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Abstract  15 

Water management in mountain regions is facing multiple pressures due to climate change and anthropogenic activities. This 

is particularly relevant for mountain areas where water abundance in the past allowed for many anthropogenic activities, 

exposing them to future water scarcity. Here a n innovative stochastic System Dynamics Modelling (SDM) was implemented 

to explore water scarcity conditions affecting the stored water and turbined outflows in the S.Giustina reservoir (Province of 

Trento, Italy). The analysis relies on a model chain integrating outputs from climate change simulations into a hydrological 20 

model, which output was used for theto test and select creation of statistical models into a SDM for replicating turbined water 

and stored volume within the S.Giustina dam reservoir. The study aims to at simulatinge future conditions of the S.Giustina 

reservoir in terms of outflow and volume of turbined water and stored volume as well as implementing a set of metrics to 

analyse volume extreme conditions.  

Average results over on the whole 30-years slices of simulations show that even under the RCP4.5 short-term scenario (2021-25 

2050) future reductions for stored volume and turbined outflow are expected to be severe compared to the 14 years baseline  

(1999-2004, 2009-2016; -245.9% of turbined outflow and -19.9% of stored volume). The greatestSimilar reductions are 

expected also for RCP8.5 long-term scenario (2041-2070; -26.23% of turbined outflow and -20.8% of stored volume), mainly 

driven by the projected precipitations having a similar but lower trend especially in the last part of the 2041-2070 period. At 

monthly level, stored volume and turbined outflow are expected to increase for for December to March (outflow only), January, 30 

February, March and to April (volume only) depending on scenarios and up to +32.5% of stored volume in March for RCP8.5 

2021-2050. Reductions are persistently occurring for the rest of the year from April to November for turbined outflows (down 
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to minima of -56.3% for turbined outflow in August) and from May to December for stored volume (down to and -44.1% for 

stored volumein June). Metrics of frequency, duration and severity of future stored volume values suggest a general increase 

in terms of low volume below the 10th, 20th percentiles and a above the 80th and 90th percentiles suggest a general increase in 35 

terms of low volume and decrease of high volume conditions above the 80th and 90th percentiles. These results point at higher 

percentage increases in frequency and severity for values below the 10th percentile, while volume values below the 20th 

percentile are expected to last longer. Above the 90th percentile, values are expected to be less frequent than baseline conditions, 

while showing smaller severity reductions compared to values above the 80th percentile. These results call for the adoption of 

adaptation strategies focusing on water demand reductions. Months of expected increases in water availability should be 40 

considered as periods for water accumulation while preparing for potential persistent reductions of stored water and turbined 

outflows. This study provides results and methodological insights that can be used for future SDM upscaling to integrate 

different strategic mountain socio-economic sectors (e.g., hydropower, agriculture and tourism) and prepare for potential multi-

risk conditions. 

Introduction 45 

Mountains serve as “water towers” providing freshwater to a large portion of the global population (IPCC, 2014, 2018; 

Kohler et al., 2014; United Nations, 2012; Viviroli et al., 2007). Climate change affects mountain environments more rapidly 

than many other places, with impacts on glaciers, snow precipitation, water flows and on the overall supply of water (Viviroli 

et al., 2011; Barnett et al., 2005). These impacts call for the need to shift water management towards more sustainable and 

adaptive practices. Adaptation delays and unpreparedness to water availability changes can spread consequences across 50 

multiple systems, from natural ecosystems to anthropogenic activities relying on water (van den Heuvel et al., 2020; Mehran 

et al., 2017a; Fuhrer et al., 2014; Xu et al., 2009).  

The European Alps are among those mountain regions where water abundance in the past allowed for the development of 

activities with intensive water use such as large hydropower plants and irrigated agriculture, making them susceptible to future 

impacts regarding reduced water availability (Beniston and Stoffel, 2014; Majone et al., 2016; Permanent Secretariat of the 55 

Alpine Convention, 2009) (Majone et al., 2016; Beniston and Stoffel, 2014; Permanent Secretariat of the Alpine Convention, 

2013). That is, in many Alpine regions the socio-ecological systems are unprepared for water scarcity and hence the impacts 

of water shortage can be more severe (Di Baldassarre et al., 2018).  

Previous studies have assessed the hydrological processes involved in mountain environments, looking at the overall 

hydrological dynamics (Bellin et al., 2016) or specifically assessing topics such as glacier melt and runoff (Huss and Hock, 60 

2018; Farinotti et al., 2012), and snowpack dynamics (Etter et al., 2017; Wever et al., 2017). However, the interplay connecting 

natural processes and socio-economic activities, sometimes known as sociohydrology (Di Baldassarre et al., 2015; Sivapalan 

et al., 2012)  calls for further research. There is a need to implement methodologies with the ability to unravel this complexity 

in order to,  and find which adaptation strategies can effectively tackle climate-related water issues. 
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System Dynamics Modelling (SDM) is a methodology used to improve the understanding of complex systems and their 65 

dynamic interactions. It makes use of four main modelling elements: (i) stocks (system state variables) – ‘accumulating’ 

material (e.g. water in a reservoir); (ii) flows (variable’s rate of change) –moving material into and out of stocks (e.g. river 

inflows and outflows), (iii) converters - parameters influencing the flow rates (e.g. temperature variable acting to alter 

evaporation from a water body) and (iv) connectors – as arrows transferring information within the model (e.g. linking the 

monthly effects on reservoir’ water discharges; Sterman et al., 2000). The combination of these elements is applied to represent 70 

temporal changes in system elements accounting for endogenous and exogenous influences on system behaviour. This concept 

encourages a system thinking approach, splitting large systems into sub-systems and progressively increasing their interactions 

and complexity (Gohari et al., 2017; Mereu et al., 2016). SDMs can combine different metrics and indices, improving models 

by adding social, economic and environmental sectors (Terzi et al., 2019). Moreover, SDM can implement a graphical 

interface, supporting the visualization of interactions and feedback loops during participatory approaches.  75 

While SDM was developed to improve industrial business processes (Forrester, 1971), it has been successfully applied to 

model human and natural resources interactions (Meadows et al., 2018). Moreover, SDM applications span a wide range of 

problems, from climate change risk assessments (Duran-Encalada et al., 2017; Gohari et al., 2017; Masia et al., 2018), water 

management issues (Davies and Simonovic, 2011; Gohari et al., 2017), disasters studies (Menk et al., 2020; Simonovic, 2001, 

2015), water-energy-food nexus studies (Sušnik et al., 2018; Davies and Simonovic, 2008) and applications fostering 80 

participatory modelling (Malard et al., 2017; Stave, 2010). SDM has therefore been proved to be a useful tool to study complex 

interactions and dynamic behaviour in a wide variety of complex systems (Ford, 2010). 

