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Abstract:Snow avalanches pose serious hazard to people and property in snow bound mountains. Snow mass sliding 

downslope can gain sufficient momentum to destroy buildings, uproot trees and kill people. Forecasting and in turn 10 

avoiding exposure to avalanches is a much practiced measure to mitigate hazard world over. However, sufficient snow 

stability data for accurate forecasting is generally difficult to collect. Hence forecasters infer snow stability largely through 

intuitive reasoning based upon their knowledge of local weather, terrain and sparsely available snowpack observations. 

Machine learning models may add more objectivity to this intuitive inference process. In this paper we propose a data 

efficient machine learning classifier using the technique of Random Forest. The model can be trained with significantly 15 

lesser training data compared to other avalanche forecasting models and it generates useful outputs to minimise and 

quantify uncertainty. Besides, the model generates intricate reasoning descriptions which are difficult to observe manually. 

Furthermore, the model data requirement can be met through automatic systems. The proposed model advances the field by 

being inexpensive and convenient for operational use due to its data efficiency and ability to describe its decisions besides 

the potential of lending autonomy to the process. 20 

 

1. Introduction 

In snow bound mountainous areas worldwide, avalanches cause significant loss of life and property. Avalanche deaths are 

estimated at 250 per year (Schweizer et al., 2015). Government and private agencies are funded to reduce avalanche risk 

for important activities and property e.g. road/rail transport, winter sports, construction, military operations etc. This effort 25 

has led to development of several techniques to reduce avalanche risk. Hazard mapping is done to estimate the long term 

hazard at each avalanche path in a region (Choubin et al., 2019; Rahmati et al., 2019). The map is used to implement active 

risk reduction measures e.g. building control structures, modification of nearby terrain or use of explosives to trigger 

avalanches in controlled way (Fuchs et al., 2007). Using active methods at each hazardous path is economically infeasible 

therefore avalanche forecasting is practised to reduce exposure to avalanches. Individuals can use information in forecast to 30 

minimise risk in short term. 

Avalanche forecasting aims to identify the locations of snowpack weakness, their spatial distribution, sensitivity to 

triggering and the size of resulting avalanches (Statham et al., 2018).Snow stability shows high variance with respect to 

terrain features (Gaume et al., 2014). Also, observing snowpack stability of a large area at high spatio-temporal resolution 

is difficult. Therefore stability at most of the avalanche slopes is deduced using secondary observable data e.g. 35 

meteorological and snowpack parameters from a similar representative site, terrain parameters of the slope, expected 

changes to snowpack by imminent weather etc. Deduction process for snow stability from secondary data is yet to be 

satisfactorily formularized mathematically. Therefore, forecasters need to rely on their intuition of local terrain and 

snowpack patterns to estimate stability and collect more information to minimise uncertainty (LaChapelle, 1980; 

Schweizer et al., 2008; McClung and Schaerer, 2006). Numerical (physical-based), statistical, heuristic and machine 40 

learning models are important tools for adding objectivity to this process.   
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Physical-based numerical models such as CROCUS (Brun et al., 1992; Vionnet et al., 2012)and SNOWPACK(Bartelt and 

Lehning, 2002)simulate the snowpack and weather processes that contribute significantly to avalanche hazard. These 

models give accurate snow profile simulations at microscale level (<1km2) for avalanche paths where meteorological data 

is available. Since, meteorological sensors cannot be placed at all hazardous paths therefore interpolated meteorological 45 

data from tools like SAFRAN and meteoIO are used as input for numerical model to simulate the snowpack (Durand et el., 

1999; Bavay and Egger, 2014; Morin et al., 2020). Output from CROCUS or SNOWPACK shows forecasters the changing 

state of snowpack due to numerically modelled processes, viz., weak layer formation due to temperature gradients, surface 

or deep wetting, compaction and refreezing etc. However, its accuracy can be seriously affected by errors in interpolated 

meteorological data.  50 

Avalanche forecasting models based upon statistical techniques such as discriminant analysis, regression trees, hidden 

