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Abstract. Water management in mountain regions is fac-
ing multiple pressures due to climate change and anthro-
pogenic activities. This is particularly relevant for moun-
tain areas where water abundance in the past allowed for
many anthropogenic activities, exposing them to future water
scarcity. Here stochastic system dynamics modelling (SDM)
was implemented to explore water scarcity conditions af-
fecting the stored water and turbined outflows in the Santa
Giustina (S. Giustina) reservoir (Autonomous Province of
Trento, Italy). The analysis relies on a model chain integrat-
ing outputs from climate change simulations into a hydrolog-
ical model, the output of which was used to test and select
statistical models in an SDM for replicating turbined water
and stored volume within the S. Giustina dam reservoir. The
study aims at simulating future conditions of the S. Giustina
reservoir in terms of outflow and volume as well as imple-
menting a set of metrics to analyse volume extreme condi-
tions.

Average results on 30-year slices of simulations show that
even under the short-term RCP4.5 scenario (2021–2050) fu-
ture reductions for stored volume and turbined outflow are
expected to be severe compared to the 14-year baseline
(1999–2004 and 2009–2016; −24.9 % of turbined outflow
and −19.9 % of stored volume). Similar reductions are ex-
pected also for the long-term RCP8.5 scenario (2041–2070;

−26.2 % of turbined outflow and−20.8 % of stored volume),
mainly driven by the projected precipitations having a similar
but lower trend especially in the last part of the 2041–2070
period. At a monthly level, stored volume and turbined out-
flow are expected to increase for December to March (out-
flow only), January to April (volume only) depending on
scenarios and up to +32.5 % of stored volume in March for
RCP8.5 for 2021–2050. Reductions are persistently occur-
ring for the rest of the year from April to November for tur-
bined outflows (down to −56.3 % in August) and from May
to December for stored volume (down to −44.1 % in June).
Metrics of frequency, duration and severity of future stored
volume values suggest a general increase in terms of low vol-
ume below the 10th and 20th percentiles and a decrease of
high-volume conditions above the 80th and 90th percentiles.
These results point at higher percentage increases in fre-
quency and severity for values below the 10th percentile,
while volume values below the 20th percentile are expected
to last longer. Above the 90th percentile, values are expected
to be less frequent than baseline conditions, while showing
smaller severity reductions compared to values above the
80th percentile. These results call for the adoption of adapta-
tion strategies focusing on water demand reductions. Months
of expected increases in water availability should be con-
sidered periods for water accumulation while preparing for
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potential persistent reductions of stored water and turbined
outflows. This study provides results and methodological in-
sights that can be used for future SDM upscaling to integrate
different strategic mountain socio-economic sectors (e.g. hy-
dropower, agriculture and tourism) and prepare for potential
multi-risk conditions.

1 Introduction

Mountains serve as “water towers” providing freshwater to a
large portion of the global population (IPCC, 2014, 2018;
Kohler et al., 2014; United Nations, 2012; Viviroli et al.,
2007). Climate change affects mountain environments more
rapidly than many other places, with impacts on glaciers,
snow precipitation, water flows and the overall supply of wa-
ter (Viviroli et al., 2011; Barnett et al., 2005). These impacts
call for the need to shift water management towards more
sustainable and adaptive practices. Adaptation delays and un-
preparedness to water availability changes can spread conse-
quences across multiple systems, from natural ecosystems to
anthropogenic activities relying on water (van den Heuvel
et al., 2020; Mehran et al., 2017a; Fuhrer et al., 2014; Xu
et al., 2009).

The European Alps are among those mountain regions
where water abundance in the past allowed for the devel-
opment of activities with intensive water use such as large
hydropower plants and irrigated agriculture, making them
susceptible to future impacts regarding reduced water avail-
ability (Beniston and Stoffel, 2014; Majone et al., 2016; Per-
manent Secretariat of the Alpine Convention, 2009). That is,
in many Alpine regions the socio-ecological systems are un-
prepared for water scarcity, and hence the impacts of water
shortage can be more severe (Di Baldassarre et al., 2018).

Previous studies have assessed the hydrological processes
involved in mountain environments, looking at the overall
hydrological dynamics (Bellin et al., 2016) or specifically
assessing topics such as glacier melt and runoff (Huss and
Hock, 2018; Farinotti et al., 2012) and snowpack dynamics
(Etter et al., 2017; Wever et al., 2017). However, the inter-
play connecting natural processes and socio-economic activ-
ities calls for further research. There is a need to implement
methodologies with the ability to unravel this complexity in
order to effectively tackle climate-related water issues.

System dynamics modelling (SDM) is a methodology
used to improve the understanding of complex systems and
their dynamic interactions. It makes use of four main mod-
elling elements: (i) stocks (system state variables) – “ac-
cumulating” material (e.g. water in a reservoir), (ii) flows
(variable’s rate of change) – moving material into and out
of stocks (e.g. river inflows and outflows), (iii) converters –
parameters influencing the flow rates (e.g. temperature vari-
able acting to alter evaporation from a water body), and
(iv) connectors – as arrows transferring information within

the model (e.g. linking the monthly effects on reservoir wa-
ter discharges; Sterman et al., 2000). The combination of
these elements is applied to represent temporal changes in
system elements accounting for endogenous and exogenous
influences on system behaviour. This concept encourages a
systems thinking approach, splitting large systems into sub-
systems and progressively increasing their interactions and
complexity (Gohari et al., 2017; Mereu et al., 2016). SDMs
can combine different metrics and indices, improving models
by adding social, economic and environmental sectors (Terzi
et al., 2019). Moreover, SDM can implement a graphical in-
terface, supporting the visualization of interactions and feed-
back loops during participatory approaches.

While SDM was developed to improve industrial business
processes (Forrester, 1971), it has been successfully applied
to model human and natural resources interactions (Mead-
ows et al., 2018). Moreover, SDM applications span a wide
range of problems, spanning climate change risk assessments
(Duran-Encalada et al., 2017; Masia et al., 2018), water man-
agement issues (Davies and Simonovic, 2011; Gohari et al.,
2017), disasters studies (Menk et al., 2020; Simonovic, 2001,
2015), water–energy–food nexus studies (Sušnik et al., 2018;
Davies and Simonovic, 2008) and applications fostering par-
ticipatory modelling (Malard et al., 2017; Stave, 2010). SDM
has therefore been proved to be a useful tool to study com-
plex interactions and dynamic behaviour in a wide variety of
complex systems (Ford, 2010).

However, SDM also shows some limitations, such as
(i) the limited spatial representation, since it works with
lumped regions, although recent research has coupled SDM
to GIS (geographic information system) to account for spa-
tially explicit system dynamics (Neuwirth et al., 2015; Xu
et al., 2016); (ii) the ease of creating complex what-if sce-
narios that can be difficult to validate but which can be use-
ful to explore systems behaviour under potential futures; and
(iii) the fact that applications usually account for determin-
istic expert-based assumptions on existence and the type of
variables’ interactions (Mereu et al., 2016; Sahin and Mo-
hamed, 2014; Sušnik et al., 2013), although statistical analy-
sis of trends and interactions are crucial under uncertain cli-
mate change and risk assessments and recent analyses have
been used for probabilistic SDM output (Sušnik et al., 2018).

