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Abstract. During the last 20 years extreme wildfires have challenged firefighting capabilities. Often, [..1 ]the prediction of [..2

]the extreme behaviour is essential for the safety of citizens and fire fighters. Currently, there are several fire danger indices

routinely used by firefighting services, but they are not suited to forecast extreme wildfire behaviour at global scale. This

article proposes a new fire danger index, extreme fire behaviour index (EFBI), based on the analysis of the vertical profiles of

the atmosphere above wildfires as an alternative to the use of traditional fire danger indices. The EFBI evaluates the ease of5

interaction between wildfires and the atmosphere that could lead to convective, erratic and extreme wildfires. Results of this

research in the analysis of some of the critical fires in the last years show that the EFBI can potentially be used to provide

valuable information to identify [..3 ]convection driven fires and to enhance fire danger rating schemes worldwide.

1 Introduction

Fires [..4 ]have naturally occurred in nearly all world biomes, shaping ecosystems and landscapes but are intrinsically linked10

to human activities. As humans spread to colonize most regions of the world, they brought fire with them and used it as a

tool in agriculture and cattle raising activities. Currently, over 90% of the fires that occur in the world are caused by humans,

deliberately or accidentally (Balch et al., 2017; Short, 2017; San-Miguel-Ayanz et al., 2012). In most regions of the world the

most prominent fire management policy is that of fire exclusion. Fires that are purposely or accidentally started affect human

assets and are thus controlled and extinguished as fast as possible. Only fires in very high latitudes, where human dwellings15

do not exist, are left to burn naturally. In the context of this paper we use the term wildfires, referring to those fires that escape

beyond human control and cause damage to human lives and properties. Nowadays, it is estimated that about 400 million ha

of natural and agricultural lands are burnt annually, although it is recognized that this figure is likely a gross underestimate

of the total area burnt in reality (Boschetti et al., 2019). [..5 ]Wildfires are responsible of vast economic and environmental

1removed: such extreme events occur as spatial and temporal clusters of wildfires and
2removed: their
3removed: convective
4removed: are intrinsically linked to human activities and
5removed: These fires are responsible for about 17% of global CO2 (Shi et al., 2015; Friedlingstein et al., 2019) emissions and result in great economic

damages and
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damage, the loss of human lives and about 17% of the global CO2 (Shi et al., 2015; Friedlingstein et al., 2019) emissions.20

Most wildfires occur in the vicinity of humans, as they are caused by humans, and thus they affect people and human assets

in the area where they occur. In Europe, this inter-mingle of human dwellings and natural areas is referred to as the wildland

urban interface(WUI) and corresponds to the area where most fires and burnt areas occur.

The damage caused by fires in the WUI is thus much greater than that of fires occurring in remote areas. [..6 ]This last fact

is due to the high adaptability of ecosystems(Pausas and Keeley, 2009, 2017), the damage accountability and mitigation25

done by civil protection policies.In recent years, the occurrence of extreme fire seasons has increased dramatically in many

regions of the world, being associated in most cases [..7 ]with the effect that climate change is already posing on wildfire

regimes and wildfire behaviour. Examples of these extreme wildfires were those occurring in Indonesia (2015), Chile (2016),

California (USA, 2017, 2018,2020), Canada (2017), Portugal (2017), California (2018), Greece (2018), Australia (2019),

Siberia (2019), Argentina (2021), Brazil, Bolivia and Paraguay (2019). Common to these events was the explosive behaviour30

of the single fires, which resulted in the loss of many lives and [..8 ]huge economic damage. Several entities reported and

analysed these wildfires that interact with the atmosphere[..9 ](Delicado and Gomes; Guerreiro, 2017) increasing wind speed,

causing sudden wind direction changes, local fire tornadoes(Lareau et al., 2018b; Pirsko et al., 1965) and vortexes(Khaykin

et al., 2020).

Often, fire management agencies of the countries make use of past fire history to [..10 ]analyse the potential behaviour of35

future wildfires. Fires are characterized by their rate of spread and fire intensity and the weather and fuel conditions when they

occurred. One of the most commonly used fire danger indices is the Canadian Fire Weather index (Van Wagner et al., 1974);

this is currently used in many countries of the world (Van Wagner et al., 1987) and even at global scale (Vitolo et al., 2020).

Other common fire danger [..11 ]indices are the Australian McArthur, the USA NFDRS or the Ketch-Byran index (McArthur,

1967; Deeming et al., 1977; Keetch and Byram, 1968). Most of these indices provide reasonable information on the potential40

of a wildfire to spread and cause damage. However, these indices do not evaluate the context of the atmosphere around the fire.