However, SDM also shows some limitations, such as (i) the limited spatial representation since it works with lumped 

regions, although recent research has coupled SDM to GIS to account for spatially explicit system dynamics (Neuwirth et al., 

2015; Xu et al., 2016); (ii) the ease of creating very complex what-if scenarios that can be difficult to validate, but which are 85 

can be useful to explore systems behaviour under potential futures, giving general ideas of likely system trajectories; (iii) the 

fact that applications usually account for deterministic expert-based assumptions on existence and type of variable’s 

interactions (Mereu et al., 2016; Sahin and Mohamed, 2014; Sušnik et al., 2013), although statistical analysis of trends and 

interactions are crucial under uncertain climate change and risk assessments and recent analyses have been used for 

probabilistic SDM output (Sušnik et al., 2018).  90 

These limitations call for methodological improvements. The combination of statistical methods with SDM represent a 

valuable integration to overcome the current limitations involved in deterministic expert-based assumptions of variables 

interactions and dependencies. Existing studies already considered the need to implement variables statistical testing within 

SDM (Taylor et al., 2009; Ford, 2005; Taylor et al., 2009) and Tthis application improvement allows to test and investigate 

them variables interactions under future uncertain of water availability conditions and explore potential impacts, water disputes 95 

and crises. 

This study focused on explores the S.Giustina reservoir in the Noce catchment, Province of Trento, Italy, due to its 

important function for hydropower production and regulating water availability downstream. While water has always been 
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recognized as abundant in the province, Ttemperature increase, loss of glacier mass volume and decreased snow precipitation 

during winter are among the causes of reduced summer discharge and water availability both in mountain areas and 100 

downstream. At the same time, numerous activities have flourished in the Noce catchment such as increasing hydropower 

plants, agricultural production, urbanisation, industrial activities and more intense tourism all demanding large water amounts 

to satisfy their needs. Tensions for water allocation have recently arisen asking for a fair use of the resource among different 

actors, and at the same time (e.g. orchards irrigation coinciding with rising tourist water demand). In particular, associations 

and civil society groups (e.g. local association for the Noce river safeguard: https://nocecomitato.wordpress.com/) were 105 

established at provincial level showing their concerns about ecological impacts of further exploitation (i.e. hydropower plants). 

For these reasons, cconsidering current conditions and future climate change effects projections leading to critical levels of 

low and high stored volume and turbined outflows for hydropower production in the S.Giustina dam reservoir were assessed. 

Indices for frequency, duration and severity of the reservoir’s critical states and its reduced water availability are explored and 

discussed. By doing so, the aim is to develop and demonstrate a stochastic SDM as a quick and effective tool to assess climate 110 

change impact of water scarcity in one of the main reservoirs in the north-east of the Italian Alps supporting its adaptation 

planning. Such informationresults could inform water operators, local and provincial authorities fostering a discussion on the 

implementation of climate change adaptation strategies in line with the Water Framework Directive (European Parliament & 

Council, 2000). 

 115 

Section 1 focuses on the case study characteristics and the recently arisen water management challenges. Section 2 

describes the methodology, data and scenario used for the simulations. Section 3 focuses on the results of SDM application 

for both the baseline and future projections. Section 4 involves the discussion of the results and its limitations. Future 

developments and applications are described in section 5. 

1 Case study 120 

The Noce river (Province of Trento, Italy) in the south-eastern part of the Alps (Figure 1) is a tributary of the Adige River, 

the second longest river in Italy. The Noce river basin is a typical Alpine basin with an overall area of 1367 km2 and an average 

discharge of 33.78 m3/s at the basin closure. It is characterized by intensive anthropogenic activities including hydropower 

plants in the upper part of the catchment relying on glacier melting, to intensive apple orchards shaping the landscape of valley 

bottoms. It also hosts a significant number of tourists with peaks of water demands during winter and summer time for sport 125 

activities (i.e. skiing, hiking and kayaking). The hydropower sector is the main water user (77.81% of the licensed water 

withdrawals is allocated to small hydropower plants with a nominal capacity <3MW) followed by agriculture (16.394%), 

domestic uses (34.98%), fish-farming (0.9%), industry (0.449%), snowmaking (0.328%) and others (0.215%; Provincia 

Autonoma di Trento, 2018). 

https://nocecomitato.wordpress.com/
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Figure 1 - Noce river basin and main characteristics. The black arrow specifies the Adige River flow direction. 

Water has always been considered abundant in most regions in the Alps and only recent events of water scarcity in 2015 

and 2017 raised wider concerns about water quantity and quality (Stephan et al., 2021; Chiogna et al., 2018; Hanel et al., 2018; 

Laaha et al., 2017). Temperature increase, loss of glacier mass volume and decreased snow precipitation during winter are 

among the causes of reduced summer discharge and water availability both in mountain areas and downstream. At the same 135 

time, numerous activities have flourished such as increasing hydropower plants, agricultural production, urbanisation, 

industrial activities and more intense tourism all demanding large water amounts to satisfy their needs. Tensions for water 

allocation have recently arisen asking for a fair use of the resource among different actors, and at the same time (e.g. orchards 

irrigation coinciding with rising tourist water demand). In particular, associations and civil society groups (e.g. local 

association for the Noce river safeguard: https://nocecomitato.wordpress.com/) were established at provincial level showing 140 

their concerns about ecological impacts of further exploitation (i.e. hydropower plants). Within this context, climate change 

effects at regional level have already been recognized acting on the current water balance and triggering multiple impacts on 

a wide range of economic activities relying on water use (La Jeunesse et al., 2016; Zebisch et al., 2018). 

In the Noce river basin, the S. Giustina reservoir provides a large buffer for water resources regulation. The reservoir has 

a storage capacity of 172 Mm3 (equal to a maximum net available volume of 152.4 Mm3), the largest reservoir volume within 145 

the Trentino-Alto Adige region. It was built in the 1940’s and 1950’s for hydropower purposes. Nowadays, the reservoir has 

a multipurpose function, producing a large amount of energy (i.e. installed power of 108 MW), and regulating water flow for 

downstream users and providing water for irrigation. Moreover, the local water use plan (Provincia Autonoma di Trento, 2006) 

established from 2009 onwards a minimum ecological flow threshold ranging from 2.625 to 3.675 m3/s (the only water flow 

downstream the dam) according to each month of the year to continuously sustain fluvial ecosystems. 150 

https://nocecomitato.wordpress.com/
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Within this context, a better understanding of the complex interactions in the S.Giustina water management represents a 

crucial step to prepare to future impacts of climate change on freshwater resources. The representation of connections and 

interactions using SDM can help to depict the S.Giustina reservoir dynamics and its responses to future climate change 

pressures. Such information could inform water operators, local and provincial authorities fostering a discussion on the 

implementation of climate change adaptation strategies in line with the Water Framework Directive (European Parliament & 155 

Council, 2000). 

2. Methods and exploited material 

This study focuses on a novel refinement of SDM applications implementing a stochastic assessment of variable 

interactions for robust validation of uncertainties and trends , particularly useful in the field of risk assessment. Conceptual 

diagrams of system variable interactions were elaborated using the Stella software (https://www.iseesystems.com/) while 160 

statistical correlations, dependencies and tests were analysed in R (Duggan, 2016; R Core Development Team, 2019). This 

innovative combination contributes to improving SDM analysis accounting for the uncertainty and variability associated with 

past and future water flow data. 

The methodological approach here presented is composed of 5 sequential phases, from (1) the SDM set-up, (2) the analysis 

of SDM variables’ interactions, (3) SDM model calibration and validation on historical observations (4) the integration of 165 

future projections in the SDM and test of statistical significance changes to the baseline and finally (5) the characterization of 

future low and high stored water critical conditions through a MonteCarlo sampling approach. Each of the stages is described 

in this section. 