These limitations call for methodological improvements.
The combination of statistical methods with SDM repre-
sent a valuable integration to overcome the current limita-
tions involved in deterministic expert-based assumptions of
variables’ interactions and dependencies. Existing studies al-
ready considered the need to implement statistical testing
of variables within SDM (Taylor et al., 2009; Ford, 2005),
and this application allows for testing and investigating vari-
ables’ interactions under future uncertainty of water avail-
ability conditions and exploring potential impacts, water dis-
putes and crises.

This study focused on the Santa Giustina (S. Giustina)
reservoir in the Noce catchment, Autonomous Province of
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Trento, Italy, due to its important function for hydropower
production and regulating water availability downstream.
While water has always been recognized as abundant in the
province, temperature increase, loss of glacier mass volume
and decreased snow precipitation during winter are among
the causes of reduced summer discharge and water avail-
ability both in mountain areas and downstream. At the same
time, numerous activities have flourished in the Noce catch-
ment such as increasing hydropower plants, agricultural pro-
duction, urbanization, industrial activities and more intense
tourism all demanding large water amounts to satisfy their
needs. Tensions for water allocation have recently arisen ask-
ing for a fair use of the resource among different actors,
also at the same time (e.g. orchard irrigation coinciding with
rising tourist water demand). In particular, associations and
civil-society groups (e.g. local association for the Noce River
safeguard, https://nocecomitato.wordpress.com/, last access:
1 March 2021) were established at the provincial level, show-
ing their concerns about ecological impacts of further ex-
ploitation (i.e. hydropower plants). For these reasons, current
conditions and future climate change projections leading to
critical levels of low and high stored volume and turbined
outflows for hydropower production in the S. Giustina dam
reservoir were assessed. Indices for frequency, duration and
severity of the reservoir’s critical states and its reduced wa-
ter availability are explored and discussed. By doing so, the
aim is to develop and demonstrate a stochastic SDM as an
effective tool to assess the climate change impact of water
scarcity in one of the main reservoirs in the north-east of the
Italian Alps supporting its adaptation planning. Such results
could inform water operators and local and provincial author-
ities fostering a discussion on the implementation of climate
change adaptation strategies in line with the Water Frame-
work Directive (European Parliament and Council, 2000).

2 Case study

The Noce River (Autonomous Province of Trento, Italy) in
the south-eastern part of the Alps (Fig. 1) is a tributary of
the Adige River, the second longest river in Italy. The Noce
River basin is a typical Alpine basin with an overall area
of 1367 km2 and an average discharge of 33.8 m3 s−1 at the
basin closure. It is characterized by intensive anthropogenic
activities ranging from hydropower plants in the upper part
of the catchment relying on glacier melting to intensive ap-
ple orchards shaping the landscape of valley bottoms. It also
hosts a significant number of tourists with peaks of water
demands during winter and summer time for sport activities
(i.e. skiing, hiking and kayaking). The hydropower sector
is the main water user (77.8 % of the licensed water with-
drawals is allocated to small hydropower plants with a nom-
inal capacity < 3 MW) followed by agriculture (16.4 %), do-
mestic uses (4 %), fish farming (0.9 %), industry (0.4 %),

snowmaking (0.3 %) and others (0.2 %; Provincia Autonoma
di Trento, 2018).

Water has always been considered abundant in most re-
gions in the Alps and only recent events of water scarcity
in 2015 and 2017 raised wider concerns about water quantity
and quality (Stephan et al., 2021; Chiogna et al., 2018; Hanel
et al., 2018; Laaha et al., 2017). Within this context, climate
change effects at the regional level have already been recog-
nized as acting on the current water balance and triggering
multiple impacts on a wide range of economic activities re-
lying on water use (La Jeunesse et al., 2016; Zebisch et al.,
2018).

In the Noce River basin, the S. Giustina reservoir provides
a large buffer for water resource regulation. The reservoir
has a storage capacity of 172 Mm3 (equal to a maximum net
available volume of 152.4 Mm3), the largest reservoir vol-
ume within the Trentino-Alto Adige region. It was built in
the 1940s and 1950s for hydropower purposes. Nowadays,
the reservoir has a multipurpose function, producing a large
amount of energy (i.e. installed power of 108 MW), and reg-
ulating water flow for downstream users and providing water
for irrigation. Moreover, the local water use plan (Provin-
cia Autonoma di Trento, 2006) established for 2009 onwards
a minimum ecological flow threshold ranging from 2.6 to
3.7 m3 s−1 (the only water flow downstream the dam) accord-
ing to each month of the year to continuously sustain fluvial
ecosystems.

3 Methods and exploited material

This study focuses on a refinement of SDM applications im-
plementing a stochastic assessment of variables’ interactions
for validation of uncertainties and trends in the field of risk
assessment. Conceptual diagrams of system variables’ in-
teractions were elaborated using the Stella software (https:
//www.iseesystems.com/, last access: 1 March 2021) while
statistical correlations, dependencies and tests were analysed
in R (Duggan, 2016; R Core Development Team, 2019).
This combination contributes to improving SDM analysis ac-
counting for the uncertainty and variability associated with
past and future water flow data.

The methodological approach here presented is composed
of five sequential phases: (1) the SDM set-up, (2) the analysis
of SDM variables’ interactions, (3) the SDM model calibra-
tion and validation on historical observations, (4) the inte-
gration of future projections in the SDM and test of changes
of statistical significance to the baseline, and finally (5) the
characterization of future low and high stored water critical
conditions through a Monte Carlo sampling approach. Each
of the stages is described in this section.
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Figure 1. Noce River basin and main characteristics. The black arrow specifies the Adige River flow direction.

3.1 System dynamics modelling set-up and input data

The SDM was set up by integrating multiple sources of data
(e.g. observations, modelled values and climate projections)
to replicate past and to simulate future S. Giustina turbined
water and stored reservoir volume. The model chain con-
sidered for this objective consists of three main modules,
namely climate projections in box 1, hydrological model in
box 2 and the SDM in box 3 (Fig. 2).