Wildfires are phenomena driven by fuel conditions, topography and weather. Fuel conditions are determined by rainfall,

temperature and relative humidity among others factors. Some of these factors, such as wind and rainfall, are very dynamic

in time while others are static and characterize the local fire behaviour, such as topography. The behaviour of extreme fires,

which prevents the evacuation of the affected areas and the possibility of fire extinction, is often related to the interaction of45

the wildfire dynamics and the conditions of the atmosphere around it (also known as coupled effects). There are multiple

factors that define the fire spread behavior, the relevance of a given factor as the most important of dominant for the

spread sometimes define the fire type. One single fire event may transition to one type to another. For instance, examples

of these types are fuel dominated fires or wind driven fires. In this work we will refer to fire driven by convection when

convection is an important driving factor of the fire spread.50

6removed: In the last
7removed: to
8removed: the
9removed: (Delicado and Gomes; "Independente", 2017)

10removed: analyze
11removed: fire danger
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A first approximation to take into account the atmospheric instability around wildfires was the Haines index (Haines and

Service, 1988), which is usually computed between two different heights of the atmosphere above the fire. In cases of extreme

wildfire events, the Haines index (Potter, 2018a) can identify dangerous fire spread conditions by using values of temperature

and humidity at different elevations. Although the index was successfully used in large fire episodes in the USA (Potter, 2018b),

it failed [..12 ]to explain or predict the behaviour of extreme fires that have happened recently (Pinto et al., 2020)).55

The main objective of our work is to evaluate a new fire danger index (EFBI) that considers atmospheric conditions, which

are not usually taken into account in most [..13 ]traditional fire danger rating indices, incorporating the effects of the interaction

of the inner atmosphere created by the fire with the surrounding atmospheric conditions. [..14 ]

In some cases, the Haines index saturates (Potter, 2018a), remaining at its maximum value, as in the case of the fire in

Pedrógão, in Portugal 2017 (San-Miguel-Ayanz et al., 2019). The aim of the EFBI is to summarize the factors that may imply60

a change in fire behaviour and to determine how easy is for the change in fire behaviour to happen. Several authors used factors

for storm forecast [..15 ]such as the convective available potential energy (CAPE) and convective inhibition (CIN) to address

fire behaviour (Moncrieff and Miller, 1976). Conditioned atmosphere stability was often a common factor of extreme wildfire

events. Consequently, increasing the temperature at the surface could lead to atmospheric instability; causing local, dangerous

and unexpected conditions.65

Wildfire behaviour can be modeled by forest fire simulators, which provide a forecast of the fire intensity and spread. These

simulators are based on semi-empirical (Rothermel, 1972) or physical (Mell et al., 2007) models and can be coupled with

atmospheric simulation models (WRF-Fire, (Mandel et al., 2011), MESO-NH ForeFire (Baptiste Filippi et al., 2009)) or wind

field production models Windninja, (Forthofer et al., 2009) to assess wildfire behaviour. However, as the [..16 ]numbers of

coupled models grow, the simulation becomes computationally more expensive and it is difficult to gather the required input70

data without strong uncertainties. Therefore, fire danger ratings and the experience of meteorologists, civil protection officers

and fire analysts play an important role in decision making. Moreover, it is not feasible to use coupled models for simulating

all wildfires detected at global scale. The capacity to forecast the conditions under which these critical fires can develop is thus

of paramount importance and essential for the prevention of damage to the population and human assets. We hereby present a

fire danger index referred to as the Extreme Wildfire behaviour Index (EFBI), which looks into the interaction of the wildfire75

dynamics with the surrounding atmosphere and determines if the behaviour of an ignited fire can become critical, allowing

it to develop into an extreme wildfire (Duane et al., 2021). It considers the atmospheric conditions [..17 ]incorporating the

12removed: in explaining or predicting
13removed: of
14removed: First, Section 2 describes the proposed index, the workflow for wildfire event selection from the global wildfire database and the retrieval of

the meteorological data and the description of three study cases. The results of the EFBI for the study cases are explained in Section 3. Finally, the conclusions

are presented in Section 4.
15removed: like
16removed: number
17removed: , which are not usually taken into account in most of traditional fire danger rating indices,
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effects of the interaction of inner atmosphere created by the fire with the surrounding atmospheric conditions [..18 ]targeting

atmosphere stability, conditioned instability and moist convection. The size distribution of the fire events is unbalanced,

being more common the small with an expected fire spread speed. Although there are a less common set of fire events80

with high fire spread which overwhelms fire fighting capabilities and reach larger amounts of burnt area. A subset of these

fires, considered as extreme fires, interact with the atmosphere around them leading to unexpected or erratic behaviour.

Among these extremes fires, some are characterised by the occurrence of pyrocumulus (pyroCu) and pyrocumulonimbus

(pyroCb), analysed in Lareau and Clements (2016). The occurrences of this phenomena leads to works that analyse

the pyrocumulus (Tory et al., 2018), and to the assesment the potential of pyroconvection (LEACH and GIBSON, 2021;85

Tory and Kepert, 2021) from different approaches and, for instance, including the moisture and heat released by the fire

(Potter, 2005). In the last decades the amount of extreme fires become very relevant and it increased awareness about

fires as dangerous natural hazard. Besides, the relation of climate change with that events has been studied (Di Virgilio

et al., 2019) relying in regional records as (McRae et al., 2015) (for Australia) and using well known danger indexes

as McArthur Forest Fire Danger Index(FFDI) (McArthur, 1967) and Haines Index (Haines and Service, 1988). At global90

scale, the existing records of fire data is quite fragmented and there is much more uncertainty than using methods and

data suitable for specific regions as mentioned in fire related studies at global scale as in Bowman et al. (2017).