Markov models (HMM) and k-nearest neighbours (k-NN) (Obled and Good, 1980; Buser, 1983; Davis et al., 1999, 

Gassner et al., 2001; Schirmer et al., 2009) use input from a specific location to represent snow and weather conditions of a 

larger region (generally mesoscale ~ 100 km2). These models link weather and snowpack variables to hazard using 

avalanche occurrences from historical data. Information from multiple sources (possibly redundant) e.g. wind loading 55 

indexes, local terrain features (slope, elevation etc.), location specific snowfall patterns, numerical snowpack simulations 

and numerical weather model output can be included in these models (Singh et al., 2005; Schirmer et al., 2009; Bellaire et 

al., 2017). This makes them more robust to errors in individual parameters compared to numerical models. However, they 

don’t directly model the inductive reasoning process used by avalanche forecasters. Therefore such models use the training 

data inefficiently and require larger training samples to achieve a specified performance. Models by Buser (1983), Gassner 60 

et al. (2001), and Singh et al. (2005) etc. require at least seven years’ training data. Also, some features used in above-

referred implementations require manual effort to record. Interpreting model output may also be difficult for a forecaster in 

most cases. In this regard, k-NN models indeed havepossibility of generating descriptive output in terms of list of events 

and its incorporation into decision making process similar to conventional inductive avalanche forecasting processes 

(LaChapelle, 1980). 65 

Heuristics based expert systems have been attempted to model complex patterns which are missed by nearest neighbours 

(Schweizer and Föhn, 1996). This approach is capable of using expert knowledge by modelling known forecasting rules. 

But considerable human effort and expertise is required to build such models. 

Machine learning has been quite successfully used for tasks where procedures cannot be precisely formulated but humans 

perform well e.g. in handwriting and speech recognition (Liang and Hu, 2015). Machine learning models are therefore used 70 

for several tasks supporting avalanche risk mitigation. Classification and regression trees (Davis et al., 1999; Rosenthal et 

al., 2001; Hendrikx et al., 2005; Hendrikx et al., 2014) have been explored for assistance of avalanche forecasters as these 

techniques provide easily comprehensible interpretations of complex interactions. Support vector machine (SVM) was 

implemented as a data exploration tool and a predictive engine for spatio-temporal forecasting of snow avalanches 

(Pozdnoukhov et al., 2008; Pozdnoukhov et al., 2011).Purves et al. (2003) and Singh et al. (2015) applied nature-inspired 75 

meta-heuristics to optimize weights assigned to input variables of k-NN models. Singh and Ganju (2008) exploited 

artificial neural networks (ANN) for post processing of a k-NN model output for improved classification ability. Rubin et 

al. (2012) explored avalanche detection from seismic signals using machine learning models. Dekanová et al. (2018) 

proposed use of fast ANN to process data from automatic weather station for assistance in determining the avalanche 

danger levels. Choubin et al. (2019) and Rahmati et al. (2019) applied and validated machine learning techniques for 80 

avalanche hazard mapping.  

In this paper we propose a machine learning model based on random forest (RF) technique (Opitz and Maclin, 1999; 

Breiman, 2001)for avalanche or no-avalanche classification using snow and weather parameters. In RF, an ensemble of 

https://doi.org/10.5194/nhess-2021-106
Preprint. Discussion started: 26 April 2021
c© Author(s) 2021. CC BY 4.0 License.



3 

 

decision trees (constructed by automatic rule inference) generates the prediction and quantifies the uncertainty. RF 

ensemble can learn complex decision boundaries and is resistant to over-fitting (Breiman, 2001) leading to better 85 

generalization of the model and in turn ensuring high quality results. The model is inexpensive and convenient to use for 

operational applications due to its data efficiency and interpretable data mining outputs. Besides, the input data can be 

observed using automatic devices. These properties can be leveraged to set-up an autonomous avalanche forecasting 

system with slight human intervention. 