The climate projections provide information stemming
from global climate models downscaled to the regional level
and bias-corrected through the quantile mapping method
(Maraun, 2016; Teutschbein and Seibert, 2012) using the
downscaled daily ENSEMBLES daily gridded observational
(E-OBS) dataset at 1 km resolution (Cornes et al., 2018) to
better simulate climate local conditions. The regional climate
model COSMO-CLM (Consortium for Small-scale Model-
ing Climate Limited-area Modelling) was selected for its spa-
tial resolution of 0.0715◦× 0.0715◦ (≈ 8 km× 8 km), allow-
ing for a local-level climate impact assessment (Rockel and
Geyer, 2008). Such model information was developed by the
CLM community and provided by the Fondazione Centro
Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) as
an external component for the application to the Noce catch-
ment (Bucchignani et al., 2016). In the case of climate data
from COSMO-CLM, precipitation and temperature baseline
data were available from 1971 to 2005; they were also used

to characterize the Noce catchment climatology and compare
the baseline with future conditions of precipitation and tem-
perature for the two Representative Concentration Pathways
(RCPs).

Temperature and precipitation daily data were used as an
input to the physically based model “GEOTRANSF” (exter-
nal component, Bellin et al., 2016) together with topograph-
ical information to replicate streamflow conditions of the
Noce River (box 2 in Fig. 2). These two boxes were obtained
from simulations developed from the OrientGate project
(http://m.orientgateproject.org/, last access: 30 April 2021)
and used as an input to focus on the S. Giustina reser-
voir through the SDM (box 3 in Fig. 2). GEOTRANSF
was calibrated and validated on past daily water flow data
in the case study area considering a baseline time range
from 1981 to 2010 with a performance of the Nash–Sutcliffe
efficiency coefficient of 0.88 for calibration and 0.73 for
validation at the S. Giustina control section (Bellin et al.,
2016). GEOTRANSF provides a description of the wa-
ter flow within the Alpine Noce River catchment relying
on precipitation and temperature data (from box 1), land
use and soil type (http://pguap.provincia.tn.it/#, last access:
30 April 2021), streamflow gauge data (https://www.floods.
it/, last access: 30 April 2021), and glacier extension (https:
//webgis.provincia.tn.it/, last access: 30 April 2021). Water
withdrawals for anthropogenic uses were modelled within
GEOTRANSF at the subcatchment level, accounting for their
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Figure 2. Models’ chain considered in this study. Box 1 includes the climate modelling used as input for the hydrological model simulation
of water streamflow in box 2. Box 3 contains the SDM components of stock (S. Giustina reservoir), flows (inflow and three outflows),
converters (month of the year and day of the week) and connectors (red arrows) considered to simulate stored water in the reservoir and the
turbined outflow for hydropower production considering a baseline from 1999 to 2016 with a data gap from 2005 to 2008. Sources: adapted
from Pham et al. (2019) and Ronco et al. (2017). For an interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article. GCM: global circulation model. CMCC-CM: Centro Euro-Mediterraneo sui Cambiamenti Climatici Climate
Model.

licensed number and the physical constraints from the exist-
ing water infrastructures. Moreover, GEOTRANSF was ap-
plied with COSMO-CLM precipitation and temperature sce-
narios from 2021 until 2070 over the Noce catchment to as-
sess future conditions of river discharge at the local level for
RCP4.5 and RCP8.5 (Bucchignani et al., 2016). While cli-
mate was considered the only driver of change in future sim-
ulations, anthropogenic water withdrawals were assumed to
be at their maximum physical discharge in order to account
for possible future increases of water demands from sectors
such as domestic and agricultural needs, sectors recognized
to lead to possible increases in demand (Bellin et al., 2016;
La Jeunesse et al., 2016).

The stochastic SDM relied on the inflow values from
GEOTRANSF applications as one input variable. Other in-
put variables were initially considered and tested as other
variables data in the SDM to replicate turbined water and
stored volume (excluded to the modelling; further informa-
tion reported in the Supplement). The baseline simulation pe-
riod was constrained by the reservoir volume data availability
over 14 years with a range 1999–2004 and 2009–2016 and a
data gap from 2005 to 2008. For this reason, the SDM was
forced with past observations of inflow to S. Giustina (with
data available for the period 1981–2016) and with GEO-
TRANSF values for future simulations due to the limited
temporal overlap of past GEOTRANSF values (over 1981–
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Table 1. Selected variables within the SDM (box 3 in Fig. 2) for the S. Giustina reservoir.

Data type Variable name Time range Source

Inflows to S. Giustina [m3 s−1] Inflows 1981–2016

S. Giustina outflows for hydropower use [m3 s−1] Outflow 1981–2016

S. Giustina volume [Mm3] Volume 1999–2004
2009–2016

Autonomous Province of Trento –
Agency for Water Resources and En-
ergy

Minimum ecological flow [m3 s−1] MEF 1999–2016

Emergency releases [m3 s−1] Releases 1981–2016

2010) with observations of the S. Giustina stored volume
(1999–2004 and 2009–2016, Table 1). The SDM was run at a
daily time resolution to replicate the different outflow’s reg-
ulations (e.g. minimum ecological flow and emergency out-
flows). Finally, simulations were aggregated to monthly val-
ues being a suitable time resolution for supporting reservoir
volume management over long periods considering climate
change effects (Solander et al., 2016).

3.2 Variables’ interaction analysis

This analysis aims to statistically describe the existence and
type of interactions among the system variables. For the sim-
ulations of turbined outflows, different statistical models’
and variables’ interactions were tested and recursively im-
plemented to simulate the stored water in S. Giustina by ap-
plying the reservoir water balance equation.

3.2.1 Hydropower outflows

The simulation of turbined outflows from the S. Giustina
reservoir for hydropower production considered regressions
of different input variables (e.g. inflow, hydroelectric energy
market price, temperature, precipitation and water outflows
from an upstream dam reservoir) and statistical models, in-
cluding linear regressions and more flexible generalized ad-
ditive models.

After an initial exploratory data analysis, the variables’
hydroelectric energy market price, temperature, precipitation
and water outflows from an upstream dam reservoir were re-
jected based on criteria of (i) data availability to the maxi-
mum target time period, (ii) correlations among the explana-
tory and response variables, and (iii) the selection of the most
parsimonious model. Further information on input variables,
their tested combinations for model selection and their link
to the open code is reported in the Supplement.

The best regressions for each model type are reported in
Table 2. The “lme4” package in R (Bates et al., 2015) was
applied for linear mixed-effects models, while the “mgcv”
package in R (Wood, 2017; Wood and Scheipl, 2020) was
used for the generalized additive models. Model 2 in Table 2
was selected as the best regression for its performance of
0.75 for the adjusted R2 and 16.57 Mm3 for the RMSE at a
monthly scale (daily scale of 0.42 for the adjusted R2 and
0.95 Mm3 for the RMSE). In particular, the linear mixed-
effects model showed its ability to account for weekday
and monthly variations as an important variable to capture
weekly and seasonal reservoir management while showing
lower proneness to overfit calibration data compared to flexi-
ble non-linear models. The model simulated water diverted
to the turbines (Qout) as a function of water flowing into
the reservoir (Qin), the volume state in the previous day
(V (t − 1), through the “lag” operator to shift the time se-
ries back by one time step), and the day of the week and the
month of the year. As a fixed effect the water flowing into the
reservoir and the volume in the previous day were here con-
sidered to account for the linear relation with the turbined
water. As a random effect to capture differences among dif-
ferent groups, day of the week and month of the year were
selected to account for the recurrent water volume variations
occurring according to the weekday group and month group
(distinguished by vertical bars in linear mixed-effects mod-
els). By doing so, it was possible to describe the reservoir
water volume by combining the GEOTRANSF model out-
puts with statistical analysis aiming to explore the reservoir
volume vulnerability to future changing conditions.

