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Abstract. The small spatial and temporal scales at which flash floods occur make predicting events challenging, particularly 

in data-poor environments where high-resolution weather models may not be available. Additionally, the uptake of warnings 

may be hampered by difficulties in translating the scientific information to the local context and experiences. Here we use 

social science methods to characterise local knowledge of flash flooding among vulnerable communities along the flat Lake 

Malawi shoreline in the district of Karonga, northern Malawi. This is then used to guide a scientific analysis of the factors that 15 

contribute to flash floods in the area using contemporary global datasets; including geomorphology, soil and land-use 

characteristics, and hydro-meteorological conditions. Our results show that communities interviewed have detailed knowledge 

of the impacts and drivers of flash floods (deforestation, sedimentation), early warning signs (changes in clouds, wind direction 

and rainfall patterns), and distinct hydro-meteorological processes that lead to flash flood events at the beginning and end of 

the wet season. Our analysis shows that the scientific data corroborates this knowledge, and that combining local and scientific 20 

knowledge provides improved understanding of flash flood processes within the local context. We highlight the potential in 

linking large-scale global datasets with local knowledge to improve the usability of flash flood warnings. 

1 Introduction 

Weather-related hazards are responsible for 78% of the economic losses and 38 % of the fatalities related to disasters 

worldwide, with a drastic increase in the number of events in the last 35 years attributed to global climate change. Hydrological 25 

events show the highest increase globally with a rise of a factor of four, while meteorological catastrophes have increased a 

factor of three (Hoeppe, 2016). Although these events affect the entire globe, exposure to hydrological events and vulnerability 

of those affected are not uniformly distributed, and climate risk disproportionately affects the world’s poorest (Byers et al., 

2018). For example, the impact floods have is greater in developing countries. Indeed, 95% of people are affected by floods, 
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and 73% of the total direct damages every year occur in Asia and Africa (Alfieri, et al., 2017). Aiming at reducing the global 30 

impacts of natural hazards, the Sendai Framework for Disaster Risk Reduction (UNISDR, 2015) calls for increased adoption 

of multi-hazard early warning systems.  

A recent survey of the development of operational forecasting systems for floods (Perera et al, 2020) shows that in many 

countries and river basins good progress has been made, though such progress is often limited in least developed countries, 

hampered by a lack of monitoring networks as well as human and technical capacities. These also often focus on large space 35 

and time scale riverine floods, which have attracted most attention of the flood forecasting, warning and response research 

community (Alfieri, et al., 2018, Kauffeldt, et al., 2015, Sai, et al., 2018). Flash floods, in contrast, occur at smaller spatial and 

temporal scales, resulting in severe damage to infrastructure and the environment, and are more deadly than riverine floods 

(Jonkman, 2005). Flash flood events are characterized by very rapid runoff generation and the sudden rise of water levels out 

of the riverbanks. They can be caused by a combination of high local precipitation rates (Doswell, 1995), adverse antecedent 40 

hydrological conditions (Hill and Verjee, 2010) and the geomorphological disposition of the catchment to flash flooding 

(Georgakakos, 1986).  

Flash flood warning is challenging due to the response times of the catchments that flash floods occur in. These are often 

shorter than the time needed for decision making, thus preventing efficient flash flood warning responses (Drobot and Parker, 

2007). Additionally, the development of effective warnings for flash floods is hampered by the spatial and temporal 45 

incoherence between the understanding of the atmospheric and geomorphological processes that leads to flash floods, and 

observation data availability, even in countries with well-developed hydro-meteorological networks (Creutin and Borga, 2003). 

Recent decades have, however, seen significant progress in developing warning systems in flash flood prone catchments 

(Hapuarachchi, 2011; Braud, 2018), though these rely extensively on the availability of high-resolution quantitative 

precipitation estimates and forecasts, in particular helped by the availability of radar-based precipitation estimates and 50 

nowcasts (Creutin and Borga, 2003; Werner and Cranston, 2009; Javelle et al., 2010).  Such weather radars are practically 

non-existent in developing countries. Medium to high-resolution numerical weather prediction (NWP) models may, however, 

be available and are applied in selected cases, such as in the Flash Flood Guidance System for Southern Africa (Poolman et 

al., 2014). Flash Flood Guidance relies on geomorphological indicators (Azmeri, et al., 2016, Smith, 2003) of the susceptibility 

of a catchment to flash floods and triggers.  Several approaches to establish triggers have been developed across the globe; 55 

based on forecasting river discharge (Drobot and Parker, 2007), or rainfall thresholds (Alfieri, et al., 2015, Georgakakos, 2005). 

These also rely on the availability of hydrological observation data for calibration and validation of triggers and have reached 

a high level of complexity. Availability of these data is not equally distributed around the world, compounding the difficulty 

of making flash flood predictions in data poor countries, which are often also developing countries. Global and continental 

scale flood forecasting systems are increasingly being developed with the availability of global meteorological forecast and 60 

reanalysis datasets as well as satellite-based precipitation data (Emerton et al. 2016), and these provide an opportunity to fill 

the gap where national and regional forecasting systems are not available. However, although these offer the advantage of 

providing consistent datasets to areas otherwise poorly served, the limited resolution of global and continental scale NWP 
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datasets means they are inadequate to support flash flood forecasts (Emerton et al., 2016), and may be limited only to the 

forecasting of larger scale weather patterns. 65 

Despite these technical challenges, increasing the ability to anticipate the occurrence and impacts of flash floods stands to 

benefit communities at risk and organisations involved in disaster relief, potentially leading to faster response and better 

allocation of emergency flood relief effort. However, to be effective, the early warning needs to have not only a technical basis, 

but also a human-centred approach, commensurate with the knowledge of the people at risk (Basher, 2006). Local communities 

have shown to have a complex knowledge cutting across the full disaster risk management cycle (Šakić Trogrlić, et al., 2019) 70 

and the climatic conditions that lead to extreme (flood) events (Lefale, 2010; Orlove, 2010). Integration of both local and 

scientific knowledge is recommended in all steps of early warning system design (Martin, 2012), and can contribute to closing 

the “usability” gap (Vincent et al. 2020). Plotz et al, 2017 suggest two approaches to integration of local knowledge and the 

knowledge derived from contemporary forecasts systems; either through validating local knowledge based on scientific 

datasets, or through combining the local and scientific data into a consensus forecast that considers both knowledge. The 75 

evolving people-centred paradigm to early warning also recognises that community engagement, integration of local 

perceptions and information tailored to those at risk is important to the fostering of trust in warning information, thus increasing 

the potential of its uptake (WMO, 2015, 2018). Impact-based forecasting, follows this paradigm, recognizing that early action 

by those at risk is more likely to be taken where warning messages recognise people’s local understanding of the hazard, 

environmental and social cues (Calvel et al., 2020), and potential impact (Luther et al., 2017, Meléndez-Landaverde, 2020). 80 