We used a global wildfire database (GlobFire (Artés et al., 2019)) and ERA5 weather reanalysis data (Hersbach, 2016) to

compute the EBFI over a set of wildfires. Our approach is suited to be computed at global scale using operational weather

forecast models to determine when an ongoing large fire can develop extreme wildfire behaviour. First, Section 2 describes95

the proposed index, the workflow for wildfire event selection from the global wildfire database and the retrieval of the

meteorological data and the description of three study cases. The results of the EFBI for the study cases are explained

in Section 3. Finally, the conclusions are presented in Section 4.

2 Data and methods

[..19 ]The proposed EFBI relies on the premise that the atmosphere can cause a wildfire to become [..20 ]convection driven or100

the wildfire can disrupt the atmosphere creating a convective trend.

The extreme fire behaviour index(EFBI) is computed as follows:

EFBI =
((CAPE +CIN)− (CAPEP +CINP ))

∆T
(1)

18removed: . The EFBI uses similar principles as those of the Haines Index but it summarizes the factors that may imply a change in fire behaviour

and determine how easy is for the change in fire behaviour to happen. It takes advantage of the advances in weather forecast modeling and computational

capabilities to enhance the predictability of extreme fire events
19removed: In this work, an statistical approach is used to check the feasibility of using convective indexto foresee extreme convective wildfires at global

scale. The
20removed: convective
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CAPE =

Zn∫
Zf

g
(Tv,parcel−Tv,env)

Tv,env
dz (2)105

CIN =

∫
Zbottom

[..21]Zfg
(Tv,parcel−Tv,env)

Tv,env
dz (3)

{
∆T ∈ R

∣∣(∆T = T [..22]bottomConv−Tbottom)∧CIN [..23]≥0∧∆T [..24]≥ 0
}

(4)

Where CAPE and CIN are defined by Eq. 2 and 3 (Moncrieff and Miller, 1976; Williams and Renno, 1993) and ∆T110

is the number of degrees required to achieve a null or negative convective inhibition energy (CIN) (Eq. 4). CAPE and CIN

are recomputed with the increased temperature (Tbottom + ∆T ) and called CAPEP and CINP, CINP value being zero or [..25

]greater than zero (no inhibition). The proposed EFBI determines the amount of increase in temperature degrees at the surface

required to cause a null CIN and quantifies the change in the convective trend (addition of CAPE and CIN), allowing the

prediction of fast fire spread due to convection. Zn is the height of the equilibrium level; Zf is the height of the level of free115

convection(LFC); g is the acceleration dur to gravity;Tv,parcel is the virtual temperature of the a given parcel; Tv,env is

the virtual temperature of the environment; Zbottom is the lower height; Tbottom is the temperature at the lower altitude;

TbottomConv is the temperature at the lower altitude which causes CIN >= 0.

In cases in which the atmosphere is already unstable, CIN is equal [..26 ]to or greater than 0 being ∆T=0, the values assigned

to the index are the full integration of CAPE+CIN.120

The EFBI is expressed in J Kg-1ºC-1, which is the amount of energy exchange per unit of mass and per degree of temperature.

The value can be used as an estimation of potential wildfire-atmosphere interaction.

High values of EFBI point [..27 ]to a sudden change of energy per mass for a small temperature increase (low value ∆T

and high value of total convective energy). Under these conditions, air can potentially move vertically creating local conditions

which are not explicitly provided by meteorological forecasts. When the values are low, the magnitude of the change is small125

and/or a higher temperature is required at the surface to cause any change. This information is essential for firefighters, since

local eddies and sudden weather changes can occur and lead to very fast ember spotting fire spread, which create dangerous

and unpredictable conditions for the front line safety (Lareau et al., 2018a).

To test the EFBI, we propose [..28 ]two machine learning approaches, a decision tree and a multilayer perceptron. EFBI

and FWI were used to evaluate the discriminatory potential between two classes; small [..29 ](500ha during more than one130

25removed: higher
26removed: or less
27removed: out
28removed: a machine learning approach using
29removed: and large fires. We selected a set of fires that burnt more than 10000ha in one dayand an equal number of fires that burnt less than

5



day) and large fires (10000ha in one day[..30 ]). Fire events were extracted from GlobFire database. The thresholds were

chosen to consider both average and extreme fire spread. Small size fires were selected in the same zones where the large

fires were selected, but [..31 ]in a different year, always outside the area burnt by the large fires. Using the same zone for

both sets of fires we limited the variability in fuel and topography, ensuring that the differences in fire behaviour were due

to the meteorological conditions under which the fires evolved. Often small fires are caused by fire spotting or the result of135

agricultural practices. To avoid these [..32 ]types of fires, it was required that the fires had more than 90% of the burnt area in

wild land vegetation. The final selection was a total of 445 cases, with 223 fires larger than 10000ha and 222 fires smaller than

500ha. Figure 1 shows the distribution and the year of each fire at global scale.
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2002
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2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018

Fast	Wildfires
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018

Slow	Wildfires
2001
2002
2003
2004
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2006
2007
2008
2009
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2012
2013
2014
2015
2016
2017
2018

Fast	Wildfires
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018

Figure 1. Location of the wildfires coloured by year. Fast fires and slow fires are depicted with triangles and circles respectively.