3.2.2 Reservoir volume

Simulated outflow values were used at each time step to repli-
cate the volume stored through the water balance equation
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Table 2. Best of each model type and their performance indicators (R2 and the root mean square error, RMSE) at monthly resolution and
at daily resolution in brackets. The best selected model is reported in bold. The syntax follows that of the R packages “lme4” (for the linear
mixed-effects model) and “mgcv” (for the generalized additive models) with the “bs” term set to “re” to refer to the random effect in the
generalized additive mixed model; “s” is the function used in definition of smooth terms within the gam model formulae. A full list of tested
models and their features is reported in the Supplement.

Monthly resolution (daily)

Model types No. R syntax Adjusted R2 RMSE (× 106)

Multi-linear model 1 lm(Outflow∼ Inflows+ lag(Volume)) 0.63 (0.35) 19.86 (1.03)
Linear mixed-effects model 2 lmer(Outflow∼ Inflows+ lag(Volume)+ (1|weekday)+ (1|month)) 0.75 (0.42) 16.57 (0.95)
Generalized additive model 3 gam(Outflow∼ s(Inflows)+ s(lag(Volume)) 0.61 (0.50) 20.31 (1.07)
Generalized additive mixed model 4 gam(Outflow∼ s(Inflows)+ s(lag(Volume))+ s(weekday,

bs= “re”)+ (month, bs= “re”))
0.65 (0.54) 19.27 (1.02)

Eq. (1):

dV (t)

dt
=Qin(t)−Qout(t)−Qmef(t)−Qrels(V ), (1)

where Qin is the water flowing into the reservoir, Qout is
the water diverted to the turbines, Qmef is the minimum
ecological flow released and Qrels is the water outflow for
emergency flood releases. In particular, Qmef was set to
2.1 m3 s−1 in the case of simulations before 2004, while
it is equal to 2.6 m3 s−1 for January–March and Decem-
ber; 3.68 m3 s−1 for April–July, October and November;
and 3.2 m3 s−1 for August and September from 2009–2016
(http://pguap.provincia.tn.it/#, last access: 30 April 2021).
Moreover, the same values of minimum ecological flow were
set in future simulations assuming no changes in minimum
discharges for the ecological flow in the future. A simplified
operational rule was implemented for emergency releases
from flood gates considering the maximum daily emergency
discharge value of 168.5 m3 s−1 in the case of daily stored
volume greater than or equal to 159.3 Mm3.

3.3 Model calibration and validation

The statistical model for turbined water was calibrated and
validated over 5061 d of available data for the baseline pe-
riod, representing a total of 14 years from 1999 to 2004
and from 2009 to 2016. A forward time window approach
was applied as a cross-validation technique to better estimate
model fitting (i.e. based on training data) and predictive per-
formance (i.e. based on temporally independent test data) us-
ing the root mean square error (RMSE). The applied method-
ology is based on multiple separations of training and test-
ing datasets. Within the first repetition, the predefined model
set-ups (i.e. turbined outflows models) are calibrated using
a subset of the original data that relates to the first 3650 d of
available data. The derived relationships are then tested using
both training data (i.e. fitting performance) and the dataset
that relates to the remaining (not yet) considered days (i.e.
predictive performance). The following 1410 repetitions are
based on the same procedure but on increasingly larger train-
ing datasets (i.e. consecutively adding 1 d within the forward

time window approach). The mean value for RMSE was cal-
culated considering all 1411 repetitions over the increasingly
larger dataset, providing a more robust estimation of model
performance and its variability using multiple temporally in-
dependent subsets of the original data (Hastie et al., 2009;
Kohavi, 1995; Tashman, 2000; Varma and Simon, 2006).
This methodology allows for overcoming some limitations
of common one-fold non-temporal validation methods (split-
ting of training and test data randomly; e.g. hold-out valida-
tion) associated with data temporal dependencies (i.e. auto-
correlation) and an arbitrary choice of training and validation
subsets. A major advantage of such multi-fold partitioning
strategies is the possibility to exploit all the available data for
the generation of the final prediction model.

3.4 Future projections and statistical testing

Future water inflow to the reservoir (coming from the GEO-
TRANSF application) was used to simulate future turbined
outflow and volumes stored in the S. Giustina reservoir.
GEOTRANSF simulations considered unchanged maximum
water withdrawals in the Noce catchment in the future, and
although possible variations in the future may affect river
water flows, this set-up provided a conservative assumption
accounting for future water demand increases, such as from
domestic and agricultural needs, in future scenarios. More-
over, integrated downscaled COSMO-CLM climate scenar-
ios were considered (Bellin et al., 2016; Bucchignani et al.,
2016). Such climate projections have been demonstrated to
represent climate forcing variables (i.e. precipitation and
temperature) over Alpine regions well (Montesarchio et al.,
2013).

The RCP4.5 and RCP8.5 scenarios were selected accord-
ing to the IPCC AR5 (Intergovernmental Panel on Climate
Change Fifth Assessment Report; IPCC, 2014). Simulations
stretched over two 30-year time horizons to represent short-
term (2021–2050) and long-term (2041–2070) future climate
conditions affecting the Noce River flow and the S. Giustina
reservoir management.
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Differences between the future and baseline simulated
turbined water and volume stored were statistically tested
through the Wilcoxon rank sum test, a non-parametric test
selected since it allows for dealing with non-normally dis-
tributed, unpaired groups of data (Hollander and Wolfe,
1973). It was implemented to test whether future predicted
values of stored volume were significantly different than the
baseline and to reject the null hypothesis (i.e. same tenden-
cies among the tested groups) in the case of a p value≤ 0.05.

3.5 Characterization of future critical conditions

This study explored and analysed critical conditions of low
and high future stored volume considering the 10th and 20th
and 80th and 90th percentile thresholds calculated from wa-
ter stored from the baseline (1999–2004 and 2009–2016).
Such thresholds provided a symmetrical reference of extreme
conditions and were already identified in previous studies
as significant levels to assess critical states in hydrologi-
cal studies (Yilmaz et al., 2008). Considering these thresh-
olds, a set of different metrics were calculated to charac-
terize the frequency, duration and severity of future critical
volume conditions (Table 3) based on existing metrics used
to describe extreme events (Vogt et al., 2018). In particular,
frequency was considered in relative terms as the ratio of
the overall number of months below or above the selected
threshold used to define the level of volume critical condi-
tions over 14 years, hence describing yearly conditions of
extreme events. Maximum duration was described consider-
ing the maximum number of consecutive months below or
above the selected thresholds. The severity metric describes
the accumulated deficit/surplus of simulated volume values
with respect to the total volume stored over a 14-year win-
dow (relative severity). This last metric provides information
on the fraction of the total stored volume in deficit or surplus
as the average annual severity.