In this paper we explore local knowledge and science-based information on the occurrence of flash floods in rural communities 

in Karonga District in northern Malawi. We hypothesize that local knowledge can complement the information contained in 

larger scale global datasets, and that the combination of local and scientific knowledge can contribute to the development of 

meaningful and trustworthy early warning, within the context of the people-centred early warning framework (WMO 2015, 

2018). This framework recognises that effective early warning builds on four key interrelated elements; (i) risk knowledge; 85 

(ii) monitoring and warning; (iii) dissemination and communication; and (iv) response capacity. North Malawi is an example 

of an area with high flash flood risk where the population is extremely vulnerable due to low coping capacities. Through 

interviews with impacted communities, we develop a shared knowledge of risk through a joint understanding of the root causes 

of flash floods in the area, the impacts these have and where these are more likely to occur. In the interviews we also consider 

the local knowledge of meteorological and hydrological signs communities recognize as precursors to flash flood events. We 90 

then interrogate available information on catchment geomorphology and hydro-meteorological conditions derived from large-

scale global models and satellite datasets to examine if these provide useful information congruent to that local knowledge. 

Our aim is to reconcile these scientific data with local knowledge of flash floods to inform the implementation of people-

centred flash flood warnings and foster the taking of early action by communities. 
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2 Study area 95 

Malawi is a Sub-Saharan landlocked country in South-East Africa, sharing its borders with Zambia, Mozambique, and 

Tanzania. It has an elongated orientation, following Lake Malawi, with its physiography dominated by the rift valley geology. 

The subtropical climate, and highly seasonal precipitation variability, result in Malawi being prone to weather-related disasters 

(McSweeney et al., 2010). Two main seasons exist: a wet austral summer season (Nov-April) and a dry season (May-Oct). 

Perhaps more importantly than its disposition to weather-related hazards, the most severe impacts from disasters result from 100 

the high vulnerability of the population, estimated at around 16.5 million, with a poverty Index of 57.9 %.  

Karonga is the northernmost district of Malawi, sharing a border with Tanzania. It is located along the Lake Malawi shore, has 

a surface of 3355 km2 and an estimated population of 380,000 in 2020. The district is characterized by a steep rift escarpment 

separating the hills and plateau area from the lake-shore plain (see Fig. 1). Characterised by strong erosion of the crystalline 

base rock, filling the rift valley with quaternary sediments, Karonga soil types are primarily sandy. Land use along the flat lake 105 

shore is almost entirely cropland (mainly rice, maize and cassava) while the hills and plateau are covered by bushes and open 

forest. The population of Karonga is rural, and is distributed mainly on the flat lake shore in small communities. The economy 

depends upon subsistence agriculture and fishing. With a poverty incidence of 57.1 % (IFPRI, 

2019), Karonga district is poorer than the average of Malawi. 

Being one of the most vulnerable to floods,  Karonga is the focus of several projects of the Malawi Red Cross Society that aim 110 

to improve preparedness, early action and disaster response in Malawi. Flood events recur annually and are particularly 

damaging in Karonga due to poor infrastructure, growing population, increase of farming in flood risk areas, and difficulties 

for the population to receive warnings due to lack of access to communications. Large scale damaging events can occur in the 

district of Karonga, like the floods of 12-16 April 2018, affecting 4069 people, destroying 433 houses, and killing 4, as reported 

by the Department of Disaster Management Affairs of Malawi (DoDMA). Smaller scale and isolated flash floods have also 115 

impacted the district, like the event of the 1st of February 2018, affecting 1175 persons and damaging 42 houses and 397 

hectares of crops in the small village of Mwenelupembe according to DoDMA. 
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Figure 1: Karonga district location on - (left) Malawi flood recurrence map based on observed flood frequency in the period 2000-
2013 generated by DoDMA (ICA 2014) - (right) Topography map showing the rift escarpment, the main rivers, and the six visited 120 
villages where Focus Group Discussion were conducted for the research. 

3 Materials and methods 

3.1 Building common knowledge of flash flooding  

To develop a common understanding of what constitutes a flash flood in the perception of local communities in Karonga 

District, a primary data collection campaign was conducted at national, district and community levels through a series of semi-125 

structured Key Informant Interviews (KII) and Focus Group Discussions (FGD), following a systematic protocol (see Section 

3.1 of supplementary materials). The KIIs at national and district level, and FGDs held at community level followed a similar 

questioning pattern allowing for an alignment and comparison of the results obtained. We ensure that all KII and FGD were 

prepared to comply with the COREQ qualitative research criteria (Tong et al., 2007) 

KII refers to qualitative in-depth interviews with people from a range of sectors selected for their knowledge on the specific 130 

topic (USAID, 1996). For the KII at national and district levels, we approached actors from a wide range of institutions, 

including representatives of disaster, meteorological and hydrological governmental institutions, universities, and disaster 

practitioners from locally active NGO. As a results, we were able to carried out six KII in English at the national level; including 

identified experts from the Malawi Red Cross Society, the Department of Disaster Risk Management, the Ministry of Finance 

Economy and Development, the Department of Climate Change and Meteorological Services, the Ministry of Agriculture 135 

Irrigation and Water Development, and Mzuzu University. At the Karonga district level, local actors such as members of the 

district civil protection committee, a reporter from Nyasa Times news agency, and NGOs active in the district (Salvation Army, 
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Focus and Self-Help Africa) were interviewed. Based on these interviews, we identified twelve communities that are 

recognised to have a higher flash flood risk in Karonga District, located on different river basins across the district.  

Focus Group Discussions (FGD) were carried out with six of these communities (communities are identified as a Group Village 140 

Head, GVH) represented as circles in Fig. 1. FGD interviews bring together a group of persons from a similar background 

guided by a facilitator. We made sure that at least four persons in the FGD were above 50 years old, with at least one participant 

having spent more than 50 years in the community in each group. These were conducted and recorded in the local languages, 

Nkhonole and Chichewa; and subsequently transcribed and translated into English. A community drawing exercise was held 

in each village, resulting in a map gathering information about historical flash flood frequency, impacts, and perceptions of 145 

flash flood risk in different areas of the community. This was followed by a transect walk through the most affected part of the 

community. In addition, information about historical flash flood occurrence and their impacts was collected from each 

community. From all KII and FGD interview transcripts, local knowledge was extracted through quotes and coded into 

thematic analysis following five themes; (i) Flash flood definition; (ii) occurrence of flash flood events; (iii) impacts of flash 

floods (iv) risk perception, and (v) the signs leading to flash floods. These themes were identified partly based on deductive 150 

coding (literature study) inspired by the dimensions of local knowledge of the flood risk management cycle identified by Sakic 

Trogrlic et al. (2019), and partly based on inductive coding of the transcripts. 