The paper is structured as follows. Section 2 introduces the RF technique. Section 3 describes the feature set and study 90 

area. Model training and generalization performance has been discussed in Section 4. Section 5 explains how descriptive 

output of model can be effectively used by forecasters to validate their intuitions. In Section 6, the salient features of the 

model have been compared with other models in use. Section 7 highlights the data efficiency aspect and potential of using 

the model for setting up autonomous decision making frameworks. The conclusions of the study and future research 

potential in the field are listed in Section 8. 95 

 

2. Random Forest Technique 

RF is an ensemble learning method (Opitz and Maclin, 1999) where an ensemble of decision trees generates the prediction. 

A decision tree describes a flowchart like process for classifying the query. Each tree node represents a step in the process. 

An internal (non-terminal) node defines a test condition. Outgoing arrows from an internal node represent future steps 100 

depending on the outcome of test at the node. The arrow connected nodes are called the children nodes of the internal node. 

Terminal step is represented by leaf nodes i.e. nodes without any children. To classify a query, the test is applied to the 

query at root node and depending on the result a child node is selected. If child node is an internal node, the same process 

is repeated to move to subsequent child node. This is repeated till a leaf node is reached. This leaf node defines the 

classification for the query. Algorithms for training (also called ‘learning’ or ‘construction’) of a decision tree proceed by 105 

splitting the given training dataset based on a feature value such that the resulting split datasets are more homogeneous in 

their target variable. This splitting process continues recursively on datasets till termination criteria is reached which 

specifies that the each split dataset is sufficiently homogenous. Recursive splitting process naturally defines the decision 

tree. Each node corresponds to a dataset and the split mentioned in node corresponds to the split decided by the training 

process. The highest frequency class label of the final homogenous split datasets is taken as the label represented by the 110 

corresponding leaf node.  

In this work, we used C4.5 algorithm (Bressert, 2012; Quinlan, 1993) based RF classifier implemented in scikit-

learn 1 (Pedregosa et al., 2011) for decision tree constructions. C4.5 splits on an attribute with highest normalised 

information gain, a measure based on the concept of entropy from information theory. The information content𝐼(𝐸) (also 

called the surprisal) of an event𝐸is defined as 𝐼(𝐸) = − log2 𝑝(𝐸)where 𝑝(𝐸)is probability of occurrence of𝐸. The choice 115 

of base varies between different applications: base 2 gives the unit of bits (or "shannons"), while base e gives the natural 

units nat. Entropy measures the expected (i.e., average) amount of information conveyed by identifying the outcome of a 

random trial.In a dataset 𝑇,entropy 𝐻(𝑇) is defined as (Witten, 2011): 

𝐻(𝑇) = 𝐼𝐸(𝑝1, 𝑝2, … , 𝑝𝐽) = − ∑ 𝑝𝑖 log2 𝑝𝑖

𝐽

𝑖=1

 

(1) 

where𝑝1, 𝑝2, … represent the percentage of each class present in 𝑇. When 𝐻(𝑇) = 0, the set 𝑇 is perfectly classified (i.e. all 

data points in 𝑇 are of same class). Information gain 𝐼𝐺(𝑇, 𝑎) is the measure of the difference in entropy from before to 120 

after the set 𝑇 is split on an attribute 𝑎. 

 
1An open source machine learningsoftwarelibrary for the Pythonprogramming language (https://scikit-learn.org/stable/) 
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𝐼𝐺(𝑇, 𝑎) = 𝐻(𝑇) − 𝐻(𝑇|𝑎) 

=  𝐻(𝑇) − ∑ 𝑝(𝑆)𝐻(𝑆)

𝑆∈𝑇

 
(2) 

Where, 

𝑆: the subsets created from splitting of set 𝑇 by 𝑎 such that 𝑇 = ⋃ 𝑆𝑆∈𝑇 , 

𝑝(𝑆): the proportion of the number of elements in subset𝑆 to the total number of elements in set 𝑇, and 