Moreover, a Monte Carlo approach was implemented to
account for the uncertainty related to the simulations in fu-
ture conditions. The water balance equation considered the
lower and upper turbined outflow from the prediction bands
to generate a range of simulated volume values. A set of 1000
replications of 30-year length per each future climate sce-
nario was generated by randomly sampling from the simu-
lated volume values and their prediction bands. In addition,
for each replication a subset was iteratively extracted consid-
ering a time window of 14 years moving progressively at a
monthly time step along the simulated 30 years of future vol-
ume. Extreme condition metrics of relative frequency, max-
imum duration and relative severity were calculated on the
subset at each iteration. This procedure allowed for compar-
ing the calculated metrics of each subset replication with the
14 years of available data for the baseline volume (1999–
2004 and 2009–2016). By doing so, it was possible to ac-
count for the uncertainty related to the modelling and pro-

vided a wider range of low and high future volume values for
a more robust characterization of their conditions.

4 Results

4.1 Baseline period

The linear mixed-effects model was used to replicate ob-
servations of turbined water outflows from the S. Giustina
reservoir (Fig. 3). The model was run at a daily time step,
and values were aggregated and reported at a monthly res-
olution. The model gave an R2 of 0.75 and a mean RMSE
of 16.57 Mm3. Figure 3 shows the modelled and real values,
with the y scale ranging from 0 % (i.e. no turbined water) to
100 % (i.e. maximum turbined water of 176 Mm3 per month
for 31 d of full turbine operations). Coloured bands outline
areas above or below the percentile values defining critical
thresholds that were considered throughout the analysis.

The modelled turbined water was then used in the iterative
implementation of the water balance equation together with
the operational rules for the minimum ecological flow and
the emergency releases. Figure 4 shows the modelled and real
volume ranging from 0 % to 100 % of stored volume (equal
to 159.3 Mm3, maximum volume allowed for flood preven-
tion), where the simulation of the stored volume resulted in
an R2 of 0.60 and a mean RMSE of 19.74 Mm3 per month.
In Figs. 3 and 4 the general behaviours of real turbined out-
flows and stored water were replicated by the regression
models. Some specific very high and low conditions were
not completely represented or missed due to abrupt changes
in the reservoir management, such as the 2001 summer peak
of turbined outflows in Fig. 3, due to persistent inflows to
S. Giustina forcing dam managers to turbine at the maximum
outflow for 23 d consecutively, as well as the low values in
spring 2003 in Fig. 4, when the S. Giustina reservoir was
emptied due to construction works on a penstock.

4.2 Future projections and statistical testing

Future GEOTRANSF model results forced by the COSMO-
CLM climate projections depict a situation of general de-
creases in precipitation and water inflowing to the reservoir
(Table 4 and Fig. 5). In particular, changes in RCP4.5 are
rather similar for the short and long terms, whereas changes
are larger in the long term for RCP8.5 compared to the
short term. These results are consistent with the precipi-
tation trends from COSMO-CLM projections with RCP8.5
showing higher values of total precipitation in the short term
but a higher decrease in the long term compared to RCP4.5
(Bucchignani et al., 2016). In RCP8.5, inflow, outflow and
volume reductions are lower for the short-term future com-
pared to the baseline (−7.8 %, −11.5 % and −10.2 %) and
are associated with the only case of precipitation increase
(+1.4 %), pointing to the increase of evapotranspiration due
to the relatively larger increase in temperature (+29.4 %). In
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Table 3. Metrics implemented to characterize extreme events of low and high volume stored in the S. Giustina reservoir for RCP4.5 and
RCP8.5 future projections, adapted from Vogt et al. (2018).

No. Metrics Unit Description

1 Relative frequency Months/year Number of months below or above the selected thresholds used to define the level of volume
critical conditions over a 14-year period

2 Maximum duration Months Maximum number of consecutive months below or above the selected thresholds used to
define the level of volume critical conditions

3 Relative severity % Sum of the differences, in absolute values, between simulated volume values and the se-
lected thresholds over the total stored volume and 14-year period;
Si =

∑
|Vi|<Threshold∑

Vi·14

Figure 3. S. Giustina water diverted to the turbines from 1999 to 2016. Modelled (red line) and real (green line) values. Adjusted R2
= 0.75,

mean RMSE= 16.57 Mm3. Coloured bands outline areas of values lower than the 10th and 20th and greater than the 80th and 90th per-
centiles. For an interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.

the long term, results show the greatest increase of temper-
ature (+58.8 %) and reduction of precipitation (−4.3 %) as
well as of inflow, outflow and volume (−21.3 %, −26.2 %
and −20.8 %).

A summary overview of future conditions for inflow, tur-
bined water and stored volume is reported in Fig. 5. For all
variables, four coloured bands representing areas lower than
the 10th and 20th and greater than the 80th and 90th per-
centile are reported as a reference, which allows for com-
paring the 30-year time slices. Values show a generalized
decrease into the 20th and 10th percentile thresholds of
the long-term RCP8.5 scenario. This trend is clearly visi-
ble for future water inflow, while values larger than boxplots
whiskers can be identified in all inflow scenarios and hence
point to single future conditions greater than baseline max-
imum recorded values (Fig. 5a). Future turbined outflows
show boxplot values with the lowest interquartile range ex-
pected to reach 10th percentile conditions. Consistently with

the results from Table 4, volume values show significant re-
ductions already for RCP4.5 with interquartile levels below
with the 20th percentile calculated from the baseline (i.e.
1999–2004 and 2009–2016). These results were further in-
vestigated through the application of the Wilcoxon rank sum
test (Table 5), which provides more quantitative insights into
the statistical significance of changes considering the whole
30-year period of data for the baseline and the four scenar-
ios (Fig. 5) as well as considering monthly averaged values
(Figs. 6 and 7). While p values considering the whole time
series are below the 0.05 threshold of significance, monthly
averages for the short-term RCP8.5 scenario (2021–2050)
provided non-significant results both for stored volume and
turbined outflow.

Results of future turbined outflows are reported in Fig. 6
with values averaged for each month over the 30-year simu-
lation and compared to the baseline (i.e. percentage change).
Negative reductions of outflows for all scenarios are reported
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Figure 4. S. Giustina stored volume values from 1999 to 2016. Modelled (red line) and real (blue line) values. Adjusted R2
= 0.60,

RMSE= 19.74 Mm3. Coloured bands outline areas of values lower than the 10th and 20th and greater than the 80th and 90th percentiles.
For an interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.

Table 4. Average values of temperature and precipitation (COSMO-CLM projections), water inflow to the S. Giustina reservoir, turbined
outflow, stored volume (simulations) and their percentage differences compared to baseline values.