 

2.1 System dynamics modelling set-up and input data 170 

The SDM was set-up integrating multiple sources of data (e.g. observations, modelled values and climate projections) to 

replicate past and to simulate future S.Giustina turbined water and stored reservoir volume. The model chain considered for 

this objective consists of 3 main modules, namely climate projections in box 1, hydrological model in box 2 and the SDM in 

box 3 (Figure 2). 

https://www.iseesystems.com/)
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Figure 2 - Models’ chain considered in this study. Box 1 includes the climate modelling used as input for the hydrological model 

simulation of water streamflow in box 2. Box 3 contains the SDM components of stock (S.Giustina reservoir), flows (inflow and three 

outflows), converters (month of the year, day of the week) and connectors (red arrows) considered to simulate stored water in the 

reservoir and the turbined outflow for hydropower production considering a . baseline from 1999 to 2016 with a data gap from 2005 180 
to 2008. Sources: adapted from Pham et al., 2018; Ronco et al., 2017. 

The climate projections provide information stemming from global climate models downscaled to regional level, and bias 

corrected through the quantile mapping method (Maraun, 2016; Teutschbein and Seibert, 2012) using the downscaled daily E-

OBS dataset at 1 km resolution (Cornes et al., 2018) to better simulate climate local conditions. The regional climate model 

COSMO-CLM (Climate Limited-area Modelling) was selected for its spatial resolution of 0.0715° × 0.0715° (≈ 8km×8km) 185 

allowing local level climate impact assessment (Rockel and Geyer, 2008). Such model information was developed by the CLM 

community and provided by Euro-Mediterranean Centre on Climate Change (CMCC) as an external component for the 

application to the Noce catchment (Bucchignani et al., 2016). In the case of climate data from COSMO-CLM, precipitation 

and temperature baseline data were available from 1971 to 2005, they were also used to characterize the Noce catchment 
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climatology and compare the baseline with future conditions of precipitation and temperature for the two Representative 190 

Concentration Pathways (RCPs). 

Temperature and precipitation daily data were used as input to the physically-based model “GeoTransf” (external 

component, Bellin et al., 2016) together with topographical information to replicate streamflow conditions of the Noce river 

(box 2 in Figure 2). These two boxes were obtained from simulations developed from the OrientGate project 

(http://m.orientgateproject.org/) and used as an input to focus on the S.Giustina reservoir through the SDM (box 3 in Figure 195 

2). GeoTransf was calibrated and validated on past daily water flow data in the case study area considering a baseline time 

range from 1981 to 2010 with a performance of Nash-Sutcliffe efficiency coefficient of 0.88 for calibration and 0.73 for 

validation at the S.Giustina control section (Bellin et al., 2016; Majone et al., 2016). GeoTransf provides a description of the 

water flow within the Noce alpine river catchment relying on precipitation and temperature data (from box1), land use and soil 

type (http://pguap.provincia.tn.it/#), streamflow gauge data (https://www.floods.it/) and on glacier extension 200 

(https://webgis.provincia.tn.it/). Water withdrawals for anthropogenic uses were modelled within GeoTransf at sub-catchment 

level accounting for their licensed number and the physical constraints from the existing water infrastructures. Moreover, 

GeoTransf was applied with COSMO-CLM precipitation and temperature scenarios from 2021 until 2070 over the Noce 

catchment to assess future conditions of river discharge at local level for the RCPs 4.5 and 8.5 (Bucchignani et al., 2016). 

While climate was considered as the only drivers of change in future simulations, anthropogenic water withdrawals were 205 

assumed at their maximum physical discharge in order to account for possible future increases of water demands from sectors 

such as domestic and agricultural needs, sectors recognised to lead possible increases in demand (Bellin et al., 2016; La 

Jeunesse et al., 2016). 

The stochastic SDM relied on the inflow values from GeoTransf applications as one input variable. Other input variables were 

initially considered and tested as additional inputother variables data in the SDM to replicate water turbined and stored volume 210 

(excluded to the modelling due to their low predictive performance, further information reported in the Supplementary 

material). The baseline simulation period was constrained by the reservoir volume data availability over 14 years with a range 

1999-2004 and 2009-2016, and a data gap from 2005 to 2008. For this reason, the SDM was forced with past observations of 

inflow measured values of inflows to S.Giustina (with data available for the period 1981-2016) were considered and with 

GeoTransf values for future simulations due to the missing limited temporal overlap of past GeoTransf values (over 1981-215 

2010)  with observations of the S.Giustina stored volume (1999-2004; 2009-2016, Table 1). The SDM was run at a daily time 

resolution to replicate the different outflow’s regulations (e.g. minimum ecological flow and emergency outflows). Finally, 

simulations were aggregated to monthly values being a suitable time resolution for supporting reservoir volume management 

over long periods considering climate change effects (Solander et al., 2016). 

Table 1 - Selected variables within the SDM (box 3 in Figure 2) for the S.Giustina reservoir. 220 

Data type Variable name Time range Source 

Inflows to S.Giustina [m3/s] Inflows 1981-2016 

http://m.orientgateproject.org/
http://pguap.provincia.tn.it/
https://www.floods.it/public/DatiStorici.php
https://webgis.provincia.tn.it/wgt/?lang=it&topic=8&bgLayer=sfondo&layers=ammcom,tipi_forestali_reali,ghiacciai_2015,fotointer,ghiacciai_2003&layers_visibility=false,true,false,false,true&layers_opacity=1,0.5,1,1,1&catalogNodes=40,41&X=5134550.24&Y=634908.92&zoom=3
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S.Giustina outflows for hydropower 

use [m3/s] 
Outflow 1981-2016 

Province of Trento – Agency for 

water resource and energy 

 

S.Giustina volume [Mm3] Volume 
1999-2004 

2009-2016 

Minimum ecological flow [m3/s] MEF 1999-2016 

Emergency releases [m3/s] Releases 1981-2016 

2.2 Variables’ interaction analysis 

This analysis aims to statistically describe the existence and type of interactions among the systems variables. For the 

simulations of turbined outflows different statistical models and variables interactions were tested and recursively implemented 

to simulate the stored water in S.Giustina applying the reservoir water balance equation. 

2.2.1 Hydropower outflows 225 

The simulation of turbined outflows from the S.Giustina reservoir for hydropower production considered regressions of 

different input variables (e.g. inflow, hydroelectric energy market price, temperature, precipitation and water outflows from 

an upstream dam reservoir) and statistical models, including linear regressions and more flexible generalized additive models. 

After an initial exploratory data analysisscreening, the variables hydroelectric energy market price, temperature, precipitation 

and water outflows from an upstream dam reservoir were rejected due based on criteria of (i) data availability to the maximum 230 

target time period, (ii) correlations among the explanatory and response variables and (iii) the selection of the most 

parsimonious model. to the low predictive performance and limited temporal overlap with the response variables affecting a 

robust simulation and validation of historical values of S. Giustina turbined outflows. Further information on input variables, 

their tested combinations for model selection and link to the open code is reported in the Supplementary material.  

