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Abstract. At present the lightning flash density is a key input parameter to assess the risk of occurrence of a lightning strike 

in a particular region of interest. Since it is known that flashes tend to have more than one ground termination point on average, 

the use of ground strike point densities as opposed to flash densities is more appropriate. Lightning location systems (LLSs) 

do not directly provide ground strike point densities. However, ingesting their observations into an algorithm that groups 

strokes in respective ground strike points results in the sought after density value. The aim of this study is to assess the ability 20 

of three distinct ground strike point algorithms to correctly determine the observed ground-truth strike points. The output of 

the algorithms is tested against a large set of ground-truth observations taken from different regions around the world, including 

Austria, Brazil, France, Spain, South Africa and the United States of America. These observations are linked to the observations 

made by local a LLS in order to retrieve the necessary parameters of each lightning discharge and serves as input for the 

algorithms. Median values of the separation distance between the first stroke in the flash and subsequent ground strike points 25 

is found to vary between 1.3 km and 2.75 km. It follows that all three of the algorithms perform well, with success rates up to 

about 90% to retrieve the correct type of the strokes in the flash, i.e., whether the stroke creates a new termination point or 

follows a pre-existing channel. The most important factor that influences the algorithms’ performance is the accuracy by which 

the strokes are located by the LLS. Additionally, it is shown that the strokes’ peak current plays an important role, whereby 

strokes with a larger absolute peak current have a higher probability of being correctly classified compared to the weaker 30 

strokes. 
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1 Introduction 

Severe weather has always been around. However, its global impact on both society and economies increases steadily, with 

no signs of decline whatsoever towards the future. More specifically, the deleterious effects of lightning discharges should not 

be underestimated. In this respect, cloud-to-ground (CG) flashes play a particular part since they have an enormous impact on 35 

nature and society, both directly and indirectly. Besides lightning-caused fatalities and injuries that are reported each year 

worldwide (Curran et al. 2000; Holle et al. 2005, 2016), it is a well-known fact that lightning is a major cause of, for example, 

wildfires when the conditions to ignite fire near the vicinity of the ground strike point are fulfilled (Balch et al., 2017; Williams, 

2016; Schultz et al., 2019). On the other hand, the economic effects of lightning damage to property are immense, whether 

being an individual household or a large-sized company, with total costs that quickly can spiral out of control. In this matter, 40 

electrical appliances are vulnerable to the electromagnetic fields induced by lightning. Additionally, the search for alternative 

ways of generating energy has led to the construction of vast amounts of wind turbines and wind and solar farms all over the 

world, to name but one other example. However, it has been demonstrated by Montanyà et al. (2014) by analyzing Local 

Mapping Array (LMA) observations in Spain that the rotating blades of wind turbines can trigger lightning, thereby causing 

self-induced damages. Not to mention the detrimental effects of lightning in other areas such as aviation, it is clear that adequate 45 

lightning protection measures need to be put at place to mitigate the effects of lightning impacts. For a comprehensive overview 

of lightning hazards to human societies the interested reader is referred to Koshak et al. (2015) and Yair (2018). 

Over the years, our knowledge of thunderstorms has greatly improved, not least in the field of lightning. By means of high-

speed cameras, it has been observed that roughly half of the downward negative CG multiple stroke flashes exhibit more than 

one ground strike point (GSP). With an average value varying around 1.5 to 1.7 GSPs per flash (Rakov et al., 1994; Hermant, 50 

2000; Valine and Krider, 2002; Saraiva et al., 2010, Poelman et al., nhess-12-2021 companion paper). This implies that the 

average number of lightning strike points is about 50% to 70% higher than the observed number of flashes. Additionally, the 

distance between the different GSPs and the first stroke in the flash is of the order of a few kilometers (Thottappillil et al., 

1992; Valine et al., 2002; Stall et al., 2009). It follows that every ground strike point is a potential threat and therefore ground 

strike points ought to be taken into account when it comes to lightning risk estimation for lightning protection. 55 

Nowadays the primary input parameter in lightning risk assessment applications is the lightning flash density, NG. The latter 

is defined as the number of CG flashes per square kilometer per year. In the past, an empirical formula was applied to infer NG 

from the keraunic level of thunderstorm days. However, progress made over the years to detect lightning discharges by means 

of lightning location systems (LLSs) has led to NG being determined from the ground flash measurements by LLSs. By 

definition, the location of a flash has historically been determined by that of the first stroke in the flash; while some LLSs  use 60 

the centroid of the strokes' locations. Taking into account that on average more than one GSP is observed per flash, it follows 

that the use of NG in the risk calculation of lightning protection leads to an underestimation of the hazard. It is for this reason 

that NG should be replaced by the lightning strike point density. Nowadays LLSs provide stroke locations with median 



3 

 

accuracies in the order of a few hundred meters or better, hence LLSs can provide strike point densities after applying a 

dedicated algorithm to group the individual strokes within a flash in ground strike points.  65 