Variable Baseline RCP4.5 RCP8.5
∗ 2021–2050 2041–2070 2021–2050 2041–2070

Value Value 1 [%] Value 1 [%] Value 1 [%] Value 1 [%]

Temperature [◦C] 5.1 6.5 +27.5 7.5 +47.1 6.6 +29.4 8.1 +58.8
Precipitation [mmyr−1] 1495.1 1433.6 −4.1 1391.5 −6.9 1516.3 +1.4 1430.7 −4.3
Inflow [Mm3 per month] 71.5 57.4 −19.7 58.3 −18.5 65.9 −7.8 56.3 −21.3
Turbined outflow [Mm3 per month] 64.1 48.2 −24.8 48.7 −24 56.7 −11.5 47.3 −26.2
Stored volume [Mm3] 109.6 87.8 −19.9 88.2 −19.5 98.4 −10.2 86.8 −20.8

∗ Baseline period for climate data goes from 1971 to 2005, while for water inflow and volume stored it spans over 1999–2004 and 2009–2016 (14 years).

for spring and summer, starting in April and going until
September with differences up to −56.3 % in August for the
long-term RCP4.5 scenario. All climate scenarios agree on a
water flow reduction during November reaching a minimum
of −33.5 % of turbined outflow for the long-term RCP8.5
scenario. In all other months, scenarios depict varying con-
ditions of water flow. In particular, the short-term RCP4.5
scenario depicts conditions of negative differences for ev-
ery month of the year. An increased number of positive dif-
ferences are predicted for the long-term RCP4.5 scenario
during January (+5 %) and December (+5.3 %). The short-
term RCP8.5 scenario shows larger positive differences dur-
ing January (+10.3 %), February (+1.8 %), March (+2.9 %),
October (+0.8 %) and December (+6.5 %). The long-term
RCP8.5 scenario projects a negative trend from April until
the end of the year, reaching persistent negative conditions
in summer down to−55.5 % in August, overlapping with the
summer electricity peak loads and calling for particular at-
tention (Terna, 2019). Nevertheless, small but positive val-
ues are expected for January (+0.7 %), February (+1.4 %)

and March (+3.7 %), when the winter electricity peak load
usually occurs (Terna, 2019).

Comparative results with the baseline for the monthly av-
erage over the 30-year simulation are reported for the stored
volume in Fig. 7. All climate scenarios agree on the general
volume decrease from May until the end of the year. The
short- and long-term RCP4.5 scenario depicts conditions of
minimum peaks in May (−43.8 % and −40.6 %) and June
(−44.1 % and −41.9 %), while the long-term RCP8.5 sce-
nario shows fewer negative minimum values, although per-
sistent negative values in November and December lower
than the other scenarios (−26.8 % and −19 %). Scenarios
agree on the positive variation during February and March
with a maximum increase of +32.5 % for the short-term
RCP8.5 case. However, scenarios disagree in terms of stored
volume for January, with RCP4.5 scenarios representing a
positive variation both in the short- and long-term cases
(+1.4 % and +2.2 %), while the short-term RCP8.5 case de-
picts a positive variation (+7.3 %) but a negative one for the
long-term case (−7.1 %). Conditions in April are reversed

Nat. Hazards Earth Syst. Sci., 21, 1–19, 2021 https://doi.org/10.5194/nhess-21-1-2021



S. Terzi et al.: Stochastic system dynamics modelling for climate change water scarcity assessment 11

Table 5. Summary of the Wilcoxon rank sum test application to stored volume and turbined outflow for the four scenarios compared to the
baseline (1999–2004 and 2009–2016); p values are reported for the test considering the whole time series of future and baseline values and
on paired monthly averages.

Compared scenarios Variable On the whole time series On monthly averages
p value p value

RCP4.5 2021–2050 vs. baseline Stored volume 2.203× 10−15 ∗∗∗∗ 0.016∗

Turbined outflow 3.737× 10−12 ∗∗∗∗ 4.883e-4∗∗∗

RCP4.5 2041–2070 vs. baseline Stored volume 2.275× 10−16 ∗∗∗∗ 0.034∗

Turbined outflow 8.676× 10−12 ∗∗∗∗ 0.009∗∗

RCP8.5 2021–2050 vs. baseline Stored volume 1.120× 10−6 ∗∗∗∗ 0.092
Turbined outflow 0.003∗∗ 0.095

RCP8.5 2041–2070 vs. baseline Stored volume 5.006× 10−18 ∗∗∗∗ 0.012∗

Turbined outflow 1.381× 10−13 ∗∗∗∗ 0.007∗∗

Symbols ∗, ∗∗, ∗∗∗ and ∗∗∗∗ refer to significant p values ≤ 0.05, ≤ 0.01, ≤ 0.001 and ≤ 0.0001.

with the short-term RCP4.5 scenario depicting a decrease
(−8.3 %) and RCP8.5 increases for short- and long-term
cases (+5.5 % and +3.5 %).

Months of positive variation and scenario disagreement
provide important information on the timing of potential
reservoir management adaptation, while the small volume
increases are insufficient to counterbalance persistent vol-
ume reductions. The short-term RCP8.5 scenario shows the
most favourable conditions of water volume, depicting pos-
itive differences in January (+7.3 %), February (+22.5 %),
March (+32.5 %) and April (+5.5 %).

4.3 Characterization of future critical conditions

Critical conditions of stored reservoir water volumes (both
high and low) were explored to further understand how cli-
mate change may impact long-term reservoir vulnerability.
A set of different metrics were calculated to characterize fre-
quency, duration and severity of future critical volume con-
ditions considering values lower than the 10th and 20th and
higher than the 80th and 90th percentiles of stored volume
(Figs. 8 and 9). The metrics were calculated from 1000 repli-
cations per scenario randomly sampled from the simulated
future volume values and their prediction bands. Reductions
were shown to have similar trends across the metrics between
the 10th and 20th as well as between the 80th and 90th per-
centiles, with the four future scenarios having statistically
significant differences compared to the baseline.

Boxplots for low-volume conditions (Fig. 8) show in-
creasing average values for all metrics and scenarios com-
pared to the baseline: conditions of low volume are expected
to become more frequent, having a longer maximum dura-
tion and larger severity. In particular, for both values lower

than the 10th and 20th percentile, the short-term RCP4.5
scenario shows the highest average increase. Relative fre-
quency and relative severity are expected to have a higher in-
crease for average values below the 10th percentile (+157 %
for frequency, from 1.64 to 4.21 monthsyr−1, and +250 %
for severity, from 0.2 % to 0.7 %) compared to values be-
low the 20th percentile (+105 % for frequency, from 2.86 %
to 5.86 %, and +300 % for severity, from 0.3 % to 1.2 %),
while maximum duration is expected to have a higher in-
crease for values below the 20th percentile (+100 %, from 5
to 10 months) compared to values below the 10th percentile
(+75 %, from 4 to 7 months). These results point to events of
low-volume conditions below the 10th percentile becoming
more frequent and with a higher severity, while low-volume
events below the 20th percentile are expected to last for a
longer time in the case of the most extreme events. RCP8.5
in the short term depicts fewer negative conditions for both
thresholds in line with results in Fig. 6: for values below the
10th percentile, +40 % in relative frequency (from 1.64 to
2.29 monthsyr−1), +0 % in maximum duration (4 months)
and+50 % in relative severity (from 2 % to 3 %) and for val-
ues below the 20th percentile, +38 % in relative frequency
(from 2.86 to 3.93 monthsyr−1), +20 % in maximum du-
ration (from 5 to 6 months) and +67 % in relative severity
(from 0.3 % to 0.5 %).

