainfall

::::::
volume.

in the Illgraben catchment. This has also been observed at other alpine locations (e.g. Abancó et al., 2016). Here, the debris-flow335

magnitudes were not affected by the intensity of the triggering rainfall , as observed in
::::::::
consistent

::::
with

:
other studies (Hirschberg

et al., 2019; Pastorello et al., 2018). However, the magnitudes were affected by the amount of antecedent rainfall. Higher

antecedent rainfall amounts lead to a higher degree of pore saturation along the entire channel bed. Sediment entrainment then

::::::::
Although,

:::::::::
antecedent

::::::
rainfall

::::
may

::::
also

::::::::
contribute

::
to
::::::
lateral

::::
flow

::
on

:::
the

::::::::
hillslopes

:::::::::::::::::::
(e.g. Papa et al., 2013),

:::
the

:::::
steep

::::::::
hillslopes

::
in

:::::::
Illgraben

::::
and

:::
the

::::
time

::::
scale

::
of

:::
14

::::
days

:::::
gives

::
us

:::::::::
confidence

::::
that

:::
this

:::::::::
antecedent

:::::::
rainfall

::::::
mainly

:::::
affects

:::
the

:::::::
channel

::::
bed.

::
In

::::
this340
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::::
case,

::::::::
sediment

::::::::::
entrainment experiences a positive feedback from increased pore water pressure as the debris-flow surge passes

by, increasing the debris-flow volume (Iverson et al., 2011; McCoy et al., 2012; Hirschberg et al., 2019).

4.2 Sensitivity of ID thresholds to record length
::::::::
duration and identification method

Illgraben ID thresholds where the ID-threshold parameters are jointly tuned to optimize TSS (TSS&TSS) have slightly larger

TSS values , but are accompanied by higher uncertainties, measured as the 10th to 90th percentile range, in both α and β345

biases, compared with ID thresholds with parameters estimated by first fitting β to the triggering events and then tuning α

to optimize TSS (LR&TSS) (Fig. 5b–d).
::::::::
However,

:::
this

::::::::
increase

::
in

::::
TSS

::
is

:::::::::::
accompanied

::
by

::::::
higher

:::::::::::
uncertainties,

::::::::
measured

:::
as

::
the

:::::
10th

::
to

::::
90th

:::::::::
percentile

:::::
range,

::
in
:::::
both

:
α
::::

and
::
β

::::::
biases. TSS&TSS thresholds are lower

::::::::::
significantly

:::::
lower

:::::
than

::::::::
LR&TSS

::::::::
thresholds

:
for short durations (<4.5 h) and higher for long durations .

::::
(Fig.

:::
5e).

:

TSS&TSS parameter estimates are overestimated by >100% even after 30 years of observations and the medians do not350

converge (Fig. 5b,c). The fluctuations in the median suggest that there are 2–3 parameter sets with TSS values which are all

close to the optimum. Therefore, there are no unique ID-threshold parameters for Illgraben when estimated with TSS&TSS.

The uncertainty range is not located around zero but biased towards positive values because the reference values (see Fig.

4a, solid threshold line) are at the lower end of possible solutions. The medians and the uncertainty bounds from parameters

estimated with LR&TSS still converge after the reference record length
:::::::
duration of 17 years, with biases of ±20% for both α355

and β (Fig. 5b,c). However, the biases decrease to ±30% already after 6 years or ∼25 triggering events. Furthermore, the TSS

score, which is overestimated for short records because it seems to be easier to fit an ID curve to only a few points, decreases

and stabilizes after 6 years. Because the Illgraben record is a local data set, it is not affected by climatic, topographic, lithologic

or land-use differences between sites as present in most large-scale regional data sets. Therefore, the uncertainties can be

associated with the respective method with high confidence and the Illgraben data set is well-suited to study such ID-threshold360

sensitivities.

Important advantages of using TSS for ID-threshold parameter estimation are that information from both triggering and

non-triggering events is considered with equal weight and that the measure is prevalence independent. However, although the

narrow uncertainty range for long record lengths
:::::::
duration (Fig. 5d) additionally indicates the robustness of the TSS score, it

does not imply robustness in the parameter estimates that are based on TSS (Fig. 5b,c). In our case, with 67 debris flows,365

the ID-threshold parameters computed with TSS&TSS seem to be highly sensitive to a few triggering events, which may be

outliers but exist in any data set and are difficult to single out with certainty. Consequently, for local ID thresholds we advise

against simultaneously optimizing α and β against the TSS score (TSS&TSS). Local data sets are often comparatively small

(<100 triggering events), and therefore this method can be sensitive to outliers.