For each fire, the Canadian Fire Weather index (FWI) and all its components were retrieved from the ECMWF ERA5 dataset

at 0.25 degrees resolution (Vitolo et al., 2020). In order to differentiate between agricultural fires or wildfires, the land cover140

from the Climate Change Initiative, CCI, (Defourny et al., 2012) was used, requiring that 90% of the burnt area was forest or

shrubs, and thus [..33 ]avoiding fires in crops or agricultural areas. For each selected fire, temperature, relative humidity and

wind profile were retrieved for all the heights above the wildfire event using the application user interface (API) of the Climate

Data Store (CDS) for the ERA5 reanalysis dataset(Hersbach, 2016). Then, the EFBI and the vertical profiles for every event

were computed, producing skew-t plots for every time step and generating plots with the time evolution of the index and the145

30removed: from the Globfire
31removed: on
32removed: type
33removed: avoid
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factors used for the computation of the EFBI. The aim of the skew-t plots is to visualize the ease with which the fire may

become [..34 ]convection driven given an atmosphere context.

All the parameters obtained from FWI and EFBI were used to compute the mutual information(MI) of the wildfires that

spread more than 10000ha in one day(large) or less than 500ha in more than one day(small). The MI has been chosen to

quantify the individual importance of the variables gathered for each fire ([..35 ]such as the FWI components and EFBI) in150

relation to the speed of the spread of the fire, which is categorized into either small or large fire events. The FWI was computed

for an entire day, and EFBI was computed with one hour time steps. Therefore, the values of the EFBI were aggregated using

the minimum, the maximum and the average value for the time window. In addition, the date associated with the burnt area

was based on GlobFire which uses the burnt area product of MODIS MCD64A1(Giglio et al., 2015). Due to clouds or dense

smoke plumes, it is possible that a fire might have not been detected until some days after its ignition. To account for this delay,155

the initial day of the time window for the FWI and EFBI was increased by two days. The maximum value of the FWI and its

components during the time window were selected. When applying FWI at global scale its values are not comparable between

different locations. Despite that fact, the percentiles of FWI can provide information about the fire danger for a given area.

Therefore, the values of the FWI were used in percentile values, computed for the period 1979 to 2019 of the same week of the

year.160

[..36 ]The MI for continuous values was computed using the method described in (Kraskov et al., 2004) and (Ross, 2014)

using (Pedregosa et al., 2011). These methods use nearest neighbours with a random initialization; for that reason, 10 additional

attributes were added to the analysis with random values to evaluate the noise of the MI. The MI computation was done

1000 times. The computations of MI were initialized with random values to evaluate the noise of the attributes for the MI

computation.165

In addition, the behaviour of the EFBI is shown analysing three different study cases. First, the fire in Pedrógão Grande[..37

], Portugal in 2017 using high spatial and temporal resolution fire perimeters. Following, EFBI is used [..38 ]with forecast data

using daily fire perimeters of the wildfire that took place in Robore Bolivia in 2019. Lastly, the spatial distribution of EFBI for

the set of extreme wildfires in the southeast coast in Australia at [..39 ]the end of 2019.

3 Results170

EFBI results are evaluated combining the resulting values of the EFBI and FWI (Vitolo et al., 2020) to predict extreme fire

behaviour observed in GlobFire using weather data from ERA5 (Hersbach, 2016). In this work, [..40 ]a machine learning

34removed: convective
35removed: like
36removed: In order to estimate the relevance of the EFBI to discriminate between large and small fires, the
37removed: Portugal
38removed: using
39removed: then
40removed: an statistical
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approach is used to check the feasibility of using the EFBI to predict extreme [..41 ]wildfire behaviour at global scale. In

addition, the EFBI values are shown for several study cases.

[..42 ]In Fig. 2, we illustrate how EFBI components behave for a given vertical profile at given time step. The blue area175

is the [..43 ]convective inhibition (CIN)[..44 ], and the red area (from level of free convection (LFC) point to equilibrium level

(EL)) is the [..45 ]convective available energy (CAPE)[..46 ]. When CIN values are low and CAPE values are high, wildfires

can be [..47 ]convection driven at high altitudes. A temperature increase at the surface can reduce CIN values and increase

CAPE values. Figure 2 shows a Skew-t plot with the parameters used to compute the EFBI. The figure shows the vertical

profile of the atmosphere with the temperature as a red line and the temperature dew point in green at different altitudes(right180

vertical axis). These parameters are enough to compute the amount of work caused by the buoyancy force. [..48 ]By modifying

temperature and dew point temperature [..49 ]the buoyancy changes, and consequently, the trend of the air to move. Figure

2 shows how a change of 14 degrees Celsius at the surface causes a considerable change in the vertical air motion, and a stable

atmosphere becomes unstable, with a CAPEP close to 2443 Jkg-1 and a low value of CINP. Therefore, the amount of work due

to the buoyancy change, passes from 34 Jkg-1 (CAPE) to 2443 Jkg-1(CAPEP) when CIN is not an inhibition (passing from a185

negative value to a positive value). This leads to a total change of 233.531 Jkg-1ºC-1 per each degree increase at the surface.