The best regressionmodelss for each model type are reported in Table 2. The “lme4” package in R (Bates et al., 2015) was 235 

applied for linear mixed effects models while the “mgcv” package in R (Wood, 2017; Wood and Scheipl, 2020) for the 

generalized additive models. Model #2 in Table 2 was selected as the best regression model for its performance of 0.75 

adjusted-R2 and 16.57 Mm3 RMSE at monthly scale (daily scale of 0.42 adjusted-R2 and 0.95 Mm3 RMSE). (daily resolution) 

increasing to the highest performance among the other models of 0.75 adjusted-R2 and 16.57 Mm3 RMSE at monthly 

resolution,In particular, the linear mixed effect model showed its ability to account for weekday and monthly variations as 240 

important variable to capture weekly and seasonal reservoir management and while its showing lower proneness to overfit 

calibration data compared to flexible non-linear models. The model simulated water diverted to the turbines (Qout) as a function 

of water flowing into the reservoir (Qin), the volume state in the previous day (V(t – 1), through the “lag” operator to shift the 

time series back by 1 time step), the day of the week and the month of the year. As fixed effect the water flowing into the 

reservoir and the volume in the previous day were here considered accounting for the linear relation with the water turbined. 245 
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As a random effect to capture differences among different groups, day of the week and month of the year were selected to 

account for the recurrent water volume variations occurring according to the day of the week group and months group 

(distinguished by vertical bars in linear mixed effect models). By doing so, it was possible to describe the reservoir water 

volume combining the GeoTransf model outputs with statistical analysis aiming to explore the reservoir volume vulnerability 

to future changing conditions. 250 

Table 2 - Best of each model type and their performance indicators (R2 and the root mean square error, RMSE) calculated at daily 

resolution data and on monthly resolution averaged data and at daily resolution in brackets(R2 and the root mean square error, 

RMSE). The best selected model is reported in bold. The syntaxes follow that from the R packages “lme4” (for the linear mixed 

effects model), “mgcv” (for the generalized additive models) with the “bs” term set to “re” refer to the random-effect in the 

generalized additive mixed model; “s” is the function used in definition of smooth terms within the gam model formulae. Full list of 255 
tested models and their features is reported in the Supplementary material. 

   
Monthly  averaged resolution 

(daily) 

Model types # R syntax Adjusted-R2 RMSE (∙106) 

Multi-linear model 1.  lm(Outflow ~ Inflows + lag(Volume)) 0.63 (0.35) 19,.86 (1.03) 

Linear mixed effect 

model 
2.  

lmer(Outflow ~ Inflows + lag(Volume)+ 

(1|weekday) + (1|month)) 
0.75 (0.42) 16.57 (0.95) 

Generalized additive 

model 
3.  gam(Outflow ~ s(Inflows) + s(lag(Volume)) 0.61 (0.50) 20.31 (1.07) 

Generalized additive 

mixed model 
4.  

gam(Outflow ~ s(Inflows) + s(lag(Volume)) + 

s(weekday, bs="re")+s(month, bs="re")) 
0.65 (0.54) 19.27 (1.02) 

2.2.2 Reservoir volume 

Simulated outflow values were used at each time step to replicate the volume stored through the water balance equation 

Eq. (1): 

dV(t)

dt
= Qin(t) − Qout(t) − Qmef(t) − Qrels(V)       (1) 260 

where Qin is the water flowing into the reservoir,  Qout the water diverted to the turbines, Qmef the minimum ecological flow 

released and Qrels the water outflow for emergency flood releases. In particular, Qmef was set to 2.1 m3/s in case of simulations 

before 2004 while equal to 2.63 m3/s for January-March and December, 3.68 m3/s for April-July, October and November, 

3.215 m3/s for August and September from 2009-2016 (http://pguap.provincia.tn.it/#). Moreover, the same values of minimum 

ecological flow were set as well as for in future simulations assuming no changes in minimum discharges for the ecological 265 

flow in the future. A simplified operational rule was implemented for emergency releases from flood gates considering the 

maximum daily emergency discharge value of 168.54 m3/s in case of daily stored volume greater than or equal to 159.30 

Mm3. 

http://pguap.provincia.tn.it/
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2.3 Model calibration and validation 

The statistical model for turbined water was calibrated and validated over 5061 days of available data for the baseline 270 

period, representing a total of 14 years from 1999 to 2004 and from 2009 to 2016. A forward time-window approach was 

applied as a cross-validation technique to better estimate model fitting (i.e. based on training data) and predictive performance 

(i.e. based on temporally independent test data) using root mean square error (RMSE). The applied methodology is based on 

multiple separations of training and testing data sets. Within the first repetition, the predefined model setups (i.e. turbined 

outflows models) is calibrated using a subset of the original data that relates to the first 3650 days of available data. The derived 275 

relationships are then tested using both training data (i.e. fitting performance) and the data set that relates to the remaining (not 

yet) considered days (i.e. predictive performance). The following 1410 repetitions are based on the same procedure, but on 

increasingly larger training data sets (i.e. consecutively adding 1 day within the forward time-window approach). The mean 

value for RMSE was calculated considering all 1411 repetitions over the increasingly larger data set providing a more robust 

estimation of model performance and its variability using multiple temporally independent subsets of the original data (Hastie 280 

et al., 2009; Kohavi, 1995; Tashman, 2000; Varma and Simon, 2006). This methodology allows to overcome some limitations 

of common one-fold non-temporal validation methods (splitting of training and test data randomly; e.g. hold-out validation) 

associated with data temporal dependencies (i.e. autocorrelation) and an arbitrary choice of training and validation subsets. A 

major advantage of such multi-fold partitioning strategies is the possibility to exploit all the available data for the generation 

of the final prediction model. 285 

2.4 Future projections and statistical testing 

Future water inflow to the reservoir (coming from the GeoTransf application) were used to simulate future turbined outflow 

and volumes stored in the S.Giustina reservoir. GeoTransf simulations considered unchanged maximum water withdrawals in 

the Noce catchment in the future and although possible variations in the future may affect river water flows (e.g. from 

agricultural and touristic uses) this set-up provided a conservative assumption accounting for future water demand increases, 290 

such as from domestic and agricultural needs, for in future scenarios. Moreover, integrated downscaled COSMO-CLM climate 

scenarios were considered (Bellin et al., 2016; Bucchignani et al., 2016). Such climate projections have been demonstrated to 

well represent climate forcing variables (i.e. precipitation and temperature) over Alpine regions (Montesarchio et al., 2013). 

The RCP4.5 and 8.5 scenarios were selected according to the IPCC AR5 (IPCC, 2014). Simulations stretched over two 30-

year time horizons to represent short-term (2021-2050) and long-term (2041-2070) future climate conditions, affecting the 295 

Noce river flow, and the S.Giustina reservoir management. 

Differences between the future and baseline simulated water turbined and volumes stored were statistically tested through the 

Wilcoxon Rank Sum test, a non-parametric test selected since it allows to deal with non-normally distributed, unpaired groups 

of data (Hollander and Wolfe, 1973). It was implemented to test whether future predicted values of stored volume were 
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significantly different than the baseline and rejecting the null hypothesis (i.e. same tendencies among the tested groups) in case 300 

of a p-value ≤ 0.05. 