Conducting the same sensitivity analysis on the regional data set , characterized by many more triggering events (∼800),370

which are mostly shallow landslides in this case, low prevalence (0.05%) and different triggering locations, showed the opposite

result than for the local data set. With
::
For

:
the regional data set, TSS values can

::::
could

:
be slightly enhanced when using the

TSS&TSS instead of the LR&TSS method (Fig. 6d), as in the local data set. In contrast to the local data set, this enhancement

in TSS is not accompanied by larger uncertainties in ID-threshold parameters (Fig. 6b,c). LR&TSS thresholds are practically
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Figure 5. ID threshold sensitivity for the Illgraben catchment, assessed by resampling (bootstrapping) 100 times for each record length

::::::
duration (1–30 years) from the 17–year data set of debris-flow triggering and non-triggering rainfall events. (a) number of debris flows; (b)

bias in the scale parameter α; (c) bias in the shape parameter β; (d) True Skill Statistic
::
true

::::
skill

::::::
statistic

:
(TSS); (e) ID thresholds with

variability from the observed record length
::::::
duration

:
of 17 years. Solid lines are the medians and shaded areas comprise the 10th to 90th

percentiles of the resampled data. The diamonds (reference) refer to the values obtained when the full 17-year data set was used.

flat (Fig. 6e) and parameter ranges are still converging after the reference record length
::::::
duration

:
of 17 years. Using LR&TSS375

even makes the duration redundant because β estimated with LR&TSS converges to 0. Note that the large range in β bias

for LR&TSS (Fig. 6c) is also because β is close to 0, and absolute values are small (see section 3.4). TSS&TSS threshold

parameters converge after ∼8 years, corresponding to ∼400 landslides. This is
:::::
These

:::
are

:
more events than reported for data

sets in Italy, where ∼200 was
::::
were

:
enough both on the regional and on the national scale (Peruccacci et al., 2012, 2017).

The regional data set is inherently subject to much larger uncertainties, which can be disregarded in the local data set.380

These uncertainties are mainly related to climatic, topographic and lithologic differences among the landslide locations. These

differences may also lead to the
:::::::::::
Furthermore,

::
the

:::::::
rainfall

:::::::::::
uncertainties

:::
are

:::::
higher

::
in

:::
the

::::::::::::::
regional data set

:::::::
because

:::
the

:::::::
regional
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Figure 6. ID-threshold sensitivity for the regional data set, assessed by resampling (bootstrapping) 100 times for each record length
::::::
duration

(1–30 years) from the 17-year data set of landslide triggering and non-triggering rainfall events. (a) number of landslides; (b) bias in the

scale parameter α; (c) bias in the shape parameter β; (d) True Skill Statistic
:::
true

:::
skill

::::::
statistic

:
(TSS); (e) ID thresholds with variability from

the observed record length
::::::
duration of 17 years. Solid lines are the medians and shaded areas comprise the 10th to 90th percentiles of the

resampled data. The diamonds (reference) refer to the values obtained when the full regional data set is used.

:::::::
analyses

::::
rely

::
on

:::::::::::
interpolated,

:::::
daily

:::::::::::
precipitation.

:::
As

:
a
::::::

result,
:::
the

:
slope of the ID curve, when fitted with linear regression,

losing
::::
may

::::
lose the typical power-law relationship of extreme rainfall. Furthermore, rainfall uncertainties are higher because

regional analyses rely on interpolated precipitation (Frei and Schär, 1998). TSS&TSS instead profits more from the information385

in the non-triggering rainfall, by setting a threshold high enough to be above the many non-triggering rainfall events with low

intensity and short duration, and steep enough to detect triggering events as a response to long-lasting rainfall (Fig. 6e).

The main differences between the methods used here and the well-known frequentist method (Brunetti et al., 2010) are that

non-triggering rainfall events are considered either in the determination of the scale parameter α (LR&TSS) or in both α and

the shape parameter β (TSS&TSS). Parameters estimated by LR&TSS for the local data set have lower uncertainties than when390
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estimated by TSS&TSS. For the regional data set the TSS&TSS method yields both better predictions and lower parameter

uncertainty. Hence, this comparison of a local and a regional data set suggests that the range of climatic, topographic, lithologic

or land-use differences within a data set should be considered when deciding which method to apply for ID-curve estimation.

