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Abstract. Wildfire risk is latent in Chilean metropolitan areas characterized by the strong presence of Wildland-15 

Urban Interfaces (WUI). The Metropolitan Area of Concepción (CMA) constitutes one of the most 

representative samples of that dynamic. The wildfire risk in the CMA was addressed by establishing a model 

of 5 categories (Near Zero, Low, Moderate, High, and Very High) that represent discernible thresholds in fire 

occurrence, using geospatial data and satellite images describing anthropic - biophysical factors that trigger 

fires. Those were used to deliver a model of fire hazard using machine learning algorithms, including Principal 20 

Component Analysis and Kohonen Self-Organizing Maps in two experimental scenarios: only native forest and 

only forestry plantation. The model was validated using fire hotspots obtained from the forestry government 

organization. The results indicated that 12.3% of the CMA’s surface area has a high and very high risk of a 

forest fire, 29.4% has a moderate risk, and 58.3% has a low and very low risk. Lastly, the observed main drivers 

that have deepened this risk were discussed: first, the evident proximity between the increasing urban areas 25 

with exotic forestry plantations, and second, climate change that threatens to trigger more severe and large 

wildfires because of human activities. 
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1. Introduction  40 

 

In the last few decades, the world has seen an increasing trend in wildfires affecting large populations (Moritz 

et al., 2012), generally being attributed to atmospheric warming fueled by anthropogenic climate change (Spies 

et al., 2014) and extreme weather events (Stott, 2016) creating a riskier environment. However, wildfire hazard 

is a product of interlinked socio-environmental processes including the proximity between Wildland-Urban 45 

Interface (WUI) and urban areas (Kumagai et al., 2004; Kolden and Henson, 2019; Goldman, 2018; Sarricolea 

et al., 2018); unregulated extractive economic activities in fire-prone landscapes (Castree, 2008; Spies et al., 

2014; Freudenburg, 1992; Gago and Mezzadra, 2017); traditional cultural practices which increase the 

availability of flammable material -construction, forestry or agriculture- (Harari, 2013; Frene and Nuñez, 2010); 

and the traditional practice of clearing land “slash and burn” (Shahriar et al., 2019:1). This way, the analysis of 50 

this hazard must consider biophysical factors such as altitude, slope, climate conditions, solar radiation, and the 

vegetation cover (Chuvieco et al., 2004; Chuvieco et al., 2011). Likewise, windy and dry conditions with steep 

slopes rapidly lead to quick fire spread and burn large areas of forest within a short time (Shahriar et al., 2019:2). 

Identifying and managing fire hazards is part of a political agenda rather than a solely biophysical phenomenon 

(Pyne, 2009; Doerr and Santın, 2016; Change, 2017). The experiences with fire in the underdeveloped countries 55 

are radically different from developed countries which have controlled burns, a strict forestry policy, solid 

territorial planning, and usually take advantage of the ecological benefits of the fire for the ecosystems and 

livelihoods (Hutto, 2008; González, 2005; González-Mathiesen and March, 2018; Adams, 2013). 

Risk and vulnerability mapping usually identify the categories of wildfire likelihood that correspond to one of 

the most used tools in research. The use of risk categories is considered a useful method to provide 60 

understandable information for policymaking and decision making as attested by the style of the “Summary for 

Policymakers”, a document regularly delivered during the publication of the IPCC’s (Intergovernmental Panel 

on Climate Change) assessment reports and that contains many examples of categorically organized information 

(IPCC, 2014 and 2019). However, feeding the predictive models with precise data of land cover changes, 

accurate meteorological data and  human activities that could start a wildfire in real-time remains a challenge, 65 

mainly because data are sparse or outdated, while sometimes stored in multiple agencies (Dapeng et al., 2019; 

Otero and Nielsen, 2017; Knowles et al., 2015). 

To diminish the exposure of the population to this hazard, it will be required a steady provision of tools that 

support landscape planning to minimize wildfire occurrence (Gonzalez-Mathiesen and March, 2018) and 

manages the social impacts after the disturbance (Paveglio et al. 2015). That approach is essential in highly 70 

fragile regions such as Mediterranean ecosystems (Turco et al. 2016; Pausas et al. 2008; Darques, 2015; 

Diffenbaugh, 2007) existing in Spain (Vilar del Hoyo et al. 2011), Italy (Terranova et al., 2009), Australia 

(McGee and Russell, 2003), Portugal (Gómez-González et al., 2018), California (Koltunov et al., 2012), and 

Chile (de la Barrera et al., 2017). 

Chile’s Central-South region (~35°S to ~40°S) (Figure 1) is one of the most transformed in the country, with a 75 

long history of mining, industrialization, and forest exploitation (Bustamante and Varela, 2007; Aguayo et al., 
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2009). Here, intensive land use changes interact with the replacement of native land-cover for plantations, urban 

sprawl, and socio-environmental conflicts associated with forest property (Andersson et al., 2016, Nahuelhual 

et al., 2012; Altamirano et al., 2013; Heilmayr et al., 2016; McWethy et al., 2018; Cid, 2015; Schulz et al., 

2010) that lead to a characteristic environment prone to wildfire occurrence. 80 

The Concepción Metropolitan Area (CMA) is a conspicuous example of wildfire activity in this region of Chile. 