2.5 Future critical conditions characterization 

This study explored and analysed critical conditions of low and high future stored volume considering the 10 th, 20th and 

80th, 90th percentile thresholds calculated from water stored from the baseline (1999-2004, 2009-2016). Such thresholds 

provided a symmetrical reference of extreme conditions and were already identified in previous studies as significant levels to 305 

assess critical states in hydrological studies (Yilmaz et al., 2008). Considering these thresholds, a set of different metrics were 

calculated to characterize frequency, duration and severity of future critical volume conditions (Table 3) based on existing 

metrics used to describe extreme events (Vogt et al., 2018). In particular, frequency was considered both in absolute and 

relative terms. The absolute frequency of as the ratio of critical low- and high- volume conditions were estimated as the overall 

number of months over 14 years below or above the selected threshold used to define the level of volume critical conditions 310 

over 14 years. The relative frequency was calculated as the ratio of absolute frequency over 14 years, hence describing yearly 

conditions of extreme events. Maximum Dduration was described considering the maximum number of consecutive months 

below or above the selected thresholds. The severity metric describes the accumulated deficit/surplus of simulated volume 

values with respect to the total volume stored over the a 14-year analysis window (relative severity). This last metrice final 

values provides information on the fraction of the total stored volume in deficit or surplus as average annual severity. 315 

Table 3 - Metrics implemented to characterize extreme events of low and high volume stored in the S.Giustina reservoir for RCP4.5 

and 8.5 future projections, adapted from Vogt et al., 2018. 

# Metrics Unit Description 

1 Absolute 

frequency 

Months Number of months below or above the selected thresholds used to define the level of 

volume critical conditions 

21 Relative 

frequency 

Months/year Number of months below or above the selected thresholds used to define the level of 

volume critical conditions over a 14-year period 

23 Maximum 

duration 

Months Maximum number of consecutive months below or above the selected thresholds used 

to define the level of volume critical conditions 

34 Relative 

severity 

% Computed as the sum of the differences, in absolute values, between simulated volume 

values and the selected thresholds over the total stored volume and 14-year period. Si =

∑|Vi|<Threshold

∑Vi∙14
 

 

Moreover, a Monte Carlo approach was implemented to account for the uncertainty related to the simulations in future 

conditions. The water balance equation considered the lower and upper turbined outflow from the prediction bands to generate 320 
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a range of simulated volume values. A set of 1000 replications of 30 years-length per each future climate scenario were 

generated by randomly sampling from the simulated volume values and their prediction bands. In addition, for each replication 

a subset was iteratively extracted considering a time-window of 14 years moving progressively at a monthly time step along 

the simulated 30 years of future volume. Extreme conditions metrics of relative frequency (absolute and relative), maximum 

duration and relative severity were calculated on the subset at each iteration. This procedure allowed to compare the calculated 325 

metrics of each subset replication with the 14 years of available data for the baseline volume (1999-2004, 2009-2016). By 

doing so, it was possible to account for the uncertainty related to the modelling and providing a wider range of low and high 

future volume values for a more robust characterization of their conditions. 

3 Results 

3.1 Baseline period 330 

The linear mixed-effect model was used to replicate observations of turbined water outflows from the S.Giustina reservoir 

(Figure 3). The model was run at a daily time step and values aggregated and reported at monthly resolution to support reservoir 

management over long period considering climate change effects (Solander et al., 2016). The model gave an R2= 0.75, and 

mean RMSE of 16.57 Mm3. Figure 3 shows the modelled and real values, with y-scale ranging from 0% (i.e. no turbined 

water) to 100% (i.e. maximum turbined water of 176 Mm3∙month-1 for 31 days of full turbine operations). Coloured bands 335 

outline areas above or below the percentile values defining critical thresholds that were considered throughout the analysis. 
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Figure 3 - S.Giustina water diverted to the turbines from 1999 to 2016. Modelled values (red line) and real (green line). Adjusted-

R2= 0.75, mean RMSE= 16.57 Mm3. Coloured bands outline areas of values lower than the 10th, 20th and greater than the 80th and 

90th percentiles.  340 

The modelled turbined water was then used in the iterative implementation of the water balance equation together with the 

operational rules for the minimum ecological flow and the emergency releases. Figure 4 shows the modelled and real volume 

ranging from 0 to 100% of stored volume (equal to 159.30 Mm3, maximum volume allowed for flood prevention), where the 

simulation of the stored volume resulted in a R2= 0.60, and mean RMSE of 19.74 Mm3∙month-1. In Figure 3 and 4 the general 

behaviours of real turbined outflows and stored water were replicated by the regression models. Some specific very high and 345 

low conditions were not completely represented or missed due to abrupt changes in the reservoir management, such as the 

2001 summer peak of turbined outflows in Figure 3, due to persistent inflows to S.Giustina forcing dam managers to turbine 

at the maximum outflow for 23 days consecutively, as well as the low values in spring 2003 in Figure 4, when the S.Giustina 

reservoir was emptied due to construction works on a penstock. 

 350 

Figure 4 - S.Giustina stored volume values from 1999 to 2016, modelled values (red line) and real (blue line). Adjusted-R2= 0.60, 

RMSE= 19.74 Mm3. Coloured bands outline areas of values lower than the 10th, 20th and greater than the 80th and 90th percentiles.  

3.2 Future projections and statistical testing 

Future GeoTransf model results forced by the COSMO-CLM climate projections depict a situation of general decreases in 

precipitation and water inflowing to the reservoir (Table 4 and Figure 5). In particular, changes in RCP4.5 are rather similar 355 

for short- and long-termsHowever, whereas changes are larger in the long-term for RCP8.5 compared to short-term. These 

results are consistent with the precipitation trends from COSMO-CLM projections with RCP8.5 showing higher values of total 

precipitation in the short-term but a higher decrease on the long-term compared to RCP4.5 (Bucchignani et al., 2016). such 
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decreases differ for the two climate change scenarios. RCP4.5 scenario shows a greater percentage reduction of inflow, outflow 

and volume (-19.74, -25.86 and -19.91% respectively) in the short-term compared to the long-term future where reductions 360 

are similar, but slightly lower (-18.50, -23.99 and -19.54%). Future conditions under RCP8.5In RCP8.5,  show greater 

differences between short- and long-term future. Iinflow, outflow and volume reductions are lower for the short-term future 

compared to the baseline (-7.78, -11.564, -10.24%) and are associated with the only case of precipitation increase (+1.4%), 

which  pointings to the increase of evapotranspiration due to the relatively larger increase in temperature (+29.4%). In the 

long-term, results show the greatest increase of temperature (+5860.81%), reduction of precipitation (-4.3%) as well as for 365 

inflow, outflow and volume (-21.325, -26.228, -20.80 %).  

Table 4 - Average values of temperature and precipitation (COSMO-CLM projections), water inflow to the S.Giustina reservoir, 

turbined  outflow, stored volume (simulations) and their percentage differences compared to baseline values. †Baseline period for 

climate data goes from 1971 to 2005, while for water inflow and volume stored spans over 14 years offrom 1999 to -2004 and from 

20089- to 2016. 370 

 Baseline RCP4.5 RCP8.5 

 † 2021-2050 2041-2070  2021-2050 2041-2070 

Variable Value Value Δ [%] Value Δ [%] Value Δ [%] Value Δ [%] 

Temperature [°C] 
5.106 6.546 +27.57 7.5 

+478.1

2 
6.63 +29.431 8.1 

+5860.