We complement these primary data with secondary data on historical flash flood events, their location, date and recorded 

impacts. These were extracted manually from five different sources of information: Disaster reports from Humanitarian 

Actors (IFRC GO, n.d.; UNICEF Malawi, n.d.), existing global disaster (EM-DAT, n.d.; Munich RE, 2004), government 155 

data, online news-briefs (FloodList, n.d.; ReliefWeb, n.d.) and national online media (Nyasa Times, n.d.; The Nation, n.d.). 

All datasets were filtered and consolidated into an event database at three levels of spatial granularity: Karonga District, 

Traditional Authority (TA) and community levels (GVH). A total of 142 records of flash flood events affecting the district 

from 2000 to 2018 were gathered (Bucherie, 2021). This included 48 events reported at district level, and 38 events at TA 

level. Only 18 events are reported to affect the six communities of interest, covering the period 2004-2018. 160 

3.2 Mapping flash-flood susceptibility based on scientific data. 

The susceptibility of an area to be affected by flash flood depends on the geo-morpho-metric and surface characteristics 

(Horton 1945, Patton, 1976), which have a strong influence on catchment hydrologic response to heavy rains, and therefore 

on runoff generation. Here we map the relative susceptibility to flash flooding of the twelve communities identified to have 

the highest flash-flood risk in Karonga District. For each of the 12 communities, hydrological catchments are delineated, 165 

using the global SRTM 90m Digital Elevation Model (DEM) v4.1 (Jarvis et al., 2008). Geomorphological indicators related 

to surface and morphometric characteristics known to characterize flash flood risk are identified (Bajabaa, et al., 2013, 

Farhan, et al., 2016, Rogelis and Werner, 2014), with some linked to the local knowledge (such as indicators related to slope, 

soil type, land or vegetation cover). The identified indicators and references are described in Table 1. 
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For each catchment, geomorphological indicators are calculated and classified according to four categories characterizing 170 

the geometry, the hypsometry, the drainage network, and surface of the catchments (Appendix A). While the first three 

categories of catchment indicators are extracted from the DEM analysis only, the surface characteristics indicators are derived 

from the Malawi government soil type and Land-use Land-cover (LULC) data, and the Normalized Difference Vegetation 

Index (NDVI) Copernicus Global Land Service 300m product (Roujean et al., 2018).  All geomorphological indicators are 

normalised from 0 to 1 according to their contribution to susceptibility to flash flooding.  175 

Different methods of weighting the influence of each geomorphological parameter can be used depending on the context and 

the scale of each case study (Azmeri, et al., 2016). Some studies use equal weighting (Zogg & Deitsch, 2013), or weighting 

based on the indicator ranking (Karmokar & De, 2020). Here we apply a weighted method based on Principal Component 

Analysis (PCA) to reduce the dimensions in each class (Chao & Wu, 2017, Rogelis & Werner, 2014). Based on the four 

Principal Component results, a ranking of flash flood susceptibility of the 12 catchments is calculated, following Eq. (1), 180 

representing the inherent potential of each catchment to generate a flash flood in case of heavy rain. PC[name] refers to 

principal components related to geometry, hypsometry, surface and drainage network. The linear coefficients a,b,c and d are 

the weights applied to each of these classes. 

 

𝐹𝐹!"#$%&' = a × PC[geom] + b × PC[hypsom]	+ 	c × PC[drain] 	+ 		d × PC[surf]     (1) 185 
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Table 1. Identified geomorphological and surface indicators related to flash flood susceptibility 

 Index Description Source 

C
at
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m

en
t g

eo
m
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ry

 

Area [km2] The area of a catchment is correlated with its discharge. Bigger catchments have lower 
flash flood potential. 

Gray (1961) 

Length to width 
LtoW [-] 

Length to Width ratio is a shape indicator of a catchment, inversely proportional to the flash 
flood potential of a catchment. 
 

Schumm (1956) 

Basin circularity 
Bc [-] 

The circularity ratio 4*Π*A /P2 is related to flow peak and debris flow occurrence. The 
more circular the basin, the more flash flood prone it is considered to be. 

Miller (1953) 

Time of 
concentration.  
Tc [min] 

Flash flood potential increases in basins with lower time of concentration. Computed using 
Kirpich’s formula, where L is the longest flow path to the remotest point altitude H from 
the outlet at elevation h. 

𝑡𝑐 = 0.01947 × 𝐿!.## × ,
𝐻 − ℎ
𝐿 0

$!.%&'

 

Kirpich (1940) 

H
yp

so
m

et
ry

 

Average slope  
[deg] 

The average slope is an indication of the flashiness of a watershed, proportional to flood 
susceptibility. The slope is computed in degrees from the DEM using 2nd degree 
Polynomial Adjustment algorithm (Zevenbergen & Thorne, 1987) 

Lindsey et al. (1982),  
 

Rel_Relief [-] 
 

The Relief (H) is the difference between the highest and the lowest elevation point of the 
catchment. The Relative Relief is the Relief (H) divided with the basin perimeter (P). It is 
related to the event magnitude. 

Melton (1957) 

Elv_RR [-] 
 

The Elevation Relief Ratio definition using the Relief (H) divided by the Length of the 
catchment has been used. 

Oruonye (2016) 

D
ra

in
ag

e 
ne

tw
or

k 

Drainage relief ratio 
D_RR [-] 

The Drainage Relief ratio corresponds to the drainage relief (maximum elevation of the 
drainage system minus the outlet elevation) divided by the longest stream length. 

Schumm (1956) 

Drainage density 
Dd [Km-1] 

The cumulative river length over the area. This has a direct correlation with flood potential. Patton and Baker 
(1976) 

Bifurcation ratio 
Rb [-] 

The bifurcation ratio of a basin is inversely linked to the flash flood risk: 
Rb = ∑Nu/Nu + 1, where Nu is the total no. of stream segments of order “u”, and Nu +1 
the no. of segments of the next higher order. 

Strahler (1957); 
Schumm (1956) 

Su
rf

ac
e 

pr
op

er
tie

s  

Soil type Soil types data are ranked according to the clay content, and reclassified from 0 to 10. The 
infiltration rate decreases with the clay content, increasing runoff and flash flood 
susceptibility. 

Smith (2003); Tincu 
et al. (2018) 

LULC Land Use Land Cover data are reclassified into classes from 0 to 10 depending on their 
susceptibility to increased flash flood risk. 

Smith (2003); Tincu 
et al. (2018) 

NDVI The Normalized Difference Vegetation Index is used as an indicator of the greenness of the 
vegetation. Data are extracted for two periods, at the beginning (21 to 31 Dec 2017), and at 
the end (21 to 31 March 2018) of the wet season. High NDVI values represent dense 
vegetation while low NDVI values indicate bare soils and increasing flash flood risk. 