𝐻(𝑆): Entropy of subset 𝑆 125 

In order to inhibit the tendency of the classifier to be biased towards the majority class while dealing with the 

problems characterized with imbalanced data, Chen et al. (2004) proposed to place a heavier penalty on 

misclassifying the minority class by assigning a weight to each class, with the minority class given larger 

weight (i.e., higher misclassification cost).The scikit-learn RFclassifier has the option (“balanced” mode) to introduce 

such weighted cost for the classes to take care of imbalanced data. This modifies the computation of 𝑝𝑖  and 𝑝(𝑆) in Eqn. 130 

(1)&(2) respectively as follows: 

𝑝𝑖 =  
𝑤𝑖

∑ 𝑤𝑘
𝐽
𝑘

 (3) 

𝑝(𝑆) =  
𝑆𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑆

∑ 𝑤𝑘
𝐽
𝑘

 
(4) 

Where 𝑤𝑖  is the weight of 𝑖𝑡ℎclass. The “balanced” mode automatically adjusts weights inversely proportional to class 

frequencies in the input data.  

Information gain (Eqn. (2)) is normalized to penalise excessive splitting at a node. The normalisation factor is the intrinsic 

value defined as 135 

𝐼𝑉(𝑇, 𝑎) = − ∑ 𝑝(𝑆) log2 𝑝(𝑆)

𝑆∈𝑇

 
(5) 

And therefore 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐺𝑎𝑖𝑛 (𝑇, 𝑎) =
𝐼𝐺(𝑇, 𝑎)

𝐼𝑉(𝑇, 𝑎)
 

(6) 

 

Individual decision trees are sensitive to small changes in data and unable to learn complex decision boundaries without 

overfitting (Hastie et al., 2009). In RF, each tree of ensemble is constructed on an independent random subspace derived 

from the training dataset using a process called bagging. This ensures that individual trees are uncorrelated (Breiman, 140 

1996). A subspace is formed by drawing a random sample dataset with replacement from training set and then selecting a 

random subset of features from the drawn sample. To build the ensemble a user specified number of decision trees are 

constructed and stored in memory. For a given query, output of the ensemble is the mean output of individual trees in terms 

of probability values calculated as the proportion of the target class present in terminal leaf node split dataset. 

 145 

3. Study Area and Data Characteristics 

The proposed model has been trained and tested using snow-meteorological and avalanche occurrence observations from 

Bandipore-Gurez (BG) sector at the tip of Great Himalayan Range in the north-western part of Indian Himalaya (Figure 1). 

In this area, a major highway runs along the Kishengangariver in Gurezvalley and Tulel valley and connects to Bandipore 

town in Kashmir valley through Razdan pass (3300m above m.s.l.). In Gurez valley (area on west of Wampore town), 40 150 

major avalanche paths affect the highway stretch of about 25 kms from Jatkushu village to Wampore village. Besides, 

about 15 avalanche paths affect the lateral tracks. In Tulel valley (area on east of Wampore town), over 100 major and 
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minor avalanche paths affect the highway and lateral tracks. The start-zone elevation of these avalanche paths ranges from 

about 2350m to 4800m above m.s.l. A snow-meteorological observatory is located near Kanzalwan town (2440m above 

m.s.l.). A summary of winter-season observations (for the months from November of a year to April of next year) from the 155 

observatory is presented in Figure 2. The values shown are the medians of monthly observations of respective parameters 

over a period from November-1993 to April-2017. According to the algorithm proposed by Mock and Birkeland (2000),the 

 
 

Figure 1: A perspective view of Bandipur-Gurez sector 

 

 

 

 

 

 

 

 
Figure 2: Summary of snow-meteorological observations from BG sector (The values shown are medians of respective 

variables in different months over a period from Nov-1993 to April-2017) 
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snow climate of BG sector may be classified as continental as the area witnesses low air temperature and high snowpack 

temperature gradient in early December. 