Available studies suggest that wildfires will become more frequent and aggressive, given the changing climate 

conditions in the CMA (Castillo et al., 2003; CONAF, 2017-2018; Sarricolea et al., 2020; CR2, 2020) following 

global trends (Moritz et al., 2012). One of those changes is related to more frequent droughts (Fernández et al., 

2018), which are coincident with recent findings that attribute part of precipitation decrease to anthropogenic 85 

sources (Boisier et al., 2016) impacting the lives, crops, and neighborhoods of more than a million people 

(Gonzalez et al., 2018; de la Barrera et al., 2018, CONAF, 2018; Araya-Muñoz et al., 2017; Cid, 2015). 

In this work, a model for wildfire risk mapping in the CMA (~36.7°S, Fig.1) was applied and validated. An 

updated categorical map at relatively high spatial resolution was delivered. This model aims to support urban 

planning and further studies for wildfire hazards. The paper is organized as follows: Section II describes the 90 

study area, materials, and methods; section III presents and analyzes the results; section IV corresponds to the 

discussion, and in section V we conclude while suggesting avenues of future work.    

 

2. Materials And Methods   

 95 

Located in Chile’s Biobío administrative region, the CMA (~36.7°’ and ~73° W, Figure 1) is the third-largest 

urban area with over 1 million total population (INE, 2021). CMA has many interconnected small urban centers 

(Rojas Quezada et al., 2009) which are expanding rapidly, mostly for housing development and industry (Rojas 

Quezada et al., 2013). Also, the region contains a variety of important biodiversity hotspots (Smith Ramírez, 

2000) and wetlands (Martínez Poblete, 2014).  100 

A Mediterranean climate with warm/dry summers and cold/wet winters characterizes this region (Sarricolea et 

al., 2020), with an average temperature of 12.4ºC while annual rainfall is 1,332 mm, with 70% concentrated 

between May to August (BCN, 2017). The CMA has one of the largest Wildland-Urban Interfaces (WUI) in 

the country (Ruiz et al., 2017).  

Several economic activities were developed in the CMA and its surroundings since its foundation in the 18th 105 

century. However, today the region is mainly known for timber production and export from plantations of exotic 

fast-growing species (Torres et al., 2015), maintaining a steady amount of forestry plantations despite urban 

growth since 1974 when there were 44,123 hectares, to more than 46,697 hectares of forestry plantations in 

2016 (INFOR, 2017). 

 110 
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Figure 1. Map of the study area. The right map highlights Chile’s Biobio region in a continental context 

and the CMA is shown in the left map. Source: CEDEUS, 2016. 

 

Previous work on wildfire hazard mapping indicates the need to include a number of spatially distributed factors 115 

that contribute to the susceptibility of the landscape, as for example slopes, orientation and the effect of 

insolation (You et al. 2017), and these types of models organize space into categories as a result of weighted 

sums of contribution factors. In this case, available research portrays wildfires as products of human activities, 

topographic characteristics, land cover, and climate (CONAF, 2017, de la Barrera et al. 2018; Ubeda and 

Sarricolea, 2016). While most approaches to map wildfires hazards have been based upon frameworks tested 120 

in other regions, data-driven approaches are still under-utilized. This hazard modeling takes advantage of 

available national databases and satellite products, included in machine learning algorithms to produce maps 

that allow spatially distributed identification and assessment of wildfire hazards. The model combines Principal 

Component Analysis (PCA) and Kohonen self-organizing maps (SOM) to determine locations classified in five 

categories: near zero, low, moderate, high, and very high. The following subsections present the steps to compile 125 

the analyzed database, model development, and the experiments performed. 

 

2.1. Geodatabase Compilation 
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Input data for the modeling corresponded to a 12-variable geodatabase that included several descriptors related 130 

to fire hotspot recurrence, such as topographic features, land cover characteristics, built environment 

descriptors, and climatic indices (Table 1). Fire hotspot locations were utilized as reference coordinates to 

produce a raster that counted the number of spots within 900m pixel size. Center coordinates of each pixel are 

the locations utilized in the compiled geodatabase. The 900m spatial resolution corresponds to a trade-off 

between the representation of the different input databases, which range from 30m to 5km.  Locations of fire 135 

hotspots used for the geodatabase correspond to the period 2008-2019 available from the Chilean Forest Service 

(CONAF, Corporación Nacional Forestal). The forest fire database is constructed from information collected 

by CONAF brigades and private forestry companies in wildland urban interfaces and rural (forestry) areas. 

Forest fire detection is carried out through three ways: a) Fixed terrestrial (observation towers), b) Mobile 

terrestrial (surveillance) and c) Aerial detection (Tapia and Castillo, 2014). Fixed ground detection makes it 140 

possible to reach extensions of up to 20 km of vision and monitoring, since it uses large structures (greater than 

20 meters high) in which a person is constantly watching with the help of binoculars. The mobile terrestrial 

detection only covers a predial scale (generally carried out by private companies) and is performed in sectors 

of better accessibility for different types of motorized vehicles. Aerial detection allows reaching a large area 

per unit of time, since small airplanes are used to detect forest fires at a great distance. Detected fires are then 145 

GPS georeferenced and subsequently added to a GIS using a predefined grid in which each cell represents 4 

km2 (2x2 km). The minimum area for a forest fire to be mapped is 10m2. These data thus corresponds to a 

spatially explicit database where each cell centroid represents burned and/or burning areas. The databases with 

which the country's forestry services work are becoming more and more accurate and are continually being re- 

validated and refined. In recent years, the minimum unit of detection of forest fires by private companies has 150 

reached thresholds below the millimeter scale while the public forestry service (CONAF) reaches 0.001 meters. 