Smith (2003); Tincu 
et al. (2018) 

 190 

Validating a map of flash flood susceptibility is a challenge where there is little historical data (Alam et al., 2020). For data 

rich catchments, machine learning techniques use historical flash flood data to calibrate the flash flood susceptibility map 

(integrating morphometric and precipitation indicators) and have been tested on specific catchment scale study (Arabameri et 

al., 2020; Pham et al., 2020). Here we estimate the weight (a, b, c, d) of each class by calibrating against the estimated relative 

flash flood frequency for each catchment as indicated by the communities interviewed. The best fit is defined minimizing the 195 



9 
 

Root Mean Square Error (RMSE) between the modelled susceptibility (FFSuscept) and the normalised observations of flash 

flood frequency. 

3.2 Identifying hydro-meteorological conditions associated with flash flooding. 

Precipitation and large-scale hydro-meteorological indicator datasets are selected, guided by the knowledge gained from 

communities on the signs and triggers they consider as precursors to flash floods. The spatial and seasonal distribution of 200 

indicators derived from the datasets are analysed to understand if these corroborate with the reported signs, and particularly if 

these reflect conditions associated with flash floods during and prior to the catalogued historical flash flood events. 

Precipitation is derived from the GSMaP satellite-based precipitation products (Aonashi, 2009, Okamoto, 2005, Kubota, 2007), 

and extracted for the 15 wet seasons of the 2002-2018 period. We limit the extraction of these data to the wet season for 

computational reasons, as well as due to flash flood events occurring in the wet season. GSMaP was selected given the high 205 

spatial (0.05 degrees) and temporal (hourly) resolution, as well as relatively low latency. Historical extreme rainfall patterns 

are explored spatially and temporally over the district. In addition, maximum daily 1-hour and 3-hour rainfall totals are 

extracted to characterise precipitation intensity associated with the 18 catalogued flash flood events affecting the six 

communities for the 2004-2018 period. Moving windows of 6h, 1-day and 3-day cumulative rainfall are extracted as indicators 

of antecedent cumulative precipitation. These precipitation indicators and associate statistics are extracted from the GSMaP 210 

data at locations corresponding to the centroids of the catchments of interest. Time series are analysed visually for each flash 

flood event.  

Large-scale hydro-meteorological conditions are derived from the ECMWF ERA5 climate reanalysis dataset (Hersbach et al., 

2020) provided through the Copernicus Climate Change Service (C3S, 2017). This dataset is selected given its availability and 

as it provides the same parameters and at similar temporal and spatial scale as the forcing data used in global hydro-215 

meteorological forecast models such as GLOFAS (Alfieri et al., 2013). Daily data is extracted for the 2000-2018 period from 

ERA5 over a geographical box that encompasses the study area (longitude 32 to 36, latitude -8 to -12). Variables considered 

include the 2m surface air temperature; the 2m dew point temperature; the volumetric soil water content of the first 7cm of the 

land-surface; the relative humidity of the deep troposphere; the CAPE indicator (surface-based convective available potential 

energy), and the surface u and v wind vectors. 220 

These variables are extracted from the ERA5 data at three locations (see Fig. 2), one in the northern part of the district (N), 

one in the southern part (S) and one in Lake Malawi (L). Daily averages of the selected ERA5 variables are extracted for the 

period 2000-2018 to analyse seasonal variations. To study the larger scale hydro-meteorological patterns and conditions 

associated with historical flash flood events, the same ERA5 hydro-meteorological variables are extracted and averaged over 

four regions (see Fig. 2), for up to 3 days before each of the catalogued flash flood events. These regions are selected based on 225 

the precursor signs reported by communities interviewed, and include Karonga (Region W), Lake Malawi (Region S), and the 

areas to the north-west and north-east of Karonga (Region NW and NE, respectively). 
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Figure 2: ERA-5 grid resolution, x,y point locations (yellow dots) and four regions (NW = North West, NE = North East, W = 

West, S = South) used for large-scale hydro-meteorological pattern analysis. 230 

4 Results 

4.1 Building knowledge on Flash flooding.  

Local knowledge on flash flooding in Karonga district has been compiled from all KII, FGD, transect walks and community 

drawings, through the extraction of quotes from interview transcripts. We reported the knowledge extracted here, structured 

along the five themes identified in the collection and analysis of the data. Additionally, the risk knowledge established in the 235 

themes ii) Occurrence of flash flood events and iii) Impact of flash floods is based on the integration and corroboration of the 

FGD and KII (primary data) with the flash flood occurrence and impact analysis derived from the secondary data.  

 

(i) Flash flood description  

Communities report that they experience sudden floods, induced by intense and short rainfall events, and that these form the 240 

main type of weather induced disasters in Northern Malawi. All communities describe these flood events as unexpected, 

occurring “without notice”, associated with intense power of flows, erosion of river banks and rivers bursting their banks. 

Participants identified that the topography to govern the occurrence of flash floods in Karonga, and that the most affected areas 

are on the flat rift valley floor close to the escarpment. In addition, fast onset floods are known sometimes to coincide with 
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slow onset riverine floods in communities in the North of Karonga; a scenario described as resulting in larger scale, longer 245 

duration, and more severe disasters.  

 

(ii) Occurrence of flash flood events 

The analysis of the data from the KII and FGD, supported by the analysis of the secondary data on the spatial and temporal 

occurrence of flash floods, reveals that flash floods happen between one and eight times per year in Karonga district, mostly 250 

in January and in March/April, and generally overnight. In addition, shorter duration and more localised flash flood events are 

reported to occur in January, while longer duration floods affecting larger areas are observed in April (Table 2). The frequency 

of flash floods is found to be higher in the northern part of the District, in Kyungu and Kilipula TA (see Fig. 3). In addition, 

April events affect mainly catchments in the northern TAs while January events may affect any of the catchments in the entire 

district.  255 

Table 2: Monthly flood event frequency based on 2000-2018 secondary data collection (43 recorded events), and associated 
proportion of short duration (<=3days) and local (affecting only 1 TA) recorded flood events. 
 

 December January February March April 

No. of recorded events 6 15 4 7 11 

% short duration flood (<=3days) 83 80 100 86 55 

% local event (affecting only 1 TA) 66.6 61.5 50 28.5 33.3 
 
 260 
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Figure 3: Number of recorded flood events per 100 km2 for every TA (collected for the period 2000-2018), with the total numbers 

of events recorded for each TA indicated as labels. 

(iii) Impacts of flash floods 

Information about the impact of flash floods in Karonga is extracted from the interviews and the analysis of historical impact 265 

datasets. The main impact of flash floods experienced by Karonga’s communities is on agriculture, as flash flood events are 

reported to systematically sweep away several hectares (ha) of crops (either recently planted or fully grown), and sometimes 

livestock. In addition, communities mentioned that flash floods can destroy parts of villages, irrespective of the type of 

buildings. Communities report an increase in flood impact since 2007. Based on our historical data, we estimate that when a 

flood occurs in the district it has a 50% chance to affect at least 300 households, 200 ha of crops and kill at least one person. 270 

The communities also indicated that the impact of floods is higher in April, and also higher in the North of Karonga. This is 

attributed to the combination of flash floods with riverine floods in the Songwe, Kyungu, Lufira and North Rukuru rivers, as 

well as the higher population density in the North. These prolonged and larger-scale flood events are reported to trigger cholera 

outbreaks in the region. Flash flood events occurring in January can, however, affect the entire district. Their impacts on 

communities are more spatially contained, but maybe more severe at that small scale.  275 

 

(iv)Perceived drivers of flash flood risk 

Extracted from the KII and FGD interview transcripts, a summary of six factors perceived to increase flash flood risks in 

Karonga District is presented below. Quotes made by different community members are provided, where relevant. 