In this study, three different ground strike point algorithms are tested against a large set of high-speed video measurement data 

from multiple regions to find out their ability to determine the observed ground strike points correctly. In Sections 2 and 3 the 

different lightning location systems and ground-truth data sets are described, respectively, followed by the characteristics of 

the algorithms in Section 4. In Section 5 the results are discussed, while Section 6 summarizes the study and draws some 

further conclusions. 70 

2. Lightning Location Systems involved 

The ground-truth data sets outlined in Poelman et al. (nhess-12-2021, companion paper) and gathered in Austria (AT) in 2012, 

2015, 2017 and 2018, Brazil (BR) in 2008, South-Africa (SA) in 2017-2019, and the United States of America (US) in 2015, 

serve among others as input for the ground strike point algorithms described further in Sec. 3. In addition, two extra ground-

truth data sets collected in France (FR) during 2013-2016 and Spain (ES) in 2017-2018 are included in this study. Whereas 75 

the flash grouping is based on the high-speed video images, the information of, e.g.,  location, peak current and semi-major 

axis of the 50% confidence ellipse, is retrieved by linking the ground truth data to the observations made by a local ground-

based LLS. In this Section, the different LLSs are briefly described. 

2.1. ALDIS 

ALDIS operates a sensor network of eight low frequency (LF) lightning detection sensors in Austria while the central processor 80 

ingests additional sensors from neighbouring countries. In addition, ALDIS is partly known for its continuous work related to 

the European Cooperation for Lightning Detection (EUCLID); recognized as one of the best documented networks in Europe 

in terms of location accuracy (LA) and detection efficiency (DE) estimates. This is made possible partly due to the observations 

made at the instrumented Gaisberg Tower in Austria and supplemented by mobile video and field recording system (VFRS) 

observations in Austria, as well as throughout Europe. Due to continuous adaptation and improvement of the system with on-85 

going hard- and software upgrades, the median LA is in the range of 100 m (for more detailed information see Schulz et al., 

2016; Poelman et al., 2016; Diendorfer, 2016). 

2.2. Météorage 

The French national LLS has been operated by Météorage (MTRG) since 1986. It detects low-frequency electromagnetic 

signals generated by CG lightning, as well as a fraction of large amplitude intracloud discharges much in the same way as 90 

ALDIS. In the beginning, the LLS was made up of sensors placed only in France. Over the years this core network expanded 

with compatible sensors of neighbouring partners, providing seamless extended observation coverage over western Europe. In 
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this study, the LLS of MTRG is used to match the ground-truth observations taken in France and Spain. Similar DE and LA 

values as the ones stated above for OVE-ALDIS are applicable for this network. 

2.3. RINDAT 95 

At the time, the ground-truth observations used in this work were carried out, the Brazilian Lightning Detection Network 

(RINDAT) was composed out of a mix of 47 sensors. The network has evolved somewhat since then resulting in an improved 

network performance. Nevertheless, a stroke and flash DE of RINDAT of respectively of 55% and 87% was reported by 

Ballarotti et al. (2006). Additionally, an upper limit on the LA was retrieved of about 5 km. More information on the 

characteristics of the network is given by Naccarato and Pinto [2009]. 100 

2.4. SALDN 

The South African Lightning Detection Network (SALDN) was first installed in South Africa in 2006 by the South African 

Weather Services (SAWS), originally consisting of 19 Vaisala LS7000 sensors spread across the country. The network has 

since been upgraded to 24 sensors across the country with an average sensor baseline of approximately 150 km, forming a grid 

across the country (Gijben, 2012; Evert, 2017). Self-evaluation of the network estimates flash detection efficiencies above 105 

90 % and location accuracies within 500 m for all of the coverage of the country, only dropping below these levels at the 

borders (of the country and the network). Ground-truth evaluations report cloud-to-ground stroke detection efficiencies of 85-

90 %. These evaluations further indicate a median location error within 150 m (Hunt, 2014, Fensham, 2018, Hunt, 2020). 

2.5. NLDN 

The U.S. national lightning detection network (NLDN) adopts a combination of time-of-arrival and direction finding 110 

technology (Cummins and Murphy 2009), similar to the other networks, to geolocate lightning CG strokes and IC pulses since 

1989. The Contiguous United States (CONUS) is covered by approximately 100 LS7002 sensors (Nag et al., 2014). The 

detection efficiency and location accuracy of the NLDN has been evaluated thoroughly using video observations (Biagi et al. 

2007; Warner et al 2012; Cummins et al. 2014; Zhang et al. 2015; Zhu et al. 2016), tower data (Lafkovici et al. 2006; Cramer 

and Cummins 2014; Zhu et al. 2020) and triggered lightning data (Jerauld et al. 2005; Nag et al. 2011; Mallick et al. 2014). It 115 

follows that the flash DE is expected to be in the order of 95% within CONUS. The location accuracy is approximately 150 to 

250 m over the majority of the United States, and decreasing somewhat to 250-500 m toward the edges of the network. 