For values lower than the 20th percentile, a larger number
of values outside the boxplot whiskers are depicted for all
scenarios and especially towards higher number of months
for relative frequency as well as maximum duration and
relative severity, hence pointing to potential single condi-
tions of lower volume stored in the future with respect to
the represented median. These results point to the possi-
bility of the most extreme water scarcity conditions lasting
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Figure 5. Thirty-year slice boxplots for future projections of
(a) simulated water inflow to the S. Giustina reservoir, (b) simu-
lated turbined water and (c) simulated future water volume stored
in the S. Giustina reservoir. Coloured bands outline areas of baseline
values lower than the 10th and 20th and greater than the 80th and
90th percentiles using the same colours as in Fig. 4. For an interpre-
tation of the references to colour in this figure legend, the reader is
referred to the web version of this article.

longer than 1 hydrological year and pointing to chronic con-
sequences of low stored volume, especially considering the
short-term RCP4.5 scenario (maximum values of 19 months
and 31 months for values below the 10th and 20th percentile)
and the long-term RCP8.5 scenario (maximum values of 15
and 30 months for values below the 10th and 20th percentile),
where the highest outlier values are expected.

Boxplots for high-volume conditions (Fig. 9) also show a
generalized decrease in all metrics of high stored volume for
all scenarios and for both thresholds. The long-term RCP4.5
and RCP8.5 scenarios depict conditions of higher percent-
age reductions for relative frequency (−75 % for both sce-
narios) and maximum duration (−60 % for both scenarios)
above the 90th percentile compared to the 80th percentile
(−68 % in relative frequency and −50 % in maximum du-
ration for both scenarios). On the contrary, relative severity

reductions are expected to be higher for RCP8.5 for values
above the 80th percentile (−97 %) compared to the 90th per-
centile (−80 %). Above the 90th percentile, values are ex-
pected to be less frequent than baseline conditions, while
they show smaller severity reductions compared to values
above the 80th percentile. The short-term RCP8.5 scenario
predicts a smaller decrease in all metrics in comparison
with the other scenarios with −48 % of relative frequency
(from 3.14 to 1.64 monthsyr−1), −50 % of maximum du-
ration (from 6 to 3 months) and −75 % in relative severity
(from 0.4 % to 0.1 %) for values above the 80th percentile
compared to the baseline, as well as −56 % of relative fre-
quency (from 2.29 to 1 monthsyr−1), −60 % of maximum
duration (from 5 to 2 months) and −68 % of relative severity
(from 0.3 % to 0.08 %) for values above the 90th percentile
compared to the baseline. A summary table with median,
maximum, minimum and standard deviation values for low-
and high-volume conditions is provided in the Supplement.

5 Discussion

The analysis considered the water flowing into the
S. Giustina reservoir and modelled using the GEOTRANSF
hydrological model as a key variable influencing the turbined
water and hence the stored volume. A stochastic approach
considered the simulated turbined outflows and its prediction
bands as the main source of uncertainty to explore a wide
range of possible outcomes in terms of turbined outflow and
stored volume values.

Results show how the amount of water flowing into the
reservoir is deeply affecting both turbined outflows and
hence the stored water, which are expected to reduce in the
future even under the short-term RCP4.5 scenario (−25.9 %).
In the case of long-term scenarios, high reductions are also
expected (−24 % for RCP4.5 and −26.3 % for RCP8.5).

Moreover, results on monthly averages provide useful in-
formation on the timing of possible consequences coming
from reservoir operations and climate change effects. Con-
sidering those months of positive variation of volume (i.e.
January, February, March and April, depending on the con-
sidered scenario) and turbined water outflows (i.e. Decem-
ber, January, February and March, depending on the consid-
ered scenario) provides insights into the need to plan adap-
tation and operational strategies to improve the management
of the S. Giustina reservoir. Months of positive water vol-
ume changes need to be considered periods of preparation
to worsening conditions. Strategies of earlier water accumu-
lation should be considered to face the persistent reductions
throughout the last part of spring, summer, autumn and part
of winter. Such a strategy could prevent downstream condi-
tions of water shortages while also preparing for reductions
in turbined water for hydropower use, especially during sum-
mer and winter months of high electricity peak loads. These
results are in line with other findings in the Alps showing
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Figure 6. Percentage change of turbined water outflows [%] comparing the four climate scenarios to the baseline at a monthly level. For an
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.

Figure 7. Percentage change of volume [%] comparing the four climate scenarios to the baseline at a monthly level. For an interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.

the need for earlier reservoir water accumulation during win-
ter to prevent downstream conditions of water shortages dur-
ing summer (Brunner et al., 2019; Hendrickx and Sauquet,
2013). Although positive percentage variations are expected
to be lower and for fewer months than negative cases, earlier
water accumulation strategies for potentially reducing water
scarcity conditions need to acknowledge and avoid an ex-
acerbation of flood events. Additional storage for flood pre-
vention needs to be ensured and managed together with the
Civil Protection Department to prevent potential downstream
floods.

Negative stored volume variations are supported by the
generalized trends of future water scarcity conditions charac-
terized by an increase in frequency, maximum duration and
severity of low stored volumes for values lower than the 10th
and 20th percentiles and for both RCP4.5 and RCP8.5. These

results point at higher percentage increases in frequency and
severity for values below the 10th percentile, while vol-
ume values below the 20th percentile are expected to last
longer in the case of most extreme events. At the same time,
high-volume conditions decrease in terms of frequency, du-
ration and severity with higher reductions for volume above
the 90th percentile compared to the percentage decrease for
events above the 80th percentile. Only in the case of rela-
tive severity are reductions expected to be higher for values
above the 80th percentile compared to those above the 90th
percentile for the long-term RCP4.5 and RCP8.5 scenarios.
Above the 90th percentile, values are expected to be less
frequent than in baseline conditions while showing smaller
severity reductions compared to values above the 80th per-
centile. Within this context, the calculation of a set of met-
rics in terms of low- and high-volume conditions through a
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Figure 8. Boxplots of metrics of relative frequency, maximum duration and relative severity calculated from volume values lower than the
10th and 20th percentiles. The simulated volume values used for the metric calculation resulted from the Monte Carlo approach by randomly
sampling from the volume prediction bands. The symbol ∗∗∗∗ refers to a p value ≤ 0.0001. For an interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.