81 

Precipitation 

[mm/year] 
1495.1 1433.655 -4.1 1391.5 -6.9 1516.3 +1.4 1430.7 -4.3 

Inflow 

[Mm3/month] 
71.5 57.4 -19.7 58.3 -18.5 65.90 -7.8 56.3 -21.3 

Turbined outflow 

[Mm3/month] 
64.1 48.2 -245.98 48.7 -24 56.7 -11.56 47.3 -26.23 

Stored volume 

[Mm3] 
109.6 87.8 -19.9 88.2 -19.5 98.4 -10.2 86.8 -20.8 

A summary overview of future conditions for inflow, turbined water and stored volume is reported in Figure 5. For all 

variables, four coloured bands representing areas lower than the 10th, 20th and greater than the 80th and 90th percentile are 

reported as reference allowing to compare identify trends for the whole time series and in 530-year time slices. Values show a 

generalized decrease into the 20th and 10th percentile thresholds during the second half of the long-term RCP8.5 scenario. This 

trend is clearly visible for future water inflow, while values larger than boxplots whiskers can be identified in all inflow 375 

scenarios and hence pointing to single future conditions greater than baseline maximum recorded values (Figure 5 A). Future 

turbined outflows show boxplot values with the lowest interquartile range frequently lowered towardsexpected to reach 10th 

percentile conditions the 20th percentile except for some cases in the short-term RCP8.5. Consistently with the results from 

Table 4, volume values show significant reductions already for RCP4.5 with interquartile with many cases of 1st quartile 

boxplot levels below with the 20th and 10th percentiles calculated from baseline (i.e. 1999-2004 & 2009-2016). These results 380 

were further investigated through the application of the Wilcoxon Rank Sum Test (Table 5), which provide more quantitative 

insights on the statistical significance of changes considering the whole 30-yeas time series of data for the baseline and the 

four scenarios (Figure 5) as well as considering monthly averaged values (Figure 6 and Figure 7). While p-values considering 
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the whole time series are below the 0.05 threshold of significancy, monthly averages for short-term RCP8.5 scenario (2021-

2050) provided non-significant results both for stored volume and turbined outflow. 385 

Table 5 – Summary of the Wilcoxon Rank Sum Test application to stored volume and turbined outflow for the 4 scenarios compared 

to the baseline (1999-2004, 2009-2016). P-values are reported for the test considering the whole time series of future and baseline 

values and on paired monthly averages. Symbol ‛*’, ‛**’, ‛***’, ‛****’ refer to significant p-value ≤0.05, ≤0.01, ≤0.001 and ≤0.0001. 

 On the whole time series On monthly averages 

Compared scenarios Variable P-value P-value 

RCP4.5 2021-2050 vs Baseline 
Stored volume 2.203e-15**** 0.016* 

Turbined outflow 3.737e-12**** 4.883e-4*** 

RCP4.5 2041-2070 vs Baseline 
Stored volume 2.275e-16**** 0.034* 

Turbined outflow 8.676e-12**** 0.009** 

RCP8.5 2021-2050 vs Baseline 
Stored volume 1.120e-06**** 0.092 

Turbined outflow 0.003** 0.095 

RCP8.5 2041-2070 vs Baseline 
Stored volume 5.006e-18**** 0.012* 

Turbined outflow 1.381e-13**** 0.007** 
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Figure 5 - 305-years slice boxplots for future projections of: A simulated water inflow to the S.Giustina reservoir, B simulated water 

turbined and C simulated future water volume stored in the S.Giustina reservoir. . Coloured bands outline areas of baseline values 

lower than the 10th, 20th and greater than the 80th and 90th percentiles using the same colours as in Figure 4. 

Results of future turbined outflows are reported in Figure 6 with values averaged for each month over the 30-year 

simulation and compared to the baseline (i.e. percentage change). Negative reductions of outflows for all scenarios are reported 395 

for spring and summer, starting in April and until September with differences up to -56.3% in August for the RCP4.5 long-

term scenario. All climate scenarios agree on a water flow reduction during November reaching a minimum of -33.5% of 

turbined outflow for RCP8.5 long-term scenario. In all other months, scenarios depict varying conditions of water flow. In 

particular, short-term RCP4.5 depicts conditions of negative differences for every month of the year. Increased number of 

positive differences are predicted for long-term RCP4.5 during January (+5%) and December (+5.3%). Short-term RCP8.5 400 

shows larger positive differences during January (+10.3%), February (+1.8%), March (+2.9%), October (+0.8%) and 

December (+6.5%). Long-term RCP8.5 projects a negative trend from April until the end of the year reaching persistent 

negative conditions in summer down to -55.5% in August, overlapping with the summer electricity peak loads and calling for 

particular attention (Terna, 2019). Nevertheless, small but positive values are expected for January (+0.7%), February (+1.4%) 

and March (+3.7%), when the winter electricity peak load usually occurs (Terna, 2019). 405 

 

Figure 6 - Percentage change of turbined water outflows [%] comparing the 4 climate scenarios to the baseline at monthly level 

Comparative results with the baseline for monthly average over the 30-year simulation are reported for the stored volume 

in Figure 7Figure 6. All climate scenarios agree on the general volume decrease from May until the end of the year. Short- and 

long-term RCP4.5 depicts conditions of minimum peaks in May (-43.8 and -40.6%) and June (-44.1 and -41.9%), while long-410 

term RCP8.5 shows less negative minimum values although persistent negative values in November and December lower than 
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the other scenarios (-26.8 and -19%). Scenarios agree on the positive variation during February and March with a maximum 

increase of +32.5% for the RCP8.5 short-term case. However, scenarios disagree in terms of stored volume for January, with 

RCP4.5 scenarios representing a positive variation both in the short- and long-term cases (+1.4 and +2.2%), while the RCP8.5 

short-term case depicts a positive variation (+7.3%) but a negative one for the long-term (-7.1%). Conditions in April are 415 

reversed with RCP4.5 short-term depicting a decrease (-8.3%) and RCP8.5 increases for short- and long-term cases (+5.5% 

and +3.5%). 

 

Figure 7 - Percentage change of volume [%] comparing the 4 climate scenarios to the baseline at monthly level 

Months of positive variation and scenarios disagreement provide important information on the timing of potential reservoir 420 

management adaptation, while the small volume increases are insufficient to counterbalance persistent volume reductions. 

Short-term RCP8.5 shows the most favourable conditions of water volumes, depicting positive differences in January (+7.3%), 

February (+22.5%), March (+32.5%) and April (+5.5%).  