3. Data sets 

Since not all of the strokes observed by the high-speed cameras and electric field change sensors were detected by the different 

LLSs, the data sets used in this study differ slightly from the ones presented in Poelman et al. (nhess-2021-12, 120 
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Table 1. Data set characteristics for Austria (AT), Brazil (BR), France (FR), South Africa (SA), Spain (ES) and the United States 
of America (US) 

Parameter 
LLS 

AT BR FR SA ES US 

N(flashes) 474 110 354 392 76 73 

N(strokes) 1373 383 894 1174 183 273 

N(GSP) 808 189 585 508 121 114 

Location Accuracy  

Sample Size 582 210 325 689 63 161 

Mean (km) 0.38 1.88 0.73 0.65 0.37 0.67 

Median (km) 0.11 1.0 0.19 0.11 0.11 0.13 

95th percentile 

(km) 
1.76 6.74 3.82 2.06 1.43 4.15 

Semi-major Axis 

Mean (km) 0.31 0.69 0.30 0.36 0.17 0.43 

Median (km) 0.08 0.50 0.20 0.20 0.15 0.20 

95th percentile 

(km) 
1.43 1.66 0.80 1.50 0.33 1.10 

Resolution 

provided by LLS 

(m) 

2012: 

100 

2015-

2018: 10 

100 

2013-

2015: 

100 

2016: 10 

100 10 100 

χ2 

Mean 1.01 4.11 1.35 0.67 1.07 1.23 

Percentage > 5 0.87 21.88 1.01 0.51 0 2.21 

Median absolute peak current (kA) 

1st strokes 12.4 19.7 15.6 18.0 11.9 31.4 

Subsequent 

strokes 
10.1 15.4 13.3 13.0 11.2 16.4 

NGC 12.4 18.8 14.7 18.0 11.5 27.5 

PEC 8.3 14.8 12.8 12.0 11.3 14.3 

Distance between GSP and 1st stroke in the flash  

Sample size 334 79 231 116 45 41 

Mean (km) 2.42 3.03 2.43 3.73 2.84 1.48 

Median (km) 2.05 2.75 2.19 2.27 2.51 1.30 

99th percentile 

(km) 
9.52 7.62 7.21 20.59 6.34 4.8 

Maximum (km) 16.5 8.09 13.69 20.9 6.75 5.43 
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companion paper). Note that the list of flashes to test the performance of the ground strike point algorithms is additionally 

enlarged by two extra data sets gathered in France and Spain. The quality of the latter two data sets is of the same level as 

compared to the data sets introduced in Poelman et al. (2021, nhess-2021-12, companion paper). However, the limited video 

recording time of 500 ms prohibits its use in Poelman et al. (2021, nhess-2021-12, companion paper). It should be pointed out 125 

that a flash is completely removed if a stroke that creates a new GSP is not detected by the LLS since this would impact the 

success rate of the algorithm further described in Section 5. In what follows, some of the characteristics of the reduced data 

sets are discussed. Notice that detection efficiency projections of the LLS are out of the scope of this study and therefore 

detailed investigation is disregarded as such. Nevertheless, one can find in Section 2 references for the individual LLS detection 

efficiency estimations of the individual networks. 130 

Some of the characteristics that play a role in the further course of the study are listed in Table 1 for the different data sets and 

are described in the text that follows. The combined data sets include a total of 1479 flashes, consisting of 4280 strokes, 

whereby a total of 2325 ground strike points are distributed among them. The size of the data sets, in terms of flashes, strokes 

and ground strike points, are somewhat smaller compared to Poelman et al. (2021, companion paper) for the reason described 

above. Because of this, it is not possible and not valid to use the numbers given in Table 1 for detection efficiency estimations.  135 

The random location errors of the different LLSs can be quantified by using the strokes that follow the same channel as 

observed from the consecutive high-speed images. Since those strokes are assumed to strike ground at the same point, the 

differences between the stroke positions within a GSP lead to the LA estimation after applying a downscaling factor of √2. 

The latter scaling is applied since both positions are subject to random errors, by analogy of Schulz et al. (2010) and Biagi et 

al. (2007). The differences determined by this method should be regarded as upper bounds of the actual position differences 140 

because there is the possibility that the channel geometry and/or the actual ground contact varied slightly from stroke to stroke 

and was not resolved by the camera. The results hereof can be consulted in Table 1. All of the LLSs have median LAs in the 

range of 0.11-0.19 km, except for Brazil with a median LA of 1 km. These LA values correspond with previous LA estimates 

in other studies mentioned in Section 2 for the individual networks.  

The error ellipse semi-major (SMA) and semi-minor axes lengths along with the ellipse rotation angle reported by a LLS 145 

generally correspond to the characteristics of the 50% confidence ellipse, i.e., 50% of the located return strokes should have 

ground truth strike locations that occur within the error ellipse defined by the provided parameters. This error or confidence 

ellipse can in fact be calculated for any desired level other than 50% by scaling the semi-major and semi-minor axes of the 

50% confidence ellipse according to Eq. (1).  