River sediments: Karonga has mostly ephemeral rivers with heavily silted river beds, which are dry from the months of 280 

August to December. Increasing sedimentation of the river beds and changes in river behaviour are reported by elderly people. 
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High sedimentation in rivers is recognised to have increased flood occurrence, and the exposure of people living along these 

rivers. “Before, water would swell within its course and go back to normal without any damage. Today, rivers are full of sand, 

blocking culverts, and preventing water from flowing in its original course”. River profiles where these cross the lake-shore 

plain are very flat, and their channels were observed during our transect walks to not be deep enough to accommodate peak 285 

discharges.  

Land use: The sedimentation in the river courses is identified by all communities to be the result of deforestation in the 

upstream catchments, which started in the 1970’s, after the independence of Malawi. Charcoal production, and the use of wood 

to build stronger burnt brick structures have risen; “Bushfires and overgrazing animals are leaving the soil bare and prone to 

flood”. In addition, the intensification of agriculture along the river banks is reported to reduce the natural control of the water 290 

velocity, increasing the spread of water on farmland.  

Climate change: A shift toward shorter and more intense rainy seasons (December to March instead of November to April) 

is observed by communities, leading to more frequent and devastating events. An intensification of rain events and a change 

in meteorological patterns is described by elderly people, making the indigenous prediction more difficult than before. 

Geomorphology: Fast running water is experienced to come from the steep slopes of the mountains of the escarpment, and 295 

affects villages in the low land areas, making the proximity to the hills a factor of increasing risk.  

Soil type: The relation between flash floods and soil type is expressed in terms of erodibility of the soil; “The soil, easily swept 

away during flood, is dispersed in agricultural fields and lowers soil fertility”. In the Northern communities, a relation between 

the flood duration and the clay content in the soil, lowering the infiltration capacity in the lake margin plains, is observed. 

Socio-economic vulnerability:  The rapid increase of population and poverty, associated with poor settlement and farming 300 

practices, is perceived to have exacerbated the vulnerability of communities in the district. 

 

(v) the signs leading to flash floods. 

The local knowledge of the signs experienced prior to flash floods are categorised into two types of observations.    

Meteorological signs: Community knowledge revealed that flash floods are associated with strong south-easterly winds at 305 

the end of the wet season. In addition, communities in the South of Karonga District described flash floods to be associated 

with highly localised storm events and thunder, black and slow-moving convective clouds, and changeable wind direction. 

In addition, a rise in temperature before flash floods was reported by all communities. 

Hydrological signs: When water velocity and volume increase in the rivers, the amount of debris carried as well as the colour 

of the water changes (turning brown, black, milky or red), announcing that a major flood is coming. In addition, at the lake 310 

margin, the soil moisture and water table are known to be high at the end of the wet season, increasing the duration of floods 

and consequent impacts. When the soil is dry, water from the flash floods will infiltrate faster in the farmlands. 
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4.2 Geomorphological analysis of flash-flood susceptibility in Karonga District 

All catchments that drain the escarpment are reported to be susceptible to flash flooding in Karonga district although the level 

of susceptibility may vary between catchments. The results from the flash flood frequency estimation from each community 315 

was fundamental to understanding the spatial difference in flash flood susceptibility from the geomorphology and surface 

characteristics of the upstream catchments upstream. The normalised indicator values and PCA composite results calculated 

for each catchment are presented in supplementary material section 4.2; the PCA component loadings are found in Appendix 

A. 

The relative catchment susceptibility results for the four geomorphological classes; geometry, hypsometry, drainage system 320 

and surface characteristics; reveals differences from North to South, as shown in Fig. 4. The dashed coloured lines show the 

results from the PCA analysis for each of the four categories of catchment characteristics. Black triangles show the normalised 

frequency of flash floods as reported by the communities visited, which were used to estimate the weights (a,b, c and d) for 

the final flash flood susceptibility ranking of the selected catchments. The thick solid line shows the normalised flash flood 

susceptibility indicators, found from the weighted contributing factors; geometry (0.5), hypsometry (0.1), drainage (0.2), and 325 

surface (0.2), where the values in brackets are the weights in Equation 1 with the best fit (RMSE of 0.31). The resulting indices 

are mapped in Fig. 5. 

The increased flash flood susceptibility of catchments appears to be mostly driven by catchment geometry and is inversely 

proportional to the area and the time of concentration (Tc) of the catchment, together explaining 63% of the variance of the 

geometric class. While the high frequency of flash floods experienced by the community of Iponga and Nkhomi are explained 330 

mainly by their small upstream catchments size (lower than 10 km2) and Tc of about 40 minutes, the lowest flash flood 

frequency observed in Sabi community can be explained by the largest contributing Area (335 km2) and associated Tc (~4 

hours).  

The derived weights attribute an equally important influence to both the drainage characteristics (controlled essentially by the 

drainage relief ratio) and the surface characteristics. While the higher flash flood susceptibility of Iponga and Nkhomi 335 

catchments is also explained by the high drainage relief ratio, spatial variation of the susceptibility related to surface 

characteristics is mainly driven by the soil types and the vegetation cover. A strong variability in the NDVI is observed between 

the North and the South, particularly at the beginning of the wet season, exposing the South (with more bare soils) to higher 

susceptibility to flash floods. The high susceptibility of Iponga catchment is additionally explained by the presence of clayey 

soils in the North, decreasing the infiltration capacity. Finally, catchment hypsometry results do not correlate well with field 340 

observations. The resulting low relative flash flood susceptibility of the Kyungu, Kibwe and Kasantha catchments in the North 

of Karonga, which were not visited, confirms these being ranked as less dangerous by Karonga experts through the KII.  
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Figure 4: Results from the PCA analysis of the four catchment characteristic categories and weighted flash flood catchment 
susceptibility. The black dots correspond to the normalised estimation of flash flood frequency of communities visited 345 
(OBS=observed). Catchments are ordered from North to South (left to right). 

 

 
Figure 5.  Relative flash flood susceptibility of the catchments in Karonga district.  
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4.3 Hydro-meteorological conditions associated to flash flooding 350 

Guided by local knowledge on the hydro-meteorological signs associated with flash flood events, and the temporal distribution 

of flash flood events through the wet season, we analysed the characteristics of extreme rainfall and large-scale spatial and 

intra-seasonal hydro-meteorological patterns that could lead to flash floods in Karonga. 