 

Spot locations were also used to determine their distances to the closest streams, urban centers, and major roads 

and then were averaged at the 900m pixel size to be assigned to the corresponding location in the geodatabase. 

These vector data, including the stream network, were retrieved from the map portal1 of the Centre for 155 

Sustainable Urban Development (CEDEUS). Elevations of the study area were retrieved from the 

ASTERGDEM version 2, which is a digital elevation model produced at 30 m pixel size using stereo-correlation 

techniques applied to scenes from the ASTER sensor of the Terra satellite (Abrams et al., 2010). Three land 

cover characteristics were included in the database: a raster land cover map, a Normalized Difference Infrared 

Index (NDII), and a Normalized Difference Vegetation Index (NDVI). The land cover map was derived from 160 

two Landsat images obtained from the platform Earth Explorer (https://earthexplorer.usgs.gov). The images 

were corrected geometrically, radiometrically and atmospherically (Chuvieco et al., 2002; Heilmayr et al., 

2016). A maximum likelihood statistic of the supervised classification method (Chuvieco et al., 2002) was used 

to classify native forest, scrub, pasture/cropland, urban areas, exotic plantations, water bodies, bare soil and 

burned areas. We used approximately 700 training points for each classified image, acquired through two 165 

 
1 Publicly available at http://datos.cedeus.cl/  

http://datos.cedeus.cl/
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sources, a) cadastral of the native plant resources of Chile (CONAF et al., 2015) and b) Google Earth 

(specifically its “time slider”) to obtain input to classify images.  

The NDII and NDVI data that were entered into the geodatabase correspond to a pixels-wise linear trends map 

for each index. All these raster maps were aggregated by simple averaging into a 900m pixel size and assigned 

to the nearest center coordinate in the geodatabase.  170 

Climatic descriptors included average summertime potential solar radiation, a temperature index, and a 

precipitation index. The ASTERGDEM was used to compute average summertime potential direct solar 

radiation employing the insol package within the R programming Language, package that implements 

algorithms presented by Corripio (2003 and references therein). The same procedure described for elevations 

was implemented to add these data into the geodatabase.  175 

For temperatures, the value employed for each location was the linear trend in the number of summer 

(December, January, and February) days in which maximum temperatures were larger than the 90th percentile 

for all summers during the period 1980-2016, i.e., the linear trend in the Tx90p climate index (Klein Tank et 

al., 2009). For precipitation, the linear trend included into the geodatabase is from the number of Consecutive 

Dry Days (CCD) in summer for the period 1980-2016, and index used in fire risk analysis (da Silva et al., 2020). 180 

The climatic data utilized for these calculations was the CR2MET product, a gridded climatology at 5km pixel 

size at daily to monthly frequency produced by the Chilean Center for Climate Resilience Research (CR2) 

covering the period 1979-20162. CR2MET was produced using a statistical downscaling of the ERA-Interim 

reanalysis supplemented by topographic data, land surface temperatures retrieved from satellites, and 

instrumental observations (Alvarez-Garreton et al., 2018). The database also included linear trends of skin 185 

temperatures retrieved from the 0.05º (~5 km) daytime monthly land surface temperature product MODC11C6, 

version 6, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra 

satellite (Wan et al. 2015), accessed from the GIOVANNI tool (Geospatial Interactive Online Visualization 

ANd aNalysis Infrastructure) at NASA’s Goddard Earth Sciences Data and Information Services Center (Acker 

and Leptoukh, 2007). Within the geodatabase, trends in Tx90p, CDD, and skin temperatures were added to the 190 

closest location falling within the respective 5 km pixel. 

 

Table 1. Data sources of satellite products used in this study. 

Source Associated factor Original Spatial 

resolution 

Date 

ASTERGDEM Elevation and Summertime solar 

radiation 

30m Various 

LANDSAT NDII and NDVI 

Land cover 

30m 2016 

 
2 Available at http://www.cr2.cl/datos-productos-grillados/ 

http://www.cr2.cl/datos-productos-grillados/
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CEDEUS 

Human infrastructure and activities 

(Highways and railways, Roads, 

Controlled burn areas, High voltage 

power lines, Camping zones 

Vector CEDEUS 

2016 

Center for Climate 

Resilience Research (CR2) 

Consecutive Dry Days (CDD) and Tx90p 5km 1979-2016 

CONAF (Chilean Forest 

Service) 

 Locations of fire hotspots Vector 2008-2019 

MODIS Locations of fire hotspots and skin 

temperature 

1km and 5km 2008-2019 

 

2.2. Category development 195 

 

Implementing a data-driven approach allows for determination of discernible susceptibility thresholds 

according to the records available, which here are derived from observed spot recurrence. Thus, one of the first 

tasks in this research was the study of the 900m pixel map to determine whether there were detectable 

differences in spot recurrence. The categories were defined using a geometric sequence of the form: 200 

 

𝐶 = 𝑅100% × 𝑟                           (1) 

 

The 5 categories (C) were then computed by grouping recurrences (i.e., fires per year in each pixel) within the 

2008-2019 period. R100% represents the maximum value in the study area, assumed to be 100% recurrence. Thus, 205 

according to equation (1) the very high (VH) category considered recurrences from the maximum to half that 

recurrence, while the near zero (NZ) included the minimum of 0% recurrence (r=0). Thresholds for the 

intermediate categories high (H), media (M), and low (L) recurrence, are calculated using a ratio r= {0.5, 

0.25,0.125}, applied to R100%, respectively. 