SC =
√−2.ln(1−P)

1.177
     (1) 150 

with SC the resulting scaling factor belonging to the desired probability P. More details about the confidence ellipse can be 

found in Stansfield (1947), Cummins et al. (1998), and Diendorfer et al. (2014). In any case, an alternative way to look at the 

location quality is to monitor the SMA behavior. From Table 1, it follows that the SMA for BR is highest, indicating that the 
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location quality is lower compared to the other data sets. It also confirms the LA values retrieved by the method described 

above. 155 

χ2 values provide additional insight about the accuracy of the error ellipse parameters. A standard distribution of the χ2 has a 

mean value of 1, whereby 1% of the χ2 values are larger than 5. It is expected that the distribution of the SMA of the 50% 

confidence ellipse is close to the median location accuracy if all systematical errors are removed and random errors are based 

on the real measurement errors (Nag et al., 2015). For all the LLSs, except BR, the mean χ2 is about 1, with only a few percent 

of the strokes exhibiting a χ2 greater than 5 (ranging from 0.51%-2.21%). The mean χ2 value in BR is the largest at 4.11, with 160 

more than 20% of the values greater than 5. The latter suggests that many of the location errors in BR will be much larger, i.e., 

two to three times, than what is provided by the ellipse estimates. 

Estimated (measured) median peak current values for 1st strokes, subsequent strokes, NGCs and PECs are also presented in 

Table 1. As expected, the 1st strokes exhibit larger absolute peak currents compared to the subsequent strokes, analogue to the 

peak current values of NGCs versus PECs. Since higher peak current strokes tend to be detected on average by a larger number 165 

of lightning sensors, the coordinates appointed by the LLS are likely to be of higher accuracy compared to strokes exhibiting 

a lower peak current. This may influence the probability of the algorithms to distinguish correctly between a new GSP or a 

PEC, as will be discussed later on. 

Finally, values for the mean and median separation distance between the first stroke in the flash, i.e., 1st GSP, and subsequent 

GSPs within the flash are illustrated in Table 1 as well. The position of the respective GSPs is calculated as the mean location 170 

of the strokes assigned to the GSP, whereby a weight is given inversely proportional to the respective semi-major axis of the 

stroke. The 99th percentiles are indicated together with the maximum estimated separation distance. In case this maximum is 

found to be much larger than the 99th percentile, it indicates that the maximum is a one-off.  Median values of the separation 

distance vary between 1.3 km (US) and 2.75 km (BR). The retrieved median distances agree well with those found in previous 

studies such as Stall et al. (2009) and Thottappilil et al. (1992). The maximum separation distance for AT, FR and SA is quite 175 

large, whereby for SA a few considerable separation distances are retrieved close to the maximum as evidenced by the value 

of the 99th percentile. It is essential to highlight that the large maximum separation distances could well be the result of a 

location error by the LLS or a consequence of the manual grouping methodology based on the video information. From the 

perspective of cloud charge centers and the horizontal extent of downward leaders, it would make more sense to trace the 

lightning leader back to the location of the preliminary breakdown and only group strokes that emanate from a common charge 180 

region. However, this would require observations made by an LMA. 

4. Algorithms 

The sole purpose of a ground strike point algorithm is to group the different strokes of a flash into one or more ground strike 

points. The ultimate goal is to mimic, as accurately as possible, the exact distribution of GSPs compared to what is observed 
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in the high-speed camera images. The ability to do so enables the user to determine, with a high degree of certainty, on a 185 

predefined geographical and periodical scale, the ground strike point density based on a large set of actual LLS observations.  

To our knowledge, four such GSP algorithms exist to date. One of those has been described by Cummins et al. (2012). The 

empirical formulae that resulted from that analysis was based on LLS data employing wave shape information from IMPACT 

sensors. Since in this study, the LLSs described in Section 2 utilize so-called LS700x sensor technology of Vaisala (except for 

BR), it is believed that this particular method is unsuitable to be applied directly to the data in this study and is hence 190 

disregarded (Cummins, private communication). In what follows, the three remaining algorithms are described. 

4.1. Algorithm 1 (A1) 

Developed by MTRG, this iterative K-means method works as follows. During the first iteration, the first stroke in the flash is 

taken as the location of the first GSP. Then subsequent strokes are assigned to a GSP if and only if the distance falls within a 

pre-defined minimum geometrical distance threshold. If the distance between the stroke and the previously determined GSPs 195 

is greater than this threshold, the stroke creates a new GSP, otherwise it is assigned to the closest GSP. Before an iteration 

ends, the GSP positions are updated according to the mean locations of the strokes assigned to the GSP, whereby a weight is 

given to each stroke inversely proportional to the respective SMA, i.e., strokes with smaller SMAs will influence the GSP 

location more than strokes with large SMAs. Then a new iteration can start and the process is repeated until the mean GSP 

positions do not vary anymore; meaning all the strokes are durably assigned to their ground contact. It is important to mention 200 

that strokes with peak current |Ip| < 6kA and/or with SMA values above 2 km are assigned to the previous GSP regardless of 

their position. For further details on this algorithm, the interested reader is referred to Pedeboy et al. (2012). 