The analysis of historical precipitation indicates that heavy rainfall events are not homogeneously distributed spatially and are 

distinctly different at the beginning and at the end of the wet season. 355 

Figure 6 shows the maximum daily precipitation found with the GSMaP data, averaged over the time period 2002-2018 for 

the months of January and April, the months in which flash floods are reported by communities to occur. This reveals that 

extreme rainfall rates are constrained to the Northern part of Karonga at the end of the wet season in April, while these are 

distributed more homogeneously in January. A more detailed analysis of the hourly rainfall rate reveals that extreme rainfall 

events are more frequent in January than in April, though the maximum hourly precipitation rates are comparable in both 360 

months (see supplementary material section 4.3.1). All rainfall events associated with the 18 historical flash flood events were 

detected by GSMaP. It confirms that extreme rainfall peaks of at least 30 mm/h are associated with events localised in the 

North of Karonga, either at the beginning or at the end of the wet season. In addition, flash flood events that correspond to low 

GSMaP rainfall signals (peak rain below 10mm/h) are observed mainly in the South of Karonga, in January and February (see 

supplementary material section 4.3.2). 365 

 

 

Figure 6: Maximum daily rainfall over two different months of the wet season (January and April), averaged for 15 wet seasons 

(2002/2003 to 2017/2018). Yellow colours indicate areas with higher maximum daily rainfall (mm/d) recorded on average for the 

month. The maps are centred on North Malawi, black lines represent the boundaries between countries and Lake Malawi. 370 
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The large-scale hydro-meteorological analysis on seasonal patterns and conditions associated with flash floods in Northern 

Malawi help to understand the extreme rainfall patterns in Northern Karonga.  

Figure 7 presents the standard daily averages for the selected variables spanning the 2000-2018 period, derived from ERA5 

hourly re-analysis and sampled at three locations (Fig. 2).  375 

The Relative humidity, which provides an indication of the water saturation of the deep troposphere, strongly increases during 

the first part of the wet season, from mid-November to end of December. The average relative humidity is at its maximum 

from January to mid-February, approaching 80%, and is slightly lower from mid-February to the end of March. The relative 

humidity of the troposphere then drops significantly in April. 

The Soil Moisture is generally lower in the South than in the North of Karonga. It gradually rises from November to February, 380 

then drops at the end of the wet season in the South while remaining high in the North. These results confirm the precipitation 

observations, showing a prolonged rain season in April in the North of Karonga, but could also be attributed to differences in 

soil characteristics and vegetation. 

The convective available potential energy (CAPE) is highly variable within the wet season. It shows a rising trend at the 

beginning of the wet season and a falling trend at the end of the wet season, with averaged maximum standard values of 1000 385 

J/km at the end of January revealing a maximum atmospheric instability. In addition, the daily variability of CAPE is higher 

in January.  

The wind is generally stronger before December, becoming weaker at the beginning of the wet season. It reaches its minimum 

intensity in January and February, and increases again towards the end of the wet season. We observe that winds are stronger 

over the lake and in the South than in the North of Karonga at the end of the wet season. 390 

During November-December and March-April, the wind is uniformly South-Easterly over land, and Southerly over the lake. 

During the months of January and February, wind direction is more erratic, characterised by an alternation between North-

westerly and North-easterly winds over Karonga and respectively North-westerlies and Southerlies over Lake Malawi. 
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 395 

 

Figure 7: ERA5 standard daily averaged variables over the period 2000-2018 for the three locations as introduced in Figure 3 

representing the North and the South of Karonga, and Lake Malawi. Six hydro-meteorological variables are shown: the surface 
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temperature, the relative humidity of the troposphere, the CAPE factor, the volumetric soil water, the wind speed and the 

meteorological wind direction. 400 

Our analysis of these variables confirms our hypothesis of two large-scale hydro-meteorological patterns in northern Malawi, 

characteristic of the early and late wet season respectively. 

The early wet season is characterized by a maximum atmospheric instability in January, with high temperatures and relative 

humidity. This is when the Inter-Tropical Convergence Zone (ITCZ) is positioned over Malawi. This suggests that the 

convective storm risk associated with the tropical climate regime is higher at the beginning of the wet season. During this 405 

period, extreme rainfall events are more frequent, more localised, and of shorter duration. Such convective events occur evenly 

distributed over the district. The wind, alternating between two different regimes, can lead to either orographically enhanced 

rainfall in the North, or more scattered convective conditions in the South.  

The late wet season is driven by an extra-tropical climate regime associated with Mozambique currents coming from the Indian 

Ocean. This is consistent with the strong winds from the South observed along Lake Malawi. When this pattern forms, clouds 410 

converge toward the northern part of Karonga, where rainfall is orographically enhanced. The North of Karonga experiences 

a longer rainy season as a consequence, with frequent, intense and continuous rainfall until the end of April, while flash flood 

risk is considerably reduced in April in the South of Karonga.  

While orographic effects in Karonga have been documented (Nicholson, et al., 2014), the differences between the orographic 

events of the late wet season and the predominantly convective events of the early wet season as a trigger for flash floods have 415 

not been previously studied. These distinct patterns do, however, corroborate the differences observed by local communities 

as reported in the FGD held. 

4.5 Linking Local and Scientific Knowledge on Flash Flooding in Karonga District 

The local knowledge of the communities in Karonga district on the conditions that lead to flash floods, which we obtained 

through the FGD and supported by the KII, was used to guide the diagnosis of scientific data in the exploration of the factors 420 

contributing to flash-flood risk in Northern Malawi. In this section we synthesize this local knowledge, and explain how the 

scientific diagnosis corroborates local knowledge. Table 3 shows the results for the three main themes of analysis (left column), 

linking the local to scientific knowledge (middle and right columns respectively).  
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 425 

 
Table 3: Synthesis of the local and scientific knowledge on flash flooding in northern Malawi 

  Local Knowledge Scientific Knowledge 

Spatial-temporal occurrence of flash floods 

Spatial occurrence and 
annual frequency 

Communities experience differences in FF 
frequency in the different catchments in Karonga, 
from one event every 3 years to 3 events per year. 

Geomorphological features, surface characteristics and precipitation 
patterns explain spatial differences in FF susceptibility and impacts. 

Seasonal trend 

FF are experienced mostly in March/April, the 
months receiving the most rain, and sometimes 
January, related to the first precipitation events of 
the wet season. 

The intra-seasonal hydro-meteorological analysis reveals different 
hydro-meteorological conditions between the start (January) and the 
end of the wet season (April), potentially leading to two types of flash 
flood conditions. 

Diurnal trend FF are observed mostly at night 

Historical GSMaP precipitation events associated with flash flood 
events mainly occur during the evenings from 6-9 pm until the early 
morning 2-4 am in Malawi local time. In addition, a diurnal hydro-
meteorological cycle is observed between the land and the lake. 

Geomorphology and surface characteristics 

Soils 

Communities describe clayey soils as an 
aggravating factor, increasing flood duration, while 
they experience that sandy erodible soils have 
negative impacts when transported on crops and 
grass fields.  