3.3 Future critical conditions characterization 

Critical conditions of stored reservoir water volumes (both high and low) were explored to further understand how climate 425 

change may impact on long-term reservoir’s vulnerability. A set of different metrics were calculated to characterize frequency, 

duration and severity of future critical volume conditions considering values lower than the 10 th, 20th and higher than the 80th 

and 90th percentiles of stored volume (Figure 8 and Figure 9). The metrics were calculated from 1000 replications per scenario 

randomly sampled from the simulated future volume values and their prediction bands. Reductions showed to have similar 

trends across the metrics between the 10th and 20th as well as between the 80th and 90th percentiles with the 4 future scenarios 430 

having statistically significant differences compared to the baseline.  
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Boxplots for low volume conditions (Figure 8) show increasing average values for all metrics and scenarios compared to 

the baseline: conditions of low volume are expected to become more frequent, having a longer maximum duration and larger 

severity. In particular, for both values lower than the 10th and 20th percentile, short-term RCP4.5 shows the highest average 

increase. R elative Ffrequency (absolute and relative) and relative severity are expected to have an higher increase for average 435 

values below the 10th percentile (+157% for frequency, from 1.6423 to 59 4.21 months/year and +25400% for severity, from 

0.2 to 0.7%1%) compared to values below the 20th percentile (+105% for frequency, from 2.8640 to 5.8682 and +300% for 

severity, from 0,00.34 to 0,1.216%), while maximum duration is expected to have an higher increase for values below 20 th 

percentile (+100%, from 5 to 10 months) compared to values below the 10th percentile (+75%, from 4 to 7 months). These 

results point to events of low volume conditions below the 10th percentile to be more frequent and with higher severity, while 440 

low volume events below the 20th percentile to last for longer time in the case of the most extreme events. RCP8.5 in the short-

term depicts less negative conditions for both thresholds in line with results in Figure 6. For values below the 10th percentile: 

+4039% in absolute and relative frequency (absolute requency from 23 to 32 months and relative frequency from 1,.64 to 2,.29 

months/year), +0% in maximum duration (4 months) and +50% in relative severity (from 2 to 3%). For values below the 20 th 

percentile: +38% in absolute frequency (from 40 to 55 months) and in relative frequency (from 2,.86 to 3,.93 months/year), 445 

+200% in maximum duration (from 5 to 6 months) and +6775% in relative severity (from 0.34 to 0.57%).  
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Figure 8 – Boxplots of relative frequency (absolute and relative), maximum duration and relative severity metrics calculated from 

volume values lower than the 10th and 20th percentiles. The simulated volume values used for the metrics calculation resulted from 450 
the Monte Carlo approach by randomly sampling from the volume prediction bands. Symbol ‛****’ refers to p-value ≤0.0001. 

For values lower than the 20th percentile, a larger number of values outside the boxplots whiskers are depicted for all 

scenarios and especially towards higher number of months for absolute and relative frequency as well as maximum duration 

and relative severity, hence pointing to potential single conditions of lower volume stored in the future with respect to the 

represented median. These results point to the possibility of the most extreme water scarcity conditions lasting longer than one 455 

hydrological year and pointing at chronic consequences of low stored volume, especially considering short-term RCP4.5 

(maximum values of 19 months and 31 months for values below the 10th and 20th percentile) and long-term RCP8.5 (maximum 

values of 15 and 30 months for values below the 10th and 20th percentile) where the outliers highest values are expected.  

Boxplots for high volume conditions (Figure 9) also show a generalized decrease in all metrics of high stored volume for 

all scenarios and for both thresholds. Long-term RCP4.5 and RCP8.5 scenarios depict conditions of higher percentage 460 

reductions for absolute and relative frequency (-75% for both scenarios) and maximum duration (-60% for both scenarios) 

above the 90th percentile  compared to the 80th percentile (-68% in relative frequency and -50% in maximum duration for both 

scenarios). On the contrary, relative severity reductions are expected to be higher for RCP8.5 for values above the 80th 
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percentile (for RCP4.5 and-97% RCP8.5, from 5% to 1%) compared to the 90th percentile (for RCP4.5 and -80%RCP8.5, from 

4% to 1%). Above the 90th percentile, values are expected to be less frequent than baseline conditions, while showing smaller 465 

severity reductions compared to values above the 80th percentile. Short-term RCP8.5 predicts a smaller decrease in all metrics 

in comparison with the other scenarios with -48% of absolute frequency (from 44 to 23 months) and of relative frequency 

(from 3.,14 to 1.,64 months/year), -50% of maximum duration (from 6 to 3 months) and -7560% in relative severity (from 

0.45 to 0.12%) for values above the 80th percentile compared to the baseline, as well as -56% of  absolute frequency (from 32 

to 14 months) and relative frequency (from 2.,29 to 1 months/year), -60% of maximum duration (from 5 to 2 months) and -470 

6875% of relative severity (from 0.34 to 0.081%) for values above the 90th percentile compared to the baseline. A summary 

table with median, maximum, minimum and standard deviation values for low and high volume conditions is provided in the 

Supplementary material. 
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 475 

Figure 9 - Boxplots of relative frequency (absolute and relative), maximum duration and relative severity metrics calculated from 

volume values lower greater than the 80th and 90th percentiles. The simulated volume values used for the metrics calculation resulted 

from the Monte Carlo approach by randomly sampling from the volume prediction bands. Symbol ‛****’ refers to p-value ≤0.0001. 

4 Discussion 

The SDM represents the overall trend of the system in terms of turbined outflow (water demand) and future conditions of 480 

reduced water availability over a 30-year period. Changes in water availability can deeply affect the actual turbined water, 

which plays a strategic role in the economy of the province, as in the whole Alpine region. Moreover, reduction in the water 

streamflow can have consequences in terms of ecological hazards and water supply quality downstream of the reservoir. 

The analysis considered the water flowing into the S.Giustina reservoir, and modelled using the GeoTransf hydrological 

model, as a key variable influencing the turbined water and hence the stored volume. A stochastic approach considered the 485 

simulated turbined outflows and its predictions bands as the main source of uncertainty to explore a wide range of possible 

outcomes in terms of turbined outflow and stored volume values. 



28 

 

Results show how the amount of water flowing into the reservoir is deeply affecting both turbined outflows and hence the 

stored water, which are expected to reduce in the future even under the short-term RCP4.5 scenario (-25.9%). In the case of 

long-term scenarios high reductions are also expected (-24% for RCP4.5 and -26.3% for RCP8.5). 490 

Moreover, results on monthly averages provide useful information on the timing of possible consequences coming from 

reservoir operations and climate change effects. Considering those months of positive variation of volume (i.e. January, 

February, March and April, depending on the considered scenario) and turbined water outflows (i.e. December, January, 

February and March, depending on the considered scenario) provides insights on the need to plan adaptation and operational 

strategies to improve the management of the S.Giustina reservoir. Months of positive water volume changes need to be 495 

considered as periods of preparation to worsening conditions. Strategies of earlier water accumulation should be considered to 

face the persistent reductions throughout the last part of spring, summer, autumn and part of winter. Such a strategy could 

prevent downstream conditions of water shortages, while also preparing for reductions in turbined water for hydropower uses, 

especially during summer and winter months of high electricity peak loads. These results are in line with other findings in the 

Alps showing the need for earlier reservoir water accumulation during winter to prevent downstream conditions of water 500 

shortages during summer (Brunner et al., 2019; Hendrickx and Sauquet, 2013). Although positive percentage variations are 

expected to be lower and for fewer months than negative cases, earlier water accumulation strategies potentially reducing 

water scarcity conditions need to acknowledge and avoid flood events exacerbation. Additional storage for flood prevention 

needs to be ensured and managed together with the Civil protection department to prevent potential downstream floods. 