4.2. Algorithm 2 (A2)  

This iterative K-means method has been developed and described in great detail in Campos et al. (2015, 2016). As a first step, 

strokes are sorted into two main groups, i.e., those with low and those with high SMA values based on a user-defined threshold. 205 

Initially, the algorithm tries to group the strokes with low SMAs among themselves, thereby creating the first set of GSPs. To 

do so, the mean location among the low-SMA strokes is first calculated. Then the algorithm checks the spherical distance 

between each low-SMA stroke and this mean location. The resulting distances are then compared against a threshold. This 

threshold depends on the properties of the strokes in the flash, defined as twice the maximum SMA value among the low-SMA 

strokes in the flash. If all distances fall below the threshold, the low-SMA strokes are grouped within one GSP. However, in 210 

the case where one distance is larger and the rest are smaller than the threshold, a new iteration starts whereby now two 

potential GSP locations are tested. The first GSP adopts the location of the stroke in the previous iteration with the distance 

larger than the threshold, and the location of the second GSP is the mean of the locations of the other strokes. The algorithm 

repeatedly checks the distances up to the point that the greatest distance between a GSP and all its associated strokes is smaller 

than the threshold, implying that the low-SMA strokes are grouped in a fixed set of GSPs. Subsequently, the algorithm attempts 215 

to group the strokes with high-SMA values into the previous retrieved GSPs, according to an elliptical scaling method 
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described in more detail in Campos et al. (2015). In order to do so, the error ellipse is scaled until it intersects with the location 

of one of the GSPs. The scaling value indicates how many times the scaled ellipse is larger or smaller than the original error 

ellipse. A maximum elliptical scaling factor of two is adopted in this study. If the scaling factor is below two, then it is assigned 

to that GSP and not otherwise. Finally, the algorithm groups redundant GSPs if the distances are smaller than the threshold 220 

used to split strokes into strokes with low- and high-SMAs.  

4.3. Algorithm 3 (A3)  

The most recent method has been introduced by Matsui et al. (2019). This non-iterative approach excels in its simplicity 

whereby a stroke with a distance below a certain threshold is assigned to an existing GSP when the 50% probability ellipse 

overlaps with one or more of the other error ellipses of strokes already assigned to that GSP. The GSP location is updated 225 

directly as the mean of the locations of the strokes. If not, a new GSP is created and the distances of the subsequent strokes are 

tested against the locations of the already existing GSPs produced by the algorithm.  

 

Before going any further, it is appropriate to add following remark. The three algorithms described above somehow all rely to 

a certain degree on the availability of the strokes’ SMA information at some point in the algorithm. However, not all existing 230 

LLSs provide details about the strokes’ confidence ellipse. Especially in case of A3, this would mean that GSPs are determined 

solely by some prescribed separation distance and consequently coincides with A1.  

4.4. Some initial examples 

The flashes displayed here are examples of real flashes from the data set of this study and are specifically chosen to explain 

the principles employed by the algorithms in a clear manner. Of course, more complicated flashes exist with higher 235 

multiplicities.  

Figure 1a displays a two-stroke flash with the original error ellipses displayed as solid lines. The peak currents of the strokes 

are -11.3 kA and -3.5 kA respectively. The strokes are about 850 m apart and have SMA values of 400 m and 1 km respectively. 

A1 will always group the strokes together in one GSP irrespective of their distance, since the second stroke has an absolute 

peak current smaller than 6 kA. For A2, adopting a distance threshold of, e.g., 500m results in stroke 1 being the first GSP as 240 

it is the only low-SMA stroke in the flash. Stroke 2 is in this case regarded as a high-SMA stroke and elliptical scaling is 

applied. The scaled error ellipse is displayed as the dotted ellipse in the plot. The error ellipse is scaled by a factor of less than 

two before it intersects with the location of the GSP. Therefore, these strokes will be grouped into one ground strike point. In 

the case of A3, the error ellipses overlap, therefore the grouping depends solely on the chosen distance threshold. If the 

threshold is below 850 m, then it will create two GSPs otherwise the strokes are grouped into a single GSP.  245 
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The composition of the four strokes from another flash is visualized in Fig. 1b. The first three have an SMA of 400 m, while 

the fourth stroke has an SMA of 500 m. If a distance threshold of 200 m is adopted, A1 will create four GSPs accordingly, 

since the distances are all larger than 200 m for all combinations possible. If the threshold is increased to 1 km however, the 

algorithm results in one GSP. For A2, let’s take a threshold of 200 m to separate the low and high-SMA strokes. All strokes 250 

are considered as high-SMA events and therefore only elliptical scaling is applied. Since the error ellipses overlap already a 

lot, it is possible to envision that the scaling factors will be below two and therefore the last three strokes will be grouped into 

a single GSP, while the 1st stroke is a GSP on its own. When adopting 1 km as threshold, all strokes are considered as low-

 

Figure 1: a) Example of a two-stroke flash. The original error ellipses are displayed (solid) alongside the scaled error ellipse of 
stroke 2 (dashed) as used by A2. b) A flash with multiplicity 4. The star denotes the average position of all four strokes.  