4.3 Predictive power of uni- and multivariate models

We compared debris-flow triggering proxies related to maximum precipitation
::::::
rainfall intensity, antecedent rainfall and tem-395

perature, among others (Table 1, lower part). Each proxy was evaluated as a single predictor in terms of TSS. These were also

compared with five multivariate models: the LR&TSS-ID threshold and four RF classifiers with different single predictors as

input (Table 1, upper part). The TSS&TSS-ID thresholds were
::::::::
threshold

::::
was excluded here due to the large uncertainties in

estimated parameters. The models were validated with five-fold cross-validation (CV).

We found that the RF classifier’s TSS values (0.77–0.81) are only slightly higher than the classical ID threshold’s TSS (0.76)400

(Fig. 7a). This improvement is due to a generally higher sensitivity score (Fig. 7b). However, as seen in the distribution of the

points from the CV (small grey points
::::
with

::::
dots

:
in Fig. 7), RF can reduce uncertainties. The best improvement in TSS is

seen when only one additional predictor (max
::::
peak

:
30-min rainfall

:::::::
intensity) is added to the intensity and duration of rainfall

events. If all available data are used by an RF classifier (RF_all), the performance even decreases compared with RF_ID+1.

:::::
I-30m.

:
This is likely due to overfitting and can happen when many of the input variables have poor predictive power. In this405

case, the RF classifier is fitted to the noise from the poor predictors while the predictive information from other variables

gets lost. Hence, CV avoids the overfitting of a model set-up, and further improvements may be achieved by testing different

combinations of variables.

This analysis demonstrated that the best single predictor in terms of TSS is the
::::
peak

:
30-min max rainfall

::::::
rainfall

::::::::
intensity

(TSS=0.76), and its specificity is also the highest overall (0.92) (Fig. 7c). In general, the predictors relating to max rainfall410

event
::::::::
maximum

::::::
rainfall intensities of different time scales have relevant predictive power, while predictors related to antecedent

rainfall do not. Of all debris flows, 96% can be identified with a threshold (5 mm) for total event rainfall (Fig. 7b). Furthermore,

::::
peak 30-min maximum rainfall

::::::
rainfall

:::::::
intensity

:
and mean rainfall intensity on their own perform similarly to the ID threshold.

These rainfall properties are simple to calculate with a moving window from any rainfall time series, even without adding

uncertainty by rainfall event separation. Surprisingly, lightning strikes also have some predictive power, even though they were415

recorded within an area which is almost 600 times larger than the catchment size (∼2800 km2). This indicates that debris flows

are favourably triggered when thunderstorm clusters occur. The single predictors listed below lightning strikes in Fig. 7 have

(almost) no predictive power because their AUC values are ∼0.5, which is close to a random guess.

Although ID thresholds are widely used in applications, a common problem is the number of false alarms they cause. For

Illgraben, although 92% of the debris flows are detected with the ID threshold estimated with LR&TSS, only 20% of the rainfall420

events exceeding the threshold are expected to produce a debris flow. To increase this accuracy mainly based on different

rainfall properties,
::::
This

:::::::::::
performance

::
is

::::::
usually

::::
even

:::::::
smaller

:
if
:::
the

::::::::
threshold

::
is
:::::::
defined

:::
for

:::::
larger

::::::
spatial

::::::
scales.

:::
For

::::::::
example,

::
for

:::
the

::::::::::::::
regional data set

:::::
used

::::
here,

::::
only

::::::
0.38%

:::
of

::::::::::::::::
threshold-exceeding

::::::
events

:::
are

::::::::
expected

::
to

:::
be

:::::::::
landslides.

::::
This

:::::::::
highlights

::
the

::::::::::
difficulties

::
in

::::::::
capturing

:::::::
complex

::::::::::
interactions

:::::::
leading

::
to

::::::::
hazardous

::::::
events

:::
and

:::::::
justifies

:::
the

:::::
need

::
to

::::::
explore

:::::
more

::::::::
data-rich
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Figure 7. Model comparison
:::
(see

::::
Table

::
1)

:
for the prediction of debris flows in the Illgraben catchment, with reference to (a) true skill statistic

(TSS), (b) sensitivity (SE), (c) specificity (SP) and (d) area under the curve (AUC). The model descriptions are given in Table 1
:::::::
threshold

:::
for

::::
single

::::::::
predictors

::::
with

:::::::
predictive

::::::
powers

:::
was

:::
set

::
at

:::::::::
AUC = 0.65. The bars refer to models using the full data set for training. The grey dots

represent results from the five-fold cross-validation.
:::
The

:::::
models

:::
are

:::::
sorted

:::::::
top-down

::::
with

::::::::
decreasing

::::
TSS.