 210 

2.3. Model implementation, validation, and experiments 

 

Based upon the known locations showing different recurrence categories, the modeling involved the 

development of a supervised classification scheme meant to determine the recurrence probability in the whole 

study area. To do so, two procedures were applied to the compiled geodatabase. First, a Principal Component 215 

Analysis (PCA) to reduce dimensionality from the eleven descriptors (excluding spot recurrence) to a new set 

of uncorrelated variables, called principal components or PCs, which maximize the explained variance while 

reducing redundancy among similar variables from the original database (Demšar et al., 2013). In this 

procedure, land cover classes were included using binary encoding, effectively enlarging the database to 18 

descriptors. Afterwards, the PCs explaining most of the variance were used as input to a supervised 220 
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classification using a Kohonen self-organizing map (SOM) algorithm (Kohonen, 1990). A SOM is a class of 

neural networks that reveals the structure of a dataset by competitive learning. The supervised classification 

was implemented as an iterative process where a random selection of locations from the recurrence categories 

was presented to the SOM, using the corresponding PCA output as descriptors.  During a given iteration the 

algorithm selected 50 locations per category, classified by comparing those locations with the rest of the study 225 

area. With output of all iterations, the model calculates a simple probability to determine which category a 

certain location falls more often, assigning the respective value. Computation of the SOM’s network size and 

iteration number was determined following recommendations by Kohonen (1990) and Vesanto (2000). 

Evaluation and validation of model output included using the MCD14ML product, a MODIS standard quality 

Thermal Anomalies/Fire locations database, accessed through NASA's Fire Information for Resource 230 

Management System (FIRMS). 

A long-standing debate exists on whether forestry plantations enhance wildfire occurrence in this region (Úbeda 

and Sarricolea, 2016; Urrutia-Jalabert et al., 2018; de la Barrera et al., 2018). This presented model allows 

testing the sensitivity of the study area to different scenarios and thus two extreme situations were compared. 

A first model configuration assumed all non-urban areas as covered by native vegetation while a second 235 

scenario considered all non-urban areas as plantation. Inclusion of these two scenarios into the SOM model was 

through using the corresponding weights of the PCA to recalculate the score of each location relative to the 

selected PCs.   

 

3. Results: Fire Hazard in A Metropolitan Area: Analysis of Factor Maps and Model Output. 240 
 

3.1. Analysis of geodatabase components 

 

From the 5404 fires recorded in the database, spatial patterns of recurrence during the period under study were 

associated with wildland urban interface areas of the CMA, since the quadrants with a recurrence of more than 245 

20 fires were found at less than 650 m from urban centers and highways. In fact, the pixel with the maximum 

number of fires between 2008 and 2019, 154 or 14 per year, is located at the middle of the study area near the 

city of Lota (~37.10ºS and 73.13ºW), and is surrounded by a number of locations with high recurrence, above 

25% (see supplementary Figure 1). This suggests that the causes of these forest fires are mostly anthropogenic. 

On the contrary, the areas that did not record fire outbreaks during the study period were associated with remote 250 

locations with an average elevation of 250 m, distant 8.1 km from urban centers and 1.5 km from highways. 

 

As presented in Table 2, climatic descriptors show a general increase in 0.59ºC/year for Tx90, 0.51 days/year 

in CDD, while a decrease of -0.52º/year in skin temperature. Tx90 shows a range of 1.8º/year and a standard 

deviation of 0.4º/year, indicating that most locations have been undergoing an increase in maximum 255 

temperatures. In fact, only 7% of the pixels present negative linear trends, with most of them located on a buffer 

of about 5 to 7 km from the South East of the main urban area of Concepción. The distribution of CDD trends, 

on the other hand, is completely positive, with a minimum value of 0.26 days/year and maximum of 0.8 
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days/year. Skin temperature is the only variable with a relatively clear spatial differentiation; while 62% of the 

region records a decreasing trend, the 38% of the study area that shows the opposite behavior is on or near 260 

urban sectors of the CMA. This satellite dataset indicates cooling as low as -4.2º/year and warming of 4.6º/year, 

with a standard deviation of 4.02º/year.  

The comparison of CONAF hotspot distances to streams, roads, and urban areas suggests a significant impact 

of roads on fire occurrence, since on average hotspots are mapped at about 1.3 km from roads. In turn, streams 

and urban areas are at 5.5 km and 6.6 km, respectively. Despite this pattern, the large corresponding standard 265 

deviations of 1.1 km, 5.9 km, and 6.3 km indicate a significant spread.         