 



11 

 

 

Figure 2: The success rate for the three algorithms is displayed in the “Type only” case (left plots) or the “Type and 

Sequence” (right plots) for algorithm A1 (a and b), A2 (c and d) and A3 (e and f).  Colors are linked to each specific 

data set, whereas the black curve indicates the average result without Brazil. 
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SMA strokes and only spherical grouping is applied. First, the mean location of all four strokes is calculated, highlighted by 255 

the star in the plot. Then the distances of the strokes to the star are calculated. Since the distances are all below 1 km, they are 

grouped into a single GSP. In the case of A3, the first stroke will always be a GSP on its own since the error ellipse does not 

overlap with any of the other three. Depending on the adopted distance criterion, the algorithm results in either two or more 

GSPs. 

 260 

5. Results 

In the following analysis, a similar strategy is applied to all three algorithms. First of all, the ability to distinguish between a 

stroke creating a NGC and one that follows a PEC is examined. The latter will be denoted as the “Type only” criterion. 

Secondly, a stricter “Type and Sequence” criterion is validated. The latter not only checks whether the correct type is retrieved 

but additionally whether the order of occurrence is correct. By this it is meant that in the case of an NGC, whether it is correctly 265 

assigned as the 1st, 2nd, 3rd
, ... GSP in the flash, while in the case of a PEC, if it is assigned to the correct GSP as retrieved from 

the video images.  

A1 and A3 have one obvious threshold in common, i.e., the distance to group strokes into a particular GSP. In the case of A2, 

only the low-SMA strokes are grouped according to a flash dependent distance threshold. However, to facilitate the comparison 

of the three algorithms, the plots on the left and right in Figure 2 display the probability of the algorithms to correctly assign 270 

the "Type only" and "Type and Sequence", respectively, of the strokes as a function of the distance threshold ranging from 

200 meters up to 10 kilometers. The latter threshold is exactly the distance threshold used by A1 and A3, while in the case of 

A2 it is the threshold that subdivides the strokes into low- and high-SMA strokes, followed by the algorithms’ specific designed 

distance threshold. 

As will be demonstrated later on, the trend for AT, FR, SA, ES and US is similar for each specific algorithm, while BR exhibits 275 

a different behavior. It is believed that this behavior of BR is a consequence of the low LA of the LLS observations at that 

time, prohibiting the algorithm to utilize its full potential. For this reason, the overall success rate of the algorithms, as denoted 

by the black curve in Fig. 2, is calculated without taking into account BR. Results hereof are quantified in Table 2. 

 

5.1. Results A1 280 

The success rate in determining the type (and sequence) of the strokes is plotted in Figure 2a (2b). Although only better by one 

or two percent, the best overall “Type only” success rate of 90.6% is found adopting a distance threshold of 500 m. The 

algorithm displays a similar behavior for the "Type and Sequence" criterion, with an overall best of 82.1% at 500 m. Overall, 

a 10% to 15% drop is noticed if the sequence is additionally taken into account as criterion. In Table 2 the results for "Type 

only" are split into the classification success for NGC or PEC. Increasing the distance threshold in the algorithm leads to 285 

strokes being grouped more and more into a single GSP. As such, strokes are gradually more frequently allocated as a PEC by 

the algorithm. This explains the success rate of almost 100% for PEC at the largest threshold of 10 km. Similar reasoning can 

explain the behavior of NGC, whereby NGC is better predicted than PEC at lower distance thresholds.  
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Table 2: Performance results for the three algorithms excluding BR, i.e., black curve in Fig. 2. Values in parenthesis are success 

rates for events without first strokes, i.e., thereby removing all single stroke flashes as well as the first strokes in the multiple-
stroke flashes. 

Distance threshold [km] 0.2 0.5 1 2 5 10 

Algorithm 1 

Type only correct [%] 

All strokes 

 

NGC 

 

PEC 

88.6 

(82.4) 
90.6 (85.8) 89.6 (84.3) 

84.9 

(77.1) 
80.4 (70.3) 79.9 (69.5) 

92.0 

(79.0) 
89.7 (72.5) 84.9 (58.9) 

74.6 

(30.5) 

65.2  

(4.4) 

63.8  

(0.8) 

84.4 91.6 95.3 97.3 98.9 99.4 

Type & Seq correct [%] 

All strokes 79.7 

(69.2) 
82.1 (72.9) 79.4 (68.8) 

72.9 

(58.8) 
67.9 (50.8) 67.4 (50.3) 

Algorithm 2 

Type only correct [%] 

All strokes 

 

NGC 

 