A wildfire in this condition has a high likelihood of [..50 ]becoming driven by convection. The CAPEP is around 2443 Jkg-1

when [..51 ]thunderstorms often exceed CAPE values of 1000 Jkg-1 and 5000 Jkg-1 in extreme cases (Lombardo and Colle,

2011).

It is worth mentioning that CIN values at lower heights are also related with the temperature dew point at the surface (green190

line at 1000hPa). With a constant temperature at the surface and an increase of dew point temperature, the CIN is reduced

and therefore the EFBI increases. This may happen with a sudden increase of humidity at the surface, without any increase of

temperature [..52 ](already taken into account in the computation of the EFBI).

The timeline of the EFBI for the wildfire in Sala (2014, Sweden) is shown in [..53 ]Fig. 3. The time period when the fire had

an extreme behaviour, as documented by firefighters on the ground, is delimited with vertical dashed lines. In this period, the195

modified convective available energy reaches values above 2500J*kg-1 and the index values are near 800 Jkg-1ºC-1.

[..54 ]
41removed: convective wildfires
42removed: Figure 2shows the vertical profile with annotations of the EFBI
43removed: descent air trend (convective inhibition energy
44removed: )
45removed: ascending air trend (
46removed: )
47removed: convective
48removed: Modifying the
49removed: changes the buoyancy and consequently
50removed: convective behaviour
51removed: thunderstorm
52removed: . In the computation CAPE and CIN dew point temperature is used so EFBIalso takes into account this last case
53removed: Figure
54removed: Decision tree based on entropy reduction build with the 445 wildfire events (222 small and 223 big wildfires).
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using hourly steps in format dd/mm hh.

The EFBI is computed for each time step, as explained in the previous illustrative example, for all the cases extracted

from GlobFire database using the method described in section 2. Regarding the information [..55 ]of the different features

used to discriminate small from large fires, [..56 ]Fig.4 shows the values of the MI mean and standard deviations of each200

attribute for the 1000 iterations. Using only the minimum, maximum or average of the EFBI was shown to provide more

55removed: provided
56removed: figure
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information to separate small from large fires than the percentile and value of the drought code (DC) of the FWI. Figure 4 is

not a discriminatory power[..57 ], but the amount of information that the factors [..58 ]individually contribute to the classification

between the two classes. EFBI on its own cannot easily discriminate between the classes without using factors included in the

computation of the FWI such as fine fuel moisture content (FFMC), duff moisture code(DMC) or drought code(DC). The205

discriminatory potential between the two classes using the EFBI is very low without using the FWI.
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Figure 4. Mutual information of the different attributes gathered for each fire regarding their tag as fast or slow fires.

[..59 ]For instance, the EFBI can have high values after a rainfall event. It is thus important to stress that the EFBI becomes

relevant when combined with the FWI components. A decision tree based on information gain as criteria was used to show

the relevance of the EFBI in discriminating small fires from large fires. Figure 5 shows the decision tree, which is based on

entropy reduction with a maximum depth of 4 levels (for visualizing purposes). The root uses the daily severity rating (DSR),210

which is a transformation of the FWI. At the second level, the maximum value of the EFBI is used, before any of the FWI

components such as the percentiles of the initial spread index (ISI), the drought code (DC), the built up index (BUI) and the fine

fuel moisture content (FFMC). Therefore, EFBI helps to reduce the entropy when discriminating between the two classes

at global scale, being more relevant than the ISI or DC percentile.

A machine learning approach was applied using a decision tree and a multilayer perceptron. Removing the maximum depth215

restriction to the decision tree and performing a [..60 ]cross-validation of 1000 splits with 5% of cases, as a test, the average

57removed: of different factor
58removed: , individually ,
59removed: Although it may seem that the EFBI did not reduce the uncertainty in discriminating large fires because of its low values of MI, it is important

to note that EFBI does not contain information about fuel conditions or ease of spread.
60removed: cross validation
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dsr_percentile <= 96.438
entropy = 1.0
samples = 445