The values of the NDVI index, which is associated with vegetation composition and structure, show values 

ranging from -0.2312 to 0.4460. Negative values of this indicator are related to non-vegetation land covers/uses 

such as water bodies, urban areas, or bare soils. On the other hand, the positive values are related to coverages 

with low vegetation such as pastures or scrub (values close to zero) to dense vegetation such as arborescent 270 

scrub, forest plantations or native forest (NDVI>0.25). Within the study area, 9.1% of the pixels presented 

negative NDVI values (no vegetation), 35.7% corresponded to positive intermediate NDVI values (grasslands, 

scrublands, young forest plantations), whereas 55.2% corresponded to high NDVI values (adult forest 

plantations, native forest). The values of the NDII index, which is associated with the moisture content of the 

vegetation, showed values ranging from -0.154 to 0.450. The negative values of this index are related to 275 

cover/uses without vegetation such as water bodies or urban areas. Positive values are associated with water 

content in the vegetation; the value of the index increases with increasing water content in the vegetation. Within 

the study area, 7.4% of the pixels presented negative NDII values, 42.8% corresponded to positive NDII values 

(but close to zero), mainly associated with shrublands and grasslands. Finally, 64.7% corresponded to medium-

high NDII values, which are associated with adult forest plantations and native forest. 280 

 

Table 2. Summary of the geodatabase components 

Climatic 

descriptors 

NDVI 

(surface 

%) 

NDII 

(surface %) 

Elevation 

 (m) 

Insolation 

(W/m2) 

Land 

use/cover 

surface (%) 

Anthropic 

features 

(mean 

distance, km) 

0.59ºC/year 

for Tx90 

Negative: 

9.1 

Negative: 

7.4 

Range: 

0 to 910 

Range: 

882.06 to 

905.8 

Exotic forest: 

55 

From streams: 

5.5  

0.51 days/year 

in CDD 

Positive: 

90.9 

Positive: 

92.6 

Average: 

212 

Average: 

887.7 

Native forest: 

7 

From urban 

areas: 6.6  
-0.52º/year 

in skin temperature 

- - 
  

Agriculture: 

15.2  

From 

roads: 1.3  
4.2º/year 

Maximum cooling 

    
Urban: 5.3 

 

+4.6º/year 

Minimum warming 

      

 

The elevation ranges in the study area fluctuated between 0 m to 910 m, with an average elevation of 212m. 

The highest elevations are found in the southern part of the study area and are mostly associated with the 285 
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presence of forest plantations and small fragments of native forest. The western area presents the lowest terrain 

elevations, presenting itself as a coastal plateau where the urban areas of the CMA are present. The insolation 

on the ground, which directly influences the formation of fuel for the formation of forest fires, reached mean 

values of 887.7 W/m2, with insolation ranges from 882.06 W/m2 to 905.8 W/m2. The highest insolation values 

are associated with higher elevation sectors, with north-facing terrain aspect. Insolation on the ground showed 290 

little variation due to the low variability of elevation gradients in the study area. Finally, with respect to the land 

use/cover present in the study area, 55% of the surface corresponded to exotics forest plantations of Pinus 

radiata and Eucalyptus globulus species, which are associated with the highest elevation of the study area. The 

7% corresponds to native forests of Nothofagus sp., which are present in areas of high slope (>30%). On the 

other hand, 15.2% corresponds to agricultural zones, which are associated with low sectors in the eastern part 295 

of the study area. Finally, urban areas represent 5.3% of the total surface area and are found mainly in the coastal 

zone (west) of the study area. 

When the data of the geodatabase is inspected according to the categories determined from spot recurrence 

(equation (1)), several patterns emerge (Figure 2). A first finding is that the Moderate (M) to Very High (VH) 

categories tend to present much less spread, with almost no outliers. It is also noticeable that the Near Zero 300 

(NZ) and Low (L) categories spread to about the same range, suggesting that low recurrences do not conform 

to a distinguishable pattern of recurrence and that instead they correspond to random events. Variables 

associated with vegetation characteristics, i.e., trends in NDII (t-NDII) and in NDVI (t-NDVI), tend to show 

that the VH category is mostly associated with negative trends, deepening the decreasing tendency from H.  

As expected from the method utilized to calculate insolation, that variable and elevation show a similar pattern 305 

where M, H, and VH fall in regions of progressive higher values. Spot distance to Urban centers (d-Urban) 

appear to be within a narrow range for M, H, and VH relative to L. Although with absolute values lower than 

d-Urban, distances to roads (d-Road) are largely shorter than 2 km for the three highest categories, with the 

moderate for VH being marginally shifted towards 2 km relative to H and M. For the distance relative to streams 

(d-Stream), spot recurrence tends to be higher at a separation below 2.5 km for H and VH.  310 
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Figure 2. Main features of the variables in the geodatabase, grouped according to the wildfire categories: 

Near Zero (NZ), Low (L), Moderate (M), High (H), Very High (VH). 