PEC 

91.9 

(87.5) 
92.4 (88.0) 91.2 (86.5) 

86.8 

(79.7) 
81.2 (71.0) 80.3 (69.6) 

95.3 

(87.1) 
93.6 (82.3) 89.9 (71.8) 

79.9 

(44.0) 

67.2  

(8.6) 

64.6  

(1.3) 

87.6  90.6 92.9 95.2 98.1 99.4 

Type & Seq correct [%] 

All strokes 85.7 

(78.0) 
85.2 (77.3) 83.3 (74.2) 

75.0 

(61.5) 
68.6 (51.6) 67.6 (50.1) 

Algorithm 3 

Type only correct [%] 

All strokes 

 

NGC 

 

PEC 

83.1 

(74.0) 
88.1 (81.6) 89.1 (83.1) 

89.6 

(83.9) 
89.7 (84.1) 89.7 (84.1) 

99.1 

(97.5) 
98.3 (95.4) 98.3 (95.2) 

98.3 

(95.2) 
98.3 (95.2) 98.3 (95.2) 

63.8  75.6 77.9 79.0 79.2 79.3 

Type & Seq correct [%] 

All strokes 74.8 

(61.2) 
80.8 (70.3) 81.8 (71.9) 

82.3 

(72.7) 
82.3 (72.8) 82.3 (72.8) 
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First strokes in the flash, including single stroke flashes, are per definition always correctly assigned by the algorithm. Hence, 290 

neglecting first strokes, i.e., removing all single stroke flashes as well as the first stroke in the multiple-stroke flashes, results 

in a decrease of the success rate by about 5% to 10%. The latter is indicated by the results between brackets in Table 2. By 

doing so, the results are not biased by the percentage of single stroke flashes in the individual regions. On the other hand, 

neglecting first strokes does not affect the PEC classification.   

The effect of not using the condition to group strokes with |Ip| < 6kA and/or SMA > 2km in the previous GSP regardless of its 295 

location, results in a minor drop of the success rate by not more than 1 %. This is as expected since only a limited number of 

strokes fall within this category.  

Finally, it is worth mentioning that for an algorithm depending on solely a distance criterion to group strokes into GSPs, the 

success rate in the limit of very low and very high distance thresholds can be determined theoretically. This is true since all 

strokes will create a new GSP using the algorithm at very low distance thresholds while at very high distance thresholds, all 300 

strokes are grouped into a single GSP. Making use of the observed number of flashes, strokes and GSPs, the success rate can 

then be determined at those boundary conditions. The average number of GSP per flash in the case of SA is lowest among the 

data sets, resulting in the best performance at high distance thresholds. 

 

5.2. Results A2 305 

The success rate in determining the type (and sequence) of the strokes is plotted in Figure 2c (2d). To reiterate, in the case of 

A2, the threshold displayed on the x-axis is the threshold that sorts strokes into low- and high-SMA strokes. As such, toward 

the left side of the plot some strokes will be regarded as large SMA strokes because the algorithm applies a combination of 

spherical grouping and elliptical scaling. On the other hand, at large distance thresholds, most of the strokes, if not all, are 

regarded as small SMA strokes and only spherical grouping is utilized. At a threshold of 10 km the outcome resembles the 310 

outcome of A1, due to the merging of the GSPs, if the distances are below 10 km. Hence, on this side of the plot most, if not 

all, flashes have one single GSP. At 200 m, the algorithm performs better for BR compared to the other two algorithms, a 

consequence of the elliptical scaling. In fact, the primary motivation behind implementing the hybrid scaling method used by 

this algorithm was to increase the performance in case of low sensor density networks or near borders. Hence, under the latter 

conditions the use of this algorithm is recommended. However, the success rate for BR remains low compared to the other 315 

data sets at low thresholds. Looking at Table 2, A2 performs best at the 500 m threshold with an overall “Type only” success 

rate being about 2 to 4 % higher than A1 and A3, respectively, and is similar in case of “Type and Sequence”. 

 

5.3. Results A3 

Figures 2e and 2f plot the success rate of correctly assigning the "Type only" and "Type and Sequence" in the case of A3. 320 

Compared to the previous two algorithms, the behavior exhibits a different pattern whereby the outcome for all data sets 

increases gradually up to a distance threshold of about 1km, after which the curve flattens out. Additionally, what is striking 

is that the results for the data sets are close to each other all over the line within approximately 5%, except for BR. The reason 
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why an enlarged distance threshold has practically no effect beyond 1 km is the explicit condition that the 50% probability 

ellipse needs to overlap with one or more of the other error ellipses of strokes already assigned to the GSP. Hence, this 325 

prerequisite prevents grouping strokes located at large distances from each other into a single GSP, as opposed to A1, for 

example. One can conclude that for A3, the distance threshold dominates at thresholds smaller than the average SMA values 

observed in Table 1, whereas the SMA values quickly become more important at larger distance thresholds. This is true, since 

for large thresholds it can be assumed that all strokes are within the threshold distance. The decision to group these into a GSP 

is determined by whether the ellipses overlap or not. Similar to A1 and A2, the data for BR exhibits the worst probability of 330 

success.  