:::::::::
approaches.

:::::
Here,

:
we systematically analyzed the predictive power of single predictors and multivariate models based on the425

random forest
::
RF

:
algorithm. Although the RF classifier only marginally improved the TSS score, the potential of overcoming

some of the well-known limitations of ID thresholds is evident. For example, rainfall properties could be combined with

measured, remotely sensed or modelled variables, such as discharge or soil moisture products (Wicki et al., 2020). Recently,

random forests have been used to detect mass movements from seismic signals (Wenner et al., 2021; Chmiel et al., 2021) and

could be coupled with rainfall measurements or forecasts to potentially increase the accuracy. It would also be interesting to430

study the spatio-temporal rainfall structure from radar-based rainfall estimates and their influence on debris-flow triggering

(Marra et al., 2016). Of course, random forests are only one alternative to ID thresholds, and there are other algorithms to be
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tested (see Kern et al., 2017, for a review on post-wildfire debris flows). A drawback of such empirical thresholds is that long-

term observations are required to establish them. Where such data are available, additional predictors can easily be implemented

in a RF classifier, as presented here, and tested regarding their predictive power.435

5 Conclusions

In this study we used a 17-year record of precipitation and debris-flow timing and magnitude to complete a systematic analysis

of rainfall conditions leading to debris-flow triggering in a Swiss catchment, Illgraben. Based on 67 debris-flow triggering and

1657 non-triggering rainfall events (prevalence of 3.8%) we defined a rainfall intensity-duration threshold I = 5.2∗D−0.70 with

the most suitable fitting method applied in this work. Given the high debris-flow frequency in Illgraben, it can be considered440

as a lower threshold for rainfall-induced debris flows in the Swiss Rhône valley.

Debris-flow activity is greatest in summer, coinciding with peaks in total monthly rainfall accumulations and peak 30-min

rainfall
:::::::
intensity. Although we find differences in seasonal ID thresholds, they are partly based on the occurrence of only a

few triggering events (e.g. in autumn). It remains challenging to determine if the reason for this seasonality is
:::
due

::
to
:
seasonal

differences in rainfallor
:
, in sediment availability or

:::::
related

::
to

:
processes such as snowmelt or grain size coarsening.445

Our systematic analysis of the uncertainties associated with ID thresholds shows that, for a catchment with rainfall-induced

debris flows, 25 debris-flow observations are sufficient to constrain the ID-threshold parameters α and β with uncertainties

of ≤30%. However, our findings demonstrate that this uncertainty strongly depends on the data set and the method used to

determine ID-threshold parameters. When comparing the Illgraben (local) data set with a Swiss landslide (regional) data set,

more triggering events (400) were needed for threshold parameters to converge in the regional data set, due to the higher spatial450

variability in the data set. More importantly, the best method to minimize uncertainties changed from LR&TSS for the local to

TSS&TSS for the regional data set. This underlines the need for standardized methodologies for rainfall threshold identification

and validation, and proper reporting of the methods used (see Segoni et al., 2018).

Finally, we aimed to lower the false alarm rate often associated with ID thresholds. Using a random forest model including

the predictors rainfall event duration, mean rainfall intensity and the
::::
peak

:
30-min maximum rainfall amount

:::::
rainfall

::::::::
intensity455

increased the TSS (true skill statistic) by 0.04 (i.e. ∼3 more hits or ∼70 fewer false alarms). Adding more input variables

to the random forest model, including antecedent rainfall, did not improve the performance. Although the expectation of

significantly decreasing the false alarms was not fulfilled, we present a flexible framework where additional input variables

can easily be tested. The aim of future work should be to include variables such as modelled or measured soil moisture

or information on spatio-temporal rainfall structure from radar-based rainfall estimates. Machine learning algorithms can be460

helpful for maximizing information exploitation from available data and for increasing the accuracy of (debris-flow) early

warning systems, and we have highlighted this potential.
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