Karonga soil type analysis reveals a large fraction of sandy soils in the 
district. More clayey soils are present in the North, potentially linking 
up with the longer flood durations reported in the North. 

Vegetation 
All communities see vegetation degradation in the 
Upstream catchment forest as a factor that increases 
flash flood risk. 

NDVI analysis shows a lower vegetation greenness in the South of 
Karonga at the beginning of the wet season, exposing the South of 
Karonga to higher flash flood risks. This is either due to a more intense 
deforestation rate in the South, more visible during the dry season, or 
reflecting the natural variability of vegetation between the North and 
the South of Karonga.  

Catchment geometry 
Communities relate the proximity of the escarpment 
and hills from their village with increased flash 
flood risk. 

The analysis of catchment time of concentration (40 min for small 
catchment to 4 hours for bigger catchments), an indicator of catchment 
geometry, shows the highest correlation with local spatial observation 
on flash flood frequency.  

Hydro-meteorological Knowledge 

Precipitation 
Short and intense precipitation events are indicated 
as the main trigger of flash floods for all 
communities. 

The analysis of high-resolution GSMaP precipitation during flash 
flood events confirms that daily maximum hourly rainfall rates are the 
most important indicator explaining historical flash flood events.  

Temperature An increase in temperature is experienced before 
flash flood events 

Daily Temperatures from ERA5 do not reveal any specific increase 
before FF events. However, a rise in humidity is observed in ERA5 
data before flash flood events, potentially linked to an increase in 
ambient temperature. 

Soil Moisture 
The higher soil water saturation in the flat plain 
along Lake Malawi in April is responsible for an 
increased flood duration. 

ERA5 volumetric soil water data confirm higher values during the late 
wet season and in the North. 

Wind 

Change in wind direction and strength associated 
with flash flooding. Some communities reported 
strong winds from the lake as a precondition to flash 
floods. 

ERA5 wind data reveals two different regimes at the beginning and at 
the end of the wet season, with higher instability during the early wet 
season potentially linked to LK observation.    

Storms 
Localised storms, with rotating black clouds and 
thunder are described as conditions associated with 
flash floods. 

ERA5 CAPE and Relative Humidity are good indicators of the 
susceptibility of convective events developing. These show promising 
signals of FF potential during the early wet season.  
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5 Discussion 

5.1. Validating local knowledge in prediction of flash floods 

Karonga district, and more generally most countries in Southern Africa, lacks the availability of high-resolution quantitative 430 

precipitation forecasts and high-resolution hydrological models that provide plausible prediction of flash floods (Hapuarachchi, 

2011; Braud, 2018). Global and continental scale flood forecasting systems (Emerton et al. 2016, Alfieri et al., 2018) 

potentially fill this gap, but the current meteorological and hydrological models these use are too coarse to provide reliable 

hydrological predictions of flash floods at the scale of catchments susceptible to flash flooding (Emerton et al. 2016, 

Gründemann et al., 2018), or there is insufficient in situ data to correct bias in forecasts derived from such global systems 435 

(Bischiniotis et al., 2018, Lavers et al. 2019). Despite this, our results show that larger scale patterns that are identified to be 

linked to the occurrence of flash floods in Karonga district based on local knowledge, can be discerned in the coarser global 

scale models and remote sensing datasets. This highlights the opportunity of local knowledge in helping bridge the temporal 

and spatial scale gap (Plotz et al., 2017) and in deriving flash flood warnings by interpreting forecasts of larger scales patterns 

associated with flash floods in the district using indicators that reflect local knowledge. Plotz et al (2017) propose two 440 

approaches to combining local and scientific knowledge in forecasts; a consensus forecast approach and a science integration 

approach that validates the accuracy of forecasts based on local knowledge using scientific data. Following the second 

approach, we extract the identified indicators of the critical hydro-meteorological conditions associated with the 18 flash flood 

events recorded in Karonga and use a simple model to test the predictability of the binary occurrence of flash floods in the 

Karonga district. The two indicators derived from ERA5 found to be the best predictors of conditions that may lead to a flash 445 

flood are the maximum hourly peak in the CAPE in the three days before an event, and the maximum hourly relative humidity 

of the troposphere one day before the flash flood. The latter indicator was found to be a good predictor in the early wet season 

only, confirming that in this period flash floods are primarily induced by convective storms. Conversely, antecedent rainfall 

conditions are found to have more predictive potential during the late wet season, particularly for the catchments in the North. 

We explore the predictability of the binary occurrence of the observed flash flood events with these simple indicators at three 450 

spatial scales; i) at the scale of predicting the flash flood events in each catchment; ii) at the scale of predicting a flash occurring 

in the North and or in the South of Karonga district; and iii) at the scale of predicting the occurrence of flash flood events in 

the district as a whole. Clearly the sample size is small, particularly for predictions of flash floods occurring in individual 

catchments. Our results show there is little skill in the prediction of flash floods at the scale of the individual catchments, as 

the reasonably high probability of detection (POD) is complemented with high probabilities of false detection (POFD). 455 

However, skill improved markedly in predicting the binary occurrence of flash floods when pooling warnings for either the 

northern or southern catchments, and further still at the scale of the district as a whole (see supplementary material section 

5.1). These results underscore the complexity of predicting the occurrence of flash floods to trigger warnings at the local scale, 

particularly using coarser global datasets in absence of the availability of high-resolution observational data and numerical 

weather predictions. Despite this difficulty of providing predictions at the very local scale, the results do highlight the potential 460 
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these datasets have in providing guidance on the occurrence of flash floods in the district. Predictions of the likely occurrence 

of a flash flood event, either differentiated to the North or South of the district, or in the district as a whole, could be translated 

to flash flood guidance in the individual catchments based on the knowledge of the communities of the relative susceptibility 

of each of the catchments in the district, and predicted large-scale meteorological conditions. This approach is in principle 

similar to differentiated rainfall thresholds derived to support flash flood guidance statements such as used in the Southern 465 

Africa Region Flash Flood Guidance System (SARFFG) developed in collaboration with the Malawi Department of Climate 

Change and Meteorological Services (DCCMS) (Jubach and Tokar, 2016), but differs as it differentiates catchments based on 

local knowledge, corroborated by the scientific assessment of catchment flash-flood susceptibility. We argue that this 

contributes to more effective dissemination of guidance on the potential occurrence of flash floods as it considers the 

knowledge and perceptions of the recipients.  470 

Although our sample size of 14 KIIs and 6 guided FGDs with 7 to 11 persons allowed us to capture the diversity of local 

knowledge in the area, we cannot say data saturation was fully reached. Most likely a larger sample size of FGDs would have 

allowed for a further in-depth spatial characterization of local knowledge, and shed light on minor discrepancies such as why 

communities considered the Kasisi catchment to be more susceptible than the Sabi catchment, despite the contrary being 

suggested by the geomorphological characteristics. Nevertheless, the validation of the local knowledge obtained through the 475 

FGDs and KIIs evidences the complementarity of local and scientific knowledge, even with the coarse scale global datasets 

explored here, implying the potential of blending these to provide effective early warning of flash floods. 