value = [222, 223]
class = Big

dmc_percentile <= 69.261
entropy = 0.96
samples = 324

value = [200, 124]
class = Small

True

EFBI_max <= 197.99
entropy = 0.684
samples = 121

value = [22, 99]
class = Big

False

EFBI_avg <= 7.34
entropy = 0.702
samples = 105

value = [85, 20]
class = Small

EFBI_max <= 48.489
entropy = 0.998
samples = 219

value = [115, 104]
class = Small

dc_percentile <= 42.678
entropy = 0.954

samples = 8
value = [3, 5]
class = Big

EFBI_max <= 55.819
entropy = 0.621
samples = 97

value = [82, 15]
class = Small

entropy = 0.0
samples = 5

value = [0, 5]
class = Big

entropy = 0.0
samples = 3

value = [3, 0]
class = Small

entropy = 0.0
samples = 29

value = [29, 0]
class = Small

entropy = 0.761
samples = 68

value = [53, 15]
class = Small

dsr_percentile <= 93.369
entropy = 0.323
samples = 17

value = [16, 1]
class = Small

EFBI_min <= 2.597
entropy = 1.0
samples = 202

value = [99, 103]
class = Big

entropy = 0.0
samples = 16

value = [16, 0]
class = Small

entropy = 0.0
samples = 1

value = [0, 1]
class = Big

entropy = 0.974
samples = 143

value = [58, 85]
class = Big

entropy = 0.887
samples = 59

value = [41, 18]
class = Small

dsr_percentile <= 99.18
entropy = 0.904
samples = 50

value = [16, 34]
class = Big

isi_percentile <= 99.18
entropy = 0.418
samples = 71

value = [6, 65]
class = Big

dc_percentile <= 97.481
entropy = 0.996
samples = 28

value = [13, 15]
class = Big

dc_percentile <= 55.902
entropy = 0.575
samples = 22

value = [3, 19]
class = Big

entropy = 0.932
samples = 23

value = [8, 15]
class = Big

entropy = 0.0
samples = 5

value = [5, 0]
class = Small

entropy = 0.0
samples = 2

value = [2, 0]
class = Small

entropy = 0.286
samples = 20

value = [1, 19]
class = Big

dsr_percentile <= 97.978
entropy = 0.61
samples = 40

value = [6, 34]
class = Big

entropy = 0.0
samples = 31

value = [0, 31]
class = Big

entropy = 0.0
samples = 14

value = [0, 14]
class = Big

entropy = 0.779
samples = 26

value = [6, 20]
class = Big

Figure 5. Decision tree based on entropy reduction build with the 445 wildfire events (222 small and 223 large wildfires).

accuracy was 65,13% with a standard error of 7.29%. The accuracy was computed using Scikit Learn considering the accuracy

of the percentage of each sample that each label is correctly predicted.

Applying a multilayer perceptron with [..61 ]3 hidden layers of 300 neurons each and using a Adam solver with ReLU

activation, (KingaD, 2015) optimizer for training, and the same parameters for a [..62 ]cross-validation, an accuracy of [..63220

]78,37% (standard error 1.85%) was reached. If the parameters related with the FWI were exclusively used, the accuracy

decreased to [..64 ]60.75% (standard error 2.24%). Using FWI with Continous Haines raised the accuracy to 63.42%

(standard error 4.12%).

[..65 ]As previously mentioned in Section 2, the dataset used to test the EFBI was obtained using a fully automated process.

The information regarding the fire behaviour was obtained from GlobFire using SQL queries. The query guarantees that there225

are no fires happening in a 2 degree radius around a detected fire during a time period of 30 days. During the [..66 ]cross-

validation process, the wildfires that were more frequently misclassified can be [..67 ]identified. When looking at the first 50

wildfires that are often misclassified, the proportion of the cases is very balanced between true small and large fire cases.

Assuming that such cases are a source of noise and can be deleted from the dataset, the accuracy [..68 ]rises to 80.30%

(standard error 1.94%). It should be noted that some cases could be false positives or false negatives. False positives could230

happen when a fire was burning in a cloudy area for several days. Once the area is free of clouds, the burnt area is detected

for that day but it was burning for days before that. False negatives may have happened with re-ignitions of [..69 ]large fires.

61removed: 30 neurons and 130 hidden layers using a Broyden–Fletcher–Goldfarb–Shannowith LBFGS, (Byrd et al., 1995)
62removed: cross validation
63removed: 65,46%
64removed: 58%
65removed: It is worth mentioning that
66removed: cross validation
67removed: detected
68removed: raises to 72%
69removed: big
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Besides, [..70 ]large fires are not always [..71 ]convection driven or related to an unstable atmosphere. The current automated

process to discriminate potential large fires using the GlobFire database can be implemented in near-real time, using weather

forecast data, allowing the potential identification of dangerous [..72 ]convection driven fires in advance, and thus increasing235

wildfire danger rating. This, in turn, would increase preparedness for firefighting procedures and enhance the safety of crews

on the ground. Additionally, the overall procedure in the discrimination of potential large fires can be improved if the dataset

is manually checked and the fire types are better defined.

3.1 Study Cases

3.1.1 Pedrógão Grande, Portugal 2017240

This wildfire had [..73 ]some of the most severe fire [..74 ]behaviour in Europe. The fire was ignited on 17th June and ran until

23th June. Figure 6 shows an explosive expansion from 17th June to 18th June, which is followed by a constant but severe fire

expansion. For this analysis the fire perimeters made for a wildfire report done by a technical commission [..75 ](Guerreiro,

2017) were used as reference for the fire spread.
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Figure 6. Time sequence of the wildfire which took place in Pedrógão Grande [..76 ](Guerreiro, 2017), Portugal on 17th June of 2017. The

maximum speed line between time steps is shown with a [..77 ]black arrow. Background image ©MapTiler (https://maptiler.com/copyright).