Monte Carlo approach considering a moving window of data
(Figs. 8 and 9) allowed for generating a set of possible future
volume time series derived from the simulation prediction
bands. By doing so, the analysis prevented any potential bias
associated with limited data and provided statistically tested
information on increases of low-volume and reductions of
high-volume values shown as boxplots for S. Giustina over
four 30-year climate scenarios.

In general, the results suggest exacerbated risks to reser-
voir operation due to persistent stored volume and turbined
outflow reductions in late spring and summer, autumn, and
early winter that can potentially lead to chronic consequences
lasting more than 1 hydrological year and hence threatening
water supply security, hydropower production and ecosystem
services in the valley.

5.1 Limitations of the study

The applied SDM mainly considers outputs from the GEO-
TRANSF applications integrating the COSMO-CLM climate
projections. However, several assumptions and limitation in
this study are noted.

Accounting for the GEOTRANSF application means not
only relying on a very accurate water streamflow within

the catchment (Bellin et al., 2016) but also considering the
COSMO-CLM climate model for future projections. A wider
range of inflow values driven by a set of climate models
could provide a larger set of results that can be used for fur-
ther stochastic analysis of turbined water and stored volume.
Nevertheless, the climate model has been demonstrated to
represent conditions in mountain regions well (Montesarchio
et al., 2013) and different than other climate models, depicts
general conditions of decreased precipitation over the catch-
ment (Table 4). Hence it provides conservative information
on possible impacts on streamflow and volume management.
The results from the GEOTRANSF application assumed a
conservative condition of upstream water use set at the max-
imum licensed withdrawal values. This information was kept
unchanged for future scenarios, although possible variations
in the future (e.g. from agricultural and touristic uses) may
affect river water flows.

Moreover, the presented study considered precipitation,
water flow and volume trends over a 30-year period consid-
ering their monthly average values, important for long-term
large-reservoir management. For this reason, conditions of a
high volume with a very short duration might have been po-
tentially underrepresented.
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Figure 9. Boxplots of metrics of relative frequency, maximum duration and relative severity calculated from volume values greater than the
80th and 90th percentiles. The simulated volume values used for the metric calculation resulted from the Monte Carlo approach by randomly
sampling from the volume prediction bands. The symbol ∗∗∗∗ refers to a p value ≤ 0.0001. For an interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.

The statistical models are an effective tool to replicate past
observations of water volume and turbined water outflows.
Applying such a regression to future conditions of predic-
tors, reservoir management in terms of turbined outflow as
well as minimum ecological flows was assumed to be sta-
tionary over time. Nevertheless, such a constraint is justified
by the high uncertainty associated with future changes in hy-
dropower production patterns affected by societal conditions
(e.g. energy price fluctuations; Gaudard et al., 2014; Ranzani
et al., 2018). Moreover, the minimum ecological flow was
always set to the values established by law, although critical
conditions in water availability (e.g. streamflow) may lead to
extraordinary changes in minimum flow which can affect the
stored volume as well as the turbined outflow.

Finally, the selected models considered a few tested and
selected variables. Although other variables play important
roles within the management of the reservoir at different tem-
poral resolutions (e.g. hourly energy market price), the simu-
lation on monthly aggregated values supported the objective
of analysing long-term variations in the stored volume for the
large S. Giustina reservoir.

6 Conclusions

The SDM represents the overall behaviour of the system in
terms of turbined outflow (water demand) and future condi-
tions of reduced water availability over a 30-year period well.
Changes in water availability can deeply affect the actual tur-
bined water, which plays a strategic role in the economy of
the province, as in the whole Alpine region. Moreover, reduc-
tion in the water streamflow can have consequences in terms
of ecological hazards and water supply quality downstream
of the reservoir. The S. Giustina reservoir plays a crucial
role in buffering water variations in the Noce catchment and
downstream. Due to its size, type and position it is strategic
for hydropower regulation and hydrologically disconnecting
upstream with downstream river flow.

The modelling chain from climate change projections to
the hydrological model water flow output and their use in the
stochastic SDM provided to be a quick and effective tool to
explore trend conditions of the S. Giustina reservoir volume
and turbined outflows.

Results of both stored volume and turbined outflow sug-
gest that even under RCP4.5 in the short-term scenario, re-
ductions in terms of volume and turbined outflow will be se-
vere with monthly average reductions for outflow and vol-
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ume values respectively from April and May onwards and
persisting throughout the year. This period of negative vari-
ations should be considered for the adoption of adaptation
strategies focusing on water demand reduction. While con-
sidering months of expected increases in water availability as
preparation periods, implementing strategies of earlier reser-
voir water accumulation is necessary while preparing for
persistent conditions of lower availability compared to the
baseline period. Such a strategy could prevent downstream
conditions of water shortages during summer, autumn and
part of winter while also preparing for reductions in turbined
water for hydropower especially during summer and winter
months of high electricity peak loads. Adaptation strategies
should consider the results on generalized future conditions
with an increase in frequency of months, maximum num-
ber of consecutive months and relative severity for all sce-
narios of low volume below the 10th and 20th percentiles.
Consistently with these projections, frequency, duration and
severity metrics for high-volume events below the 80th and
90th percentiles are expected to decrease. These results call
for adaptation strategies of coordinated actions across those
socio-economic sectors relying on abundant water demands
(e.g. for agriculture) to face more frequent and longer periods
of higher reduction of stored volume compared to the past.

Future model expansions will include water demand from
multiple human activities (e.g. agriculture and domestic) and
their effects on water availability reduction from upstream
to downstream. By doing so, SDM models can support the
understanding of criticality connected to unsustainable wa-
ter demands and anticipate critical conditions, in order to in-
form dam managers and local authorities on the timing and
importance of climate change adaptation strategies. More-
over, the use of open code and libraries for the assessment of
variables’ interactions through statistical models make SDM
transferrable to other cases at the interregional/transnational
scale in combination with available water flows datasets
and open hydrological models (e.g. Copernicus, LISFLOOD
model).

Finally, this analysis sheds light on the need to consider
future changes in water availability and their consequences
on already existing human activities relying on abundant wa-
ter resources, thus being unprepared to quickly adapt to fu-
ture climate impacts. Results should be considered in future
plans to change S. Giustina management practices to reduce
climate change impacts on reservoir operations. The findings
presented reinforce the Alpine region’s water tower vulner-
ability to supply water and ensure its use for power pro-
duction. This is the first step for more comprehensive wa-
ter scarcity assessments in order to provide policymakers
with information in line with the European Water Frame-
work Directive on potential adaptation strategies to gain sys-
temic leverage effects on sustainable water management and
climate change adaptation in the Alps (Alpine convention,
2013; European Commission, 2018, 2021).
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