Negative stored volume variations are supported by the generalized trends of future water scarcity conditions characterized by 505 

an increase in frequency, maximum duration and severity of low stored volumes for values lower than the 10 th and 20th 

percentiles and for both RCP4.5 and 8.5. These results point at higher percentage increases in frequency and severity for values 

below the 10th percentile, while volume values below the 20th percentile are expected to last longer in case of the most extreme 

events. At the same time, high volume conditions decrease in terms of frequency, duration and severity with higher reductions 

for volume above the 90th percentile compared to the percentage decrease for events above the 80th percentile. Only in case of 510 

relative severity, reductions are expected to be higher for values above the 80th percentile compared to those above the 90th 

percentile for long-term RCP4.5 and 8.5 scenarios. Above the 90th percentile, values are expected to be less frequent than in 

baseline conditions, while showing smaller severity reductions compared to values above the 80th percentile. Within this 

context, the calculation of a set of metrics in terms of low and high volume conditions through a Monte Carlo approach 

considering a moving window of data (Figure 8 and Figure 9 allowed to generate a set of possible future volume time series 515 

derived from the simulation prediction bands. By doing so, the analysis prevented any potential bias associated with limited 

data and provided statistically tested information on increases of low volume and reductions of high volume values showed as 

boxplots for S.Giustina over four 30-years climate scenarios.  

In general, the results suggest exacerbated risks to reservoir operation due to persistent stored volume and turbined outflow 

reductions in late spring and summer, autumn, and early winter that can potentially lead to chronic consequences lasting more 520 
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than one hydrological year and hence threatening water supply security, hydropower production, and ecosystem services in 

the valley.  

4.1 Limitations of the study 

The applied SDM is mainly considering outputs from the GeoTransf applications integrating the COSMO-CLM climate 

projections. However, several assumptions and limitation in this study are noted.  525 

Accounting for the GeoTransf application means relying on a very accurate water streamflow within the catchment (Bellin 

et al., 2016), but also considering one the COSMO-CLM climate model (i.e. COSMO-CLM) for future projections. A wider 

range of inflow values driven by a set of climate models could provide a larger set of results that can be used for further 

stochastic analysis of turbined water and stored volume. Nevertheless, the climate model has been demonstrated to well 

represent conditions in mountain regions (Montesarchio et al., 2013) and differently from other climate models depicts general 530 

conditions of decreased precipitation over the catchment (Table 4). Hence it provides conservative information on possible 

impacts on streamflow and volume management. The results from the GeoTransf application assumed a conservative condition 

of upstream water use set at the maximum licensed withdrawals values. This information was kept unchanged for future 

scenarios, although possible variations in the future (e.g. from agricultural and touristic uses) may affect river water flows.  

Moreover, the presented study considered precipitation, water flow and volume trends over a 30-year period considering 535 

their monthly average values, important for long-term large reservoir management. For this reason, conditions of high volume 

with a very short duration might have been potentially underrepresented.  

The statistical models are a quick and n effective tool to replicate past observations of water volume and turbined water 

outflows. Applying such a regression to future conditions of predictors, reservoir management in terms of turbined outflow as 

well as minimum ecological flows was assumed to be stationary over time. Nevertheless, such a constraint is justified by the 540 

high uncertainty associated to future changes in hydropower production patterns affected by societal conditions (e.g. energy 

price fluctuations; Gaudard et al., 2014; Ranzani et al., 2018). Moreover, the minimum ecological flow was always set to the 

values established by law, although critical conditions in water availability (e.g. streamflow) may lead to extraordinary changes 

in minimum flow which can affect the stored volume as well as the turbined outflow.   

Finally, the selected models considered few tested and selected variables. Although other variables play important roles 545 

within the management of the reservoir at different temporal resolution (e.g. hourly energy market price), the simulation on 

monthly aggregated values supported the objective of analysing long-term variations of stored volume for the large S.Giustina 

reservoir. 

5 Conclusions 

The SDM well represents the overall behaviour of the system in terms of turbined outflow (water demand) and future 550 

conditions of reduced water availability over a 30-year period. Changes in water availability can deeply affect the actual 
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turbined water, which plays a strategic role in the economy of the province, as in the whole Alpine region. Moreover, reduction 

in the water streamflow can have consequences in terms of ecological hazards and water supply quality downstream of the 

reservoir. The S.Giustina reservoir plays a crucial role in buffering water variations in the Noce catchment and downstream. 

Due to its size, type and position it is strategic for hydropower regulation and hydrologically disconnecting upstream with 555 

downstream river flow. 

The modelling chain from climate change projections to the hydrological model water flow output and their use into the 

stochastic SDM provided to be a quick and effective tool to explore trends conditions of the S.Giustina reservoir volume and 

turbined outflows. 

Results of both stored volume and turbined outflow suggest that even under RCP4.5 in the short-term scenario reductions 560 

in terms of volume and turbined outflow will be severe with monthly average reductions for outflow and volume values 

respectively from April and May onwards and persisting throughout the year. This period of negative variations should be 

considered for the adoption of adaptation strategies focusing on water demand reduction, while considering months of expected 

increases in water availability as preparation periods, implementing strategies of earlier reservoir water accumulation while 

preparing for persistent conditions of lower availability compared to the baseline period. Such a strategy could prevent 565 

downstream conditions of water shortages during summer, autumn and part of winter, while also preparing for reductions in 

turbined water for hydropower especially during summer and winter months of high electricity peak loads. Adaptation 

strategies should consider the results on generalized future conditions with increase in frequency of months, maximum number 

of consecutive months and relative severity for all scenarios of low volume below 10 th and 20th percentiles. Consistently with 

these projections, frequency, duration and severity metrics for high volume events below 80th and 90th percentiles are expected 570 

to decrease. These results call for adaptation strategies of coordinated actions across those socio-economic sectors relying on 

abundant water demands (e.g. for agriculture) to face more frequent and longer periods of higher reduction of stored volume 

compared to the past.  

Future model expansions will include water demand from multiple human activities (e.g. agriculture and domestic) and 

their effects on water availability reduction from upstream to downstream. By doing so, SDM models can support the 575 

understanding of criticalities connected to unsustainable water demands and anticipate critical conditions, to inform dam 

managers and local authorities on the timing and importance of climate change adaptation strategies. Moreover, the use of 

open codes and libraries for the assessment of variables interactions through statistical models make SDM transferrable to 

other cases at interregional / transnational scale in combination with available water flows datasets and open hydrological 

models (e.g. Copernicus, LISFLOOD model). 580 

Finally, this analysis sheds light on the need to consider future changes in water availability and their consequences on 

already existing human activities relying on abundance water resources, and hence unprepared to quickly adapt to future 

climate impacts. Results should be considered in future plans to change S.Giustina management practices to reduce climate 

change impacts on reservoir operations. The findings presented reinforce the Alpine ‘water tower’ region’s vulnerability to 

supply water and ensure its use for power production. This is the first step for more comprehensive water scarcity assessments 585 
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in order to provide policy-makers with information in line with the European Water Framework Directive on potential 

adaptation strategies to gain systemic leverage effects on sustainable water management and climate change adaptation in the 

Alps (Alpine convention, 2013; European Commission, 2018, 2021). 
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