70removed: big
71removed: convective
72removed: convective
73removed: one
74removed: behaviours
75removed: ("Independente", 2017)
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From 17th to 18th June there was an increase of burnt area larger than 20000ha in one day.245

Figure 7 shows the value of the EFBI and its components during the entire month for the fires computed from the ERA5

reanalysis; the two vertical dashed lines in the figure delimit the duration of the fire. The EFBI shows that there is a considerable

potential for the interaction of the fire with the atmosphere. In addition, during the days of the fire there was a natural CAPE of

nearly 5000J*kg-1 inhibited by a small value of CIN. Increasing the temperature at the surface removing the inhibition, would

produce a sudden convection. The index values are close to 250 J*kg-1 per temperature degree increased and a total convective250

energy about 6000 J*kg-1.
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Figure 7. EFBI and its components for the wildfire in Pedrógão on June 2017 for the fire centroid (-8.2252, 39.952).

This case shows a natural tendency towards a [..78 ]convection driven behaviour that may be caused by the atmospheric

instability itself, without the need for a considerable amount of heat and/or an increase in relative humidity at the surface.
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Figure 8. Scatter plot showing the maximum fire front speed and the values of the EFBI for each time step with a logarithmic trend line.

78removed: convective
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For this case study, detailed fire perimeters for each time step were available, which makes it possible to analyse the relation

between the maximum fire spread and the EFBI. Figure 8 shows a scatter plot where each point is a time step given [..79 ]an255

EFBI value and the estimated maximum fire speed. While a wide variety of values of EFBI are shown for low fire spread speed

values, considerably higher EFBI values are shown for high speed values, compared with the rest of the point cloud. However,

there is a weak correlation between the speed and the EFBI. It is worth mentioning that the blow up of the wildfire took place

at the beginning; assuming that the fire was in convection almost from the first time steps, EFBI and fire spread speed may not

show a strong correlation when looking at all the hourly time steps. However, [..80 ]Fig.8 shows that, even with an ongoing [..81260

]convection driven fire, the atmosphere stability context computed from a numeric model is still important [..82 ]and speeds

faster 1 km/h are only present when EFBI is above 220.

3.1.2 Forecast use Roboré, Bolivia 2019

The values of the EFBI were computed using ERA5 forecast for the fire that took place in Roboré, Bolivia in 2019. This

wildfire lasted 2 months and had a very variable fire behaviour. Figure 9 shows the daily burnt area for this wildfire using the265

GlobFire database. However, the level of detail of the fire mapping for this study case is not as accurate as in the previous case

shown in [..83 ]Fig. 6.

LongestLine
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Figure 9. Daily burnt area for the duration of wildfire in Roboré, Bolivia in 2019. The maximum speed line between time steps is shown with a

black arrow. The missing days do not have any daily burnt area in GlobFire. Background image ©MapTiler (https://maptiler.com/copyright).
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80removed: Figure
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82removed: .
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For this case, the EFBI was computed with three different deterministic forecasts of ERA5 on August 15 and 29, and on

September 3. During this wildfire, the EFBI forecast different periods of extreme behaviour caused by conditioned convection

without a clear correlation as in the case shown in Section 3.1.1. For long duration wildfires that interact with the atmosphere270

it can be assumed that once a wildfire interacts strongly with the atmosphere, the trends of the EFBI are no longer valid, since

they are based on a forecast that does not include the interaction. However, in the above case of Bolivia, our results points out

that despite the fire-atmosphere interactions, the atmospheric stability trend may remain important and the values of the EFBI

can be relevant for a second convection interaction. It is not feasible to find a correlation between the fire spread and the EFBI

values in this case because the quality of the fire mapping is daily with a potential uncertainty of days. Also, the weather forecast275

that has been computed previously to a potential wildfire-atmosphere interaction may not depict the atmosphere around the

fire just after [..84 ]a wildfire-atmosphere interaction.

Figure 10 shows the computation of the daily EFBI average joining the data from the different forecasts. In addition, the

GlobFire database was retrieved and used to estimate the maximum daily fire run. Since the daily burnt area could have been

mapped with some days of delay, an average has been applied to the maximum daily fire run using a time window of the 2280

previous days. Figure 10 shows a peak of the EFBI followed by another [..85 ]one which started on 16th of August and a third

peak on 22nd of August. After the first peak, the maximum fire longitude of the daily burnt areas had increased from the 16th

to the 20th of August, while the highest runs of the fire happened between the 18th and 20th; the fire activity has another peak

after August 22 having two observed pyroCb on 18th and 25th of August. After 25th August, the EFBI trends [..86 ]seem to

be totally uncorrelated with the fire runs until 1st September. Afterwards, there is another peak on 7th of September which285

also seems to affect the fire runs and with 2 observed pyroCb on 7th and 8th of September. Later, EFBI and the maximum line

length are again uncorrelated until 17th September when the relation there is the last peak with another pyroCb observed.
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Figure 10. Maximum longitude of the the daily burnt area and the EFBI and its components for the wildfire in Roboré, Bolivia 2019. Vertical

dashed red lines show when a pyroCb took place.
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An example of pyroCb seen with Sentinel 2 [..87 ]displayed in Fig. 11, where parts of the plume are shown in white.