 

5.2 Combining local and scientific knowledge toward People-Centred early warning systems 

None of the communities we interviewed in Karonga district had access to a formal warning before recent events, neither based 480 

on their knowledge of the hydro-meteorological conditions they recognise as possible precursors to flash floods, nor guidance 

from SARFFG issued through the DCCMS. Given the knowledge of the communities of the catchments most susceptible to 

flash floods and the hydro-meteorological conditions that may lead to flash flood events, and that these conditions can be 

identified in large-scale hydro meteorological datasets such as ERA5, there is clear potential in combining this information 

into a form of a consensus warning (Plotz et al, 2017) of elevated flash flood risk in the district. Developing warning messages 485 

that visualise the indicators that are understood by the recipients of the warnings can contribute to the credibility of these 

warnings, helping close the “usability” gap (Vincent et al, 2020), and foster two-way communication between observations of 

the communities and warning provision (O’Sullivan et al. 2012, Basher 2006). The taking of protective action by recipients of 

warning messages, if indeed these are received, depends on several factors, including understanding, trust in the provider of 

warnings, ownership, and personal and contextual relevance (Parker 2009, Moinari and Handmer, 2011, Salit et al 2013). Shah 490 

et al, 2012 found that confirmation of warning content through observation of visual cues in their environment that confirmed 

the warning content, contributes to the taking of protective actions by recipients. Additional research is needed on how to 

combine local knowledge and community observations with the scientific forecast information in the provision of warnings to 
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communities such as in Karonga, as careful design warning content and the dissemination and communication methods is 

required. This design should also acknowledge other signs communities recognise as precursors to flash flood events which 495 

were reported in the FGDs, such as in animal and plant behaviour. In Karonga, groups of big black Phanga birds flying fast 

towards the mountains, ant movements and the presence of butterflies are indigenous signs associated with imminent heavy 

rains, while frog noises are often heard the night before a flood. The community of Mwenelupembe village also said they 

perceived a change in vegetation colour, turning deep green before the flood. Such careful design is also relevant to avoid 

diminishing response and trust due to a high false alarm rate as a result of forecast over-confidence (Morss et al 2016). Though 500 

not extensively explored in the FGD we held with communities, elderly people described an intensification of rain events and 

a change in meteorological patterns, making the forecasts based on local knowledge more difficult. This reflects observations 

made by participants in the research of Sakic Trogrlic et al. (2019) in the Lower Shire river basin in Malawi, who saw the 

manifestation of climate change through a change in rainfall patterns, which negatively influenced the reliability of local 

indicators. Rising temperatures in Southern Africa as a consequence of climate change are consistently projected, as are 505 

changes to precipitation patterns, though the projections how precipitation will change is less certain (Engelbrecht, 2015). 

Further research will be needed to understand if and how local knowledge will adapt under climate change. Improved forecast 

information provided by global forecasting systems, including through integration of local hydro-meteorological observations 

(Lavers et al, 2019), as well as improved interpretation of these forecasts at regional level (Jubach and Tokar, 2016) could 

contribute to reducing false alarm rates.  510 

Conclusion. 

Using social science-based methods and secondary data sources, we document the knowledge that communities have on the 

occurrence and impacts of flash floods in Karonga District in northern Malawi. Thematic analysis of the transcriptions from 

focus group discussions with communities, and key informant interviews with local and national experts, revealed which 

catchments communities identify as susceptible to flash flooding, as well as the hydro-meteorological signs they recognise as 515 

precursors to flash flood events. This local knowledge was used to guide scientific analysis of the susceptibility of flash floods 

in catchments identified as flash flood prone by the communities, as well as the hydro-meteorological conditions prior to and 

during documented flash flood events extracted from coarse-scale globally available models and datasets. 

The local knowledge of the communities, documented through the focus group discussion and key informant interviews shows 

that there is a well-developed knowledge of the occurrence of flash floods in the district, including which catchments are more 520 

susceptible to flash flooding and the factors that may aggravate susceptibility. There is also well-developed knowledge of the 

hydro-meteorological conditions they consider as precursors to flash flood events. Interestingly, the communities identified 

differences in flash flood events and the impacts these have across the district, including the different characteristics of flash 

flood events occurring in the early wet season and in the late wet season. Integrating this local knowledge with secondary data 

of flash floods and their impacts in the district contributed to developing a common baseline of the knowledge and perspectives 525 

of the spatial and temporal occurrence of flash floods and their triggers in Northern Malawi. 
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Our geo-morphological analysis of the catchments, based on the geometric attributes and indicators extracted from SRTM 

DEM data, Normalized Difference Vegetation Index (NDVI) from the Copernicus Global Land Service, and national soil and 

land-cover datasets corroborates the variability of flash flood susceptibility of the catchments in the district described by the 

communities. Similarly, indicators of the hydro-meteorological conditions and patterns extracted from GSMaP satellite 530 

precipitation estimates and ERA5 global reanalysis datasets, validate the precursor signs communities report, including the 

different characteristics of events across the district and across the wet season. This demonstrates that flash floods happen the 

way people say, as well as how local knowledge can be used to guide and validate scientific analysis. 

Through combining the local knowledge and the scientific analysis of hydro-meteorological conditions and geomorphological 

patterns, we developed a common understanding of flash floods in Northern Malawi. We identified that the occurrence of flash 535 

floods and their impacts differ both spatially and temporally. The analysis suggests that flash floods in the South of Karonga 

District are mostly triggered by localised convective storms, aggravated by lower vegetation cover, while flash floods in the 

North of the district are triggered by longer duration orographic rainfall, also extending later in the wet season, with events 

lasting longer due to the lower infiltration rate. 

This common understanding of flash flooding is developed through a bottom-up approach that starts from the risk knowledge 540 

and interpretation of communities affected by flash floods and using this to guide the analysis of geomorphological and hydro-

meteorological conditions. This holds significant potential in developing a more people-centred early warning of flash floods 

in those areas of the world where high-resolution forecast data may not be available. Though warnings triggered by indicators 

extracted from the global datasets used here result in over-confident forecasts, our results highlight the potential these datasets 

have, even at the local scale. Combining the local and scientific knowledge and understanding, and using commonly 545 

understood cues, will lead to better efficiency in triggering action prior to flash flood events, which is crucial to reduce flash 

flood impacts in vulnerable communities. 
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Appendices. 550 

Appendix A:  

Table A1: List of indicators included in the Principal Component Analysis per categories, resulted indicator loading factors, and 
category weights (a, b, c and d). 
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Department of Disaster Management Affair (DODMA). Dataset reference:  Bucherie, A.: Karonga historical flood 

occurrences and impacts dataset (2000-2018) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4661438, 2021. 
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