The results for the black curve in Fig. 2e and 2f are quantified in Table 2. A somewhat smaller drop than 10% in the success 

rate is observed going from "Type only" to "Type and Sequence". A more detailed look at the classification success of NGC 

and PEC reveals that the behavior is different when compared to the other algorithms. Here, NGC’s classification success is 

rather stable over the entire line. Moreover, excluding first strokes does not have such a dramatic effect on the outcome as 335 

opposed to A1 and A2.  

 

5.4. Dependence on the estimated peak current 

Figure 3 plots the overall performance of the algorithm to determine the type of the strokes as a function of the median absolute 

peak current |Ip|. The results are presented, adopting the threshold of 500 m for all three algorithms. A different symbol and 340 

color is used for each of the four possible combinations, with open symbols denoting the results when first strokes are 

neglected, i.e., thereby neglecting single stroke flashes as well as the first strokes in multiple-stroke flashes. 

For all the algorithms, the correctly assigned NGC strokes (green triangles) have a median |Ip| that is larger compared to the 

incorrectly assigned ones (red triangles). This difference is more pronounced in the case of A1 and A3, while it is only 1 kA 

for A2. The smaller difference in median |Ip| between the correctly and incorrectly assigned NGC strokes in case of A2 indicates 345 

that the correct classification is less dependent on the stroke's peak current compared to the other two algorithms.  

The effect of neglecting the first strokes (open symbols) has been discussed before. A drop is noticed in the success rate of the 

algorithms according to the results listed in Table 2 (open triangles). While for A1 and A3, a similar behavior is found in terms 

of the median peak currents, for A2 it is found that the absolute median |Ip| for incorrectly assigned NGCs is slightly larger by 

0.5 kA as compared to the correctly assigned ones.  350 

Similarly, one can look at the peak currents of the PECs. In the case of A2 and A3, correctly assigned PECs (green squares) 

have larger absolute median |Ip| compared to the incorrectly assigned ones (red squares), whereas the opposite is found for A1. 

The performance of A1 related to PECs is a consequence of assigning strokes with an absolute peak current below 6 kA, and/or 

SMA value larger than 2 km, to the previous GSP regardless of its position. As such, those particular low peak current strokes 

reduce the median peak current of correctly assigned PEC strokes in Fig. 3a.  355 
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To conclude, it follows that, in general, larger absolute peak current strokes are more likely to be correctly classified as either 

a NGC or a PEC. This is not surprising since larger absolute peak current strokes are on average reported by an increased 

number of lightning sensors, thereby locating the stroke more accurately. 

 360 

6. Discussion and Conclusions 

Three different ground strike point algorithms have been assessed in terms of their ability to correctly group strokes into ground 

strike points. The input for the algorithms is provided by the observations made by local LLSs, whereas high-speed 

observations deliver the ground-truth observations against which the outcome of the algorithms is tested. Although some 

 

Figure 3: Algorithm performance as a function of median absolute peak current for (a) A1, (b) A2, and (c) A3. The 

threshold for which the results are presented is 500m for A1 and A2, and 10km for A3. The different symbols and 

colors denote the four possibilities, whereby a green (/red) color indicate that the algorithm (ALG) correctly 

(/incorrectly) assigned the type of the stroke compared to the ground-truth observations (GT). Ignoring first strokes 

in the flash results in the open symbols in the plots. 
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differences are noticeable among the algorithms, all three of them perform well with success rates up to 90% to retrieve the 365 

correct type of stroke in the flash. This means that in 90% of the cases, the number of ground strike points are retrieved as how 

they actually occurred in nature.  

Note that the occurrence of forked strokes has been investigated in Poelman et al. (2021, nhess-2021-12, companion paper). 

However, the different ground strike points created by those forked strokes are inherently difficult to be disentangled by LLSs, 

especially when the forked contact points are close to each other. Hence, applying the algorithms described in this manuscript, 370 

it follows that it would result in an underestimation of the ground strike points.  

It is further worth mentioning that the performance results of the different algorithms are biased by the specific flash 

multiplicity and ground strike point characteristics in the region. Furthermore, the quality of the local LLS is of particular 

importance in the success rate of the algorithm.  Looking at the change in success rate depicted in Figure 2, one could conclude 

that adopting a distance threshold proportional to three to five times that of the mean LA results in the best success rate of the 375 

algorithms.  

All three algorithms, with their proper characteristics, are high-performance tools both in speed and accuracy to group strokes 

into ground strike points. It is difficult to favor one algorithm over the other, whereas in absolute terms A2 performs the best, 

but only by a few percent. However, it is also the most complicated algorithm among the three, combining spherical grouping 

and elliptical scaling. The other two algorithms either solely depend on a distance and/or overlap of the error ellipses and are 380 

more straightforward to implement by the user. 
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