 

The distribution of climatic variables according to categories shows a clear concentration within a narrow range 315 

for VH. As previously detected, the trend in CDD (t-CDD) for the CMA is completely positive, although for 

VH it is concentrated just below 0.5d/year. In the case of Tx90 (t-Tx90), results indicate that M, H, and VH 

spot recurrence have only occurred on areas with positive change, with H showing the largest interquartile 

range. For skin temperature trends (t-SkinT), most locations with positive trends coincide with high and very 

high recurrence. Figure 3 shows the land use data pertaining to each category. The most striking pattern is that 320 

100% of VH occurs over plantations, about 70% for H, and nearly 45% for M.  

 

Figure 3 Land use (%) classified for the CMA according to the wildfire categories: Near Zero (NZ), Low 

(L), Moderate (M), High (H), Very High (VH) and All. “All”, represents the distribution of the land cover 

along the whole study area. 325 

 

In addition, the progressive importance of urban land use connected with plantations as the recurrence increases, 

suggests that the connection between these two land uses explains most of the damaging effects of wildfires in 

the CMA. As already seen in the distribution of other variables, L and NZ present a similar partitioning as the 

whole study area (“All” in Figures 2 and 3), further attesting for a random pattern of low recurrence. This way, 330 

the analysis of input variables tends to indicate that there is a relatively consistent pattern of landscape 

conditions that allow for certain locations to record fires more frequently than others.    
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3.2. PCA and SOM model output. 

 335 

Six principal components (PCs) explain about 71% of the geodatabase variance within the study area. Since the 

PCA was applied to the whole CMA, these results represent the relationships including zones with zero fire 

hotspots. Although no PC within these 6 accounts for more than 20%, certain patterns emerge that suggest the 

procedure has been able to suppress redundancies in the database (Figure 4). The PC1 reaffirms the relationship 

between Elevation and Insolation and the similar behavior of d-Stream and d-Urban. Tx90 tends to be important 340 

in both PC1 and PC2, while in the latter t-NDVI and t-NDII show the highest weights, indicating important 

correlations between them. In turn, d-Road and t-CDD are largely influential mostly in PC3. A remarkable 

finding is that this PCA standardization does not show land use as a prominent variable, as plantations appear 

to be somewhat key in PC6 only. 

 345 

 

Figure 4. Input to the SOM Model presented in the percentage of six principal components (PCs). 

 

The analysis of the PCA partitioned by recurrence categories reveals that only certain PCs M, H, and VH 

develop distinct signatures (Figure 5). These results also reaffirm the similarity of L with a situation of nearly 350 
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zero spots. Although in almost all PCs the increase in recurrence shows a trend of a narrow range relative to the 

immediate previous category, there are certain remarkable exceptions, such as the slight reverse trend of VH 

relative to H in PC1 and the significant interquartile range for H in PC6. A noticeable finding is that VH's 

interquartile range seems different from the rest of the categories for PC1, PC2, and PC4. 

 355 

Figure 5. Boxplots showing the distribution of PC’s weights according to the recurrence categories. “All” 

represents the distribution of each PC along the whole study area. 

 

SOM output compared with CONAF and MODIS data indicates that this data-driven model is skilled in 

predicting an increase in spot density according to the corresponding category (Table 3). Given that the model 360 

was trained with CONAF data, it is expected that a better match is found in that comparison. In effect, the model 

predicts increasing density according to the recurrence category. The VH’s 10.98 spots per pixel is 3 times 

denser than H, and about 5 times relative to M. For the case of MODIS data, the model also finds a significant 

increase in density for VH, almost 4 times higher than M and H; however, it does not predict density differences 

between M and H while records a slightly larger density for L. The NZ category is well predicted by the model 365 

compared to both sources of fire hotspot activity: ~6 times smaller for CONAF and about half for MODIS. 

According to the model, 55.8% of the CMA presents conditions for low recurrence of fire hotspots, with about 

1/3 for M, and just 12.3% for high and very high recurrence. The model also predicts that spot recurrence is a 

phenomenon that may affect almost the whole study area (Figure 6A). 

 370 

Table 3. Comparison of SOM model output versus CONAF and MODIS fire hotspot density, 

respectively. Density is calculated as the number of CONAF or MODIS spots that fall within a given 

CMA’s model category, divided by the number of pixels corresponding to that category. 
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Category Modeled Area 

covered (%) 

CONAF MODIS 

Near zero 3.3 0.13 0.45 

Low 55.8 0.62 0.78 

Moderate 28.6 2.13 0.72 

High 10.3 3.66 0.72 

Very High 2.0 10.98 2.84 

Note: MODIS reports 50.04% less hotspots than CONAF. 

 375 

The native scenario tends to show more pixels in the moderate category than the plantation (Table 4). Also, the 

native scenario sees an increase in the VH category. On the other hand, plantations tend to show an increase in 

the L and H categories, while reducing the NZ. Although these differences are not extreme, they attest for a 

different dynamic depending on the prevalent land cover. Both models show clustering patterns in which very 

low and low values are associated with higher elevation sectors within the CMA, which in turn have the lowest 380 

insolation values. On the other hand, the high and very high values are associated with low elevations near the 

roads and urban areas of the CMA (Figure 6 B and C). 

 

Table 4. Modeled proportion of spot recurrence within the CMA (%) according to the five categories 

considering the scenario in which the whole study area is assumed to be covered by native (native 385 

experiment) and exotic plantation (exotic plantation experiment). The lower section of the table compares 

spot counts and surface area per category relative to the full model using the original database, and the 

experiments. 