Figure 11. Sentinel 2, natural colour and atmospheric penetration, from right to left from S2 on 18th August. Roboré, Bolivia.

3.1.3 Wildfires Australia 2019

The EFBI was computed with ERA5 reanalysis for this area at the time of the fires showing very high values. Figure 12 shows290

the maximum values of the EFBI overlapped with the active fires (thermal anomalies shown as black points) that took place

the next day.

It is worth mentioning that the assimilation system used to generate the ERA5 reanalysis dataset could partially affect the

behaviour of the EFBI. In reanalysis, some of the consequences of heat release from the fire could be taken into account, while

in the forecast for a given day those conditions would not be considered.295

4 Conclusions

This work demonstrates that simple metrics of the atmospheric stability could provide valuable information for enhanced fire

danger rating, increasing preparedness and improving safety and efficiency of firefighting operations. The EFBI could be used

to detect days in which fires could exhibit extreme behaviour on a global scale. On those days, fires could add an unpredictable

interaction with atmospheric vertical profile, increasing fire behaviour due to plume dominated dynamics. However, EBI is300

subject to several factors which could cause uncertainty due to the [..88 ]wildfire-atmosphere interaction during a forecast and

the resolution of data used. Also, [..89 ]convection driven fires are not the only kind of fire that can become extremely fast

spreading. Despite this last fact, the approach used to differ between fast and slow fires at global scale demonstrates a potential
87removed: in Figure
88removed: interaction
89removed: convective
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Figure 12. EFBI from 28/12/2019 to 30/12/2019 overlapped with the active fires (black dots) that took place the next day over southeast

Australia.

use of the EFBI combined with the FWI. Moreover, the data used for the vertical profiles could be improved by estimating

the surface temperature and relative humidity at the surface using the altitude of the fire event.305

[..90 ]The EFBI holds the potential to improve fire danger forecast ratings at global scale. The initial testing presented in

this article reached a 72% accuracy, discriminating the final size of fires between small(<=500ha) or [..91 ]large (>=10000)

at global scale. Accuracy could be improved [..92 ]by increasing the number of classes and using other input factors to

discriminate [..93 ]wind driven fires in small bushes or grass which can become large fires [..94 ]but have low probability of

becoming [..95 ]convection driven wildfires or breaking the atmosphere stability. These big fires are not discarded in this310

work. For instance, dry and strong catabatic wind-driven fires like those of the Mistral (Western Europe), Santa Ana and Diablo

winds (California) or Zonda wind (Argentina and Chile) are not always fast wildfires caused by convection. These kinds of

fires are not [..96 ]convection driven but are extreme anyway, and can reduce the accuracy reached in this work. This could

relate also with the study case in Roboré (Bolivia), that generated several pyroCb but it also had wind driven fire spreads.

315
90removed: Therefore the
91removed: big
92removed: increasing the classes to differ
93removed: also
94removed: and
95removed: convective
96removed: convective but extreme anyway

17



The EFBI can be computed at least twice per day at global scale with up to 10 days [..97 ]forecast. For instance, using the

Global Forecast System(GFS) for a 10 day forecast at 0.25 degrees of spatial resolution (approximately 25 km), the computation

of the EFBI at the global scale took 4 hours in a single node with linear speed up, using multiple cores.

The EFBI has shown high [..98 ]discriminatory power of large fires using ERA5 [..99 ]at 0.25 degrees resolution at hourly

steps and GlobFire at 500m with a temporal resolution of 1 day. It showed a considerable relevance in the mutual information320

and [..100 ]in the discriminative power with the decision tree. It should be noted that the training of the neural network with

only FWI values and its components, which are the fire danger indices most used worldwide, dropped the accuracy from 65.5%

to 58%. Our results also highlight the relevance of the GlobFire dataset to [..101 ]analyse fire behaviour and improve current

danger ratings for extreme wildfires that may happen more frequently worldwide under climate change. [..102 ]This work also

stress the importance of developing datasets for fire behavior improving temporal and spatial resolution.325

Using a high spatial and temporal resolution in the study case of Pedrógão Grande in Portugal, EFBI has shown a

relation with the fire spread speed. Moreover, using the daily data of GlobFire for the fire behaviour in the case of Roboré,

EFBI could have been applied for the forecast of convective periods during the wildfire. For the last study case, this

includes a cluster of extreme wildfires in Australia, high values of the EFBI match spatially with the occurrences of the

such events. However, this work did not analyse the different behaviour of the fires inside the cluster.330

Therefore, the EFBI has the potential to improve the current fire danger rating at global scale by establishing a fire typology,

which could characterize potential explosive behaviour of wildfires under certain atmospheric conditions.
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