Category Native experiment (%) Exotic plantation experiment (%) 

Near zero 11,25 10,30 

Low 50,73 54,22 

Moderate 29,27 25,58 

High 6,50 8,49 

Very high 2,24 1,41 

 

Category 

Spot counts 
Surface (ha) 

Full model 

Exotic 

plantation 

experiment 

Native 

experiment Full model 

Exotic 

plantation 

experiment 

Native 

experiment 

Near zero 86 296 310 6966 23976 25110 

Low 1556 1501 1438 126036 121581 116478 

Moderate 827 732 822 66987 59292 66582 

High 280 239 174 22680 19359 14094 

Very high 59 40 64 4779 3240 5184 

TOTAL 2808 2808 2808 227448 227448 227448 

 390 
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Figure 6. Model results of wildfire recurrence on the CMA. On the left (A), model results using the 

original geodatabase; (B) corresponds to the scenario of only exotic plantations; (C) is the only native 

forest experiment. 

 395 

4. Discussion 

 

In Mediterranean Central Chile, land cover changes that characterize current landscape organization resulted 

mostly from the application of the government subsidies granted by Law Decree 701 for Forestry Development 

(DL701) in 1974 (Nahuelhual et al. 2012; INFOR, 2017:25). This policy favored plantations of exotic fast-400 

growing species along the region, with staggering consequences: in 1974, the surface area of forestry plantations 

was 480,000 ha, during the 1990s close to 2 million ha (Aguayo et al. 2009), reaching nearly 5 million ha in 

2015 (INFOR, 2017:49). This ten-fold increase in plantations motivated by public policy contrasts with the 

little attention paid to restoring native forests, which have historically contributed to the local population’s 

livelihoods (Reyes and Nelson, 2014; Frene and Núñez, 2010) requiring that the rural and indigenous 405 

communities must compete for the use of the land against the plantations inciting environmental conflicts 

(INDH, 2015).  
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Concomitant with the plantation spread along the region, an increase in the recurrence and magnitude of fire 

disturbances in WUI has been observed, due to the blurred border between land covers or the substitution of 

certain land use for others (Goldman, 2018; Ruiz et al. 2017; Ladislao et al. 2007). According to CONAF, over 410 

35 million hectares of vegetation are vulnerable to fires, including grasslands and shrubland (20 million), native 

forest (13 million) and exotic plantations (2,1 million) (Castillo et al. 2003). Of this vegetation, over 50 thousand 

hectares are burned annually in approximately 5,900 wildfires. Under these political and economic conditions, 

the land change cover seems to become a critical factor that contributes to the wildfire risk, whose conflictive 

evolution has built a double pressure scenario that shows no sign of changing (Ubeda and Sarricolea, 2016; 415 

Andersson et al. 2016). Likewise, the urban expansion fomented by the National Policy of Urban Development 

(NPUD) from 1979 has been deregulating the land use market (Brites, 2017) fomenting the urbanization of 

agricultural lands, wetlands, or forests (IDB-ECLAC, 2015; Vilar del Hoyo et al., 2011; Hidalgo et al. 2018).  

The machine learning model developed in this work shows that about 40% of the CMA is at least in a moderate 

probability of fire recurrence. Wildfire hotspot density is well represented by the model, which suggests this 420 

tool could be a powerful decision-making tool for the public sector (i.e., national government, municipalities) 

and the private sector (universities, timber companies, real estate developers). Hotspot density is concentrated 

on roads (1.3 km), leaving far behind the water streams (5.5 km) and urban areas (6.6 km), consistent with the 

literature that assigns the major responsibility of the fire recurrence to the presence of human infrastructure and 

human activities (Harari, 2013; Doerr and Santin, 2016), and is consistent with CONAF´s previous reports 425 

(CONAF 2017; 2018). However, anthropic factor is not the only one to count in, as Barbati et al. (2013) said, 

the distance from the nearest water body is determinant for short-term fire recurrence in Mediterranean 

countries, along with other landscape factors (slope roughness, exposure, pre-fire dominant forest type). 

Additionally, the proximity to roads and maximum temperature dynamics, both variables severely altered by 

the human activities, tend to organize the randomness observed in this model. This high random component in 430 

the occurrence of events is associated with a lower wildfire hazard, which reveals that after a random 

appearance, the recurrence increases according to the conditions of each zone. This last idea of random 

distribution of low and almost zero recurrences has been around a long time, and literature reports similar results 

from their GIS models in Sardinia – Italy (Ricotta and Di Vito, 2014), California – USA (Minnich and Chou, 

1997) and Spain (Chuvieco et al., 2011:49; Vilar del Hoyo et al. 2011). Nevertheless, is contradictory with the 435 

official data coming from CONAF, which established that “a high occurrence was recorded in the interface 

areas of the region, because of the repeated occurrence of forest fires during the 2015-2016 season” (CONAF, 

2021) and the study of central Chile from McWethy et al. (2018) “fire activity was highly variable in any given 

year, with no statistically significant trend in the number of fires or mean annual area burned”. 

Experiments comparing total plantation and total native scenarios, while not generating a significant change in 440 

categories, suggests that there are more areas that will be subject to fires (fewer Near Zero areas) when there 

are more plantations. The fact that category Low tends to increase, even if it is marginally, perhaps indicating 

that the probability of prediction is reduced when coverage is mostly plantation, as the system tends to become 

more random. Also, it is relevant that the model does detect a difference between scenarios of total plantation 

and native forest cover, indicating that the changes in fire regime and fire occurrence relies heavily on the 445 
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vegetal cover for central Chile, which is consistent with the literature (McWethy et al., 2018; de la Barrera et 

al., 2018; Úbeda and Sarricolea, 2016), press reports (CIPER, 2018), and official reports (CONAF, 2017; 

CONAF-BIRF, 1999). Other studies suggest the same relevance of landscape drivers for Mediterranean 

countries (Darques, 2015; Pausas et al., 2008; Turco et al., 2016). By examining the features of the model 

presented here, it is possible to propose two, not necessarily exclusive possibilities that may explain the 450 

relatively weak contribution of forest plantations to fire risk. The first is that anthropogenic activities may 

become more important at the local rather than the regional scale. For instance, whereas the model shows that 

the urban boundary is overwhelmingly associated with categories M to VH, if one zooms out to the whole 

Mediterranean Central Chile, cities become small spots. The second possibility may be a “saturation effect” in 

the sense that plantations now occupy such a significant surface area within the CMA that the influence is 455 

already permanent in the current regime of fires, meaning that any data-driven treatment sees plantations as a 

constant and thus attributes a small contribution. That is the reason why the native vs plantation experiments 

are important, because indicates that the plantation tends to reduce the areas with near zero recurrence relative 

to the native scenario, although the difference is marginal, likely associated with the “saturation effect”.   

Results of the model thus are relevant as they serve to accumulate and analyze historical, cartographical, and 460 

other types of data, leading to a better understanding of controls and drivers on fire activity in the CMA at high 

resolution. However, the model can be substantially improved with near real-time (NRT) information from 

terrestrial platforms (e.g., vehicles, towers, cranes), airborne platforms (e.g., aircraft, unmanned aerial vehicles 

(UAVs), helicopters) or space-borne platforms (e.g., satellites) using electromagnetic sensors (Van Ackere et 

al. 2019) leading us to a truly smart metropolitan area (Costa et al., 2020). In that sense, it becomes necessary 465 

to put more effort in the future to extend the timeframe of the present study, as Chuvieco et al. (2011:54) 

accurately said: “Since fire occurrence changes in space and time, the validation of integrated indices should 

be done with long time series, because short periods may bias some of the theoretical assumptions that are 

required to build the model”. 

Future scenarios for the CMA are filled with uncertainty, especially for climate change and associated impacts. 470 

Projections from the work of Araya-Muñoz et al. (2017) indicated that the most relevant hazards for the CMA 

will be wildfires, water scarcity, and heat stress. Likewise, the droughts are becoming more recurrent (Garreaud 

et al., 2020; Fernández et al., 2018). As the model suggests, climatic indicators play a role in fire recurrence, 

which allows us to infer that changes in those will lead to increases in wildfire hazard for the CMA. What is 

changing fast are the climate conditions, creating riskier scenarios globally. Therefore, there is an opportunity 475 

to improve or make mandatory the nature-based solutions, controlled burns for a social-ecological 

transformation (Otero and Nielsen, 2017), the ecological restoration of soils, wetlands, and forests, REDD++, 

20x20 initiative, promoting the carbon emission market for carbon sequestration (Wright et al. 2000). For 

example, the Pinus radiata plantations in Chile and Australia have a potential average net annual rate of CO2 

accumulation of 4.5 tons (IPCC, 1996), sequestering greenhouse gas emissions faster at a lower cost, returning 480 

the investments quickly, and mitigating some of the impacts of climate change (Pawson et al. 2013).  
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5. Conclusions 

 

This study aimed to develop, implement and test a model of fire risk by combining natural and human factors 485 

are associated with wildfires' generation and spread. The combination of data using PCA and SOM allowed to 

ponder the relative importance of each factor, interpret how interweaved they are, and study the impact of 

landcover. Despite observed moderate to very high recurrence tend to cluster near urban areas and on 

plantations, the model presents a more complex interaction among factors, where climate (e.g. t-Tx90), 

elevation and human aspects (d-Urban and d-Roads, for instance) are able to predict observed hotspots densities, 490 

leaving land cover as a minor component. However, the comparison of the different land cover scenarios point 

to a detectable influence of plantations in increasing fire risk and the spatial distribution of recurrence. 

 

Results indicated that 12.3% of the CMA’s surface area has a high and very high risk of a forest fire, 29.4% has 

a moderate risk, and only 58.3% has a low and very low risk. This calls for reflection on the importance of 495 

spatial planning with a resilient focus on wildfires, according to the recurrence of these phenomena in these 

settings as they are increasingly more forced in the WUI, urban residential areas and industrial or port areas. 

These maps and this model are of vital importance for the Chilean government emergency agencies as well as 

for the city governments within the CMA. They are also relevant for understanding how these phenomena affect 

the Mediterranean ecosystems to which the CMA belongs, and therefore should be beneficial for researchers in 500 

other latitudes working on similar ecosystems. 

 

Code availability: Computer code for the model available on request 

Data availability: all databases used in this research are free to access from the links included in the paper. 
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