The input data features used for model development are summarized in Table 1 and Table 2. While features in Table 1 are 160 

direct snow-meteorological observations, features in Table 2 are derived from those in Table 1 and recent avalanche 

activity in the area to represent the conditions of past few days. The technology for automatic observation of features 

included in Table 1 has already been in existence for many decades now. Recently infrasonic and seismic sensors as well 

as Doppler radar based systems have been demonstrated to automatically detect and locate avalanche occurrences also 

(Rubin et al., 2012; Thuring et al., 2015;Persson et al., 2018). Thus all the necessary input data for the proposed model may 165 

be recorded using automatic devices. 

 

4. Model Setup and Performance Analysis 

4.1Data pre-processing  

In order to demonstrate that the proposed model is data efficient, data of just three winter seasons (from December 2010 to 170 

March 2013) only was used to construct the ensemble. Let us call it ‘training data’. Thereafter, model was tested on ‘test 

data’ from four subsequent winter seasons (December 2013 to March 2017). The data comprised of values of features 

summarized in Table 1-2. Each data row also carried a class label∈ {0 ,1}(0: No-avalanche day and 1: Avalanche day). The 

initial dataset contained more no-avalanche day cases (about 75%) than avalanche day cases (about 25%). A classifier 

trained on this skewed dataset will be biased to forecast more no-avalanche days. A popular approach to deal with such 175 

issues is to use cost corrected classifiers with higher cost assigned to minority examples. Another approach is to discard 

majority class data randomly or synthetically generate more minority class data to make class sizes comparable. However, 

this approach can lead to over fitted classifier. We rather opted to apply domain specific knowledge to deal with this issue 

Table 1: Intrinsic snow-meteorological features used by model. All features are recorded at 08:30 IST*.  

Parameter name Unit Description 

MAX_TEMP oC Maximum Temperature of past 24 hours 

MIN_TEMP oC Minimum Temperature of past 24 hours 

SNOW_TEMP oC Snow surface temperature 

SNOW_HEIGHT m Height of snow surface above ground level 

NEW_SNOW m New snowfall in past 24 hours 

WIND m/s-1 Average wind speed in past 24 hours 

AVAL - Number of avalanches triggered in the area in past 24 hours 
*IST: Indian Standard Time (UTC + 05:30) 

 

Table 2: Features derived from intrinsic features as described in Table 1.  

Parameter name Unit Description 

SNOW_TEMP_DIFF oC Snow surface temperature difference from past day 

NEW_SNOW2 m Cumulative new snowfall in past 2 days 

NEW_SNOW4 m Cumulative new snowfall in past 4 days 

NEW_SNOW10 m Cumulative new snowfall in past 10 days 

WIND2 m/s-1 Average wind speed of past 2 days 

WIND4 m/s-1 Average wind speed of past 4 days 

WIND10 m/s-1 Average wind speed of past 10 days 

AVAL2 - Number of avalanches triggered in the area in past 2 days 

AVAL4 - Number of avalanches triggered in the area in past 4 days 

 

 

 

https://doi.org/10.5194/nhess-2021-106
Preprint. Discussion started: 26 April 2021
c© Author(s) 2021. CC BY 4.0 License.



7 

 

of skewness in data. We removed all such cases from training dataset for which avalanches are unlikely due to lack of 

sufficient snowcover (Canadian Avalanche Association; 2016). Particularly, we discarded cases with SNOW_HEIGHT< 180 

0.50m. This filtering step removes poor examples which can decrease model performance. See Table 3 for justification of 

threshold choice for filtering and summary statistics of the dataset. Besides, when training decision trees of ensemble, the 

classes are weighted inversely to their proportion in filtered dataset to place a heavier penalty on misclassifying the 

minority class in order to counter imbalance in data (section 2). One obvious consequence of above-mentioned filtering 

on data is that for all the queries with SNOW_HEIGHT< 0.50m,classifier would not be applied. 185 

 

4.2 Performance measures 

Let us define a confusion matrix of a classifier C as on a labelled dataset 𝐷𝑠 as: 

𝑎𝑖𝑗 = |𝑆𝑖𝑗| (7) 

Where 𝑆𝑖𝑗  is defined as: 

𝑆𝑖𝑗 = {𝑥 ∈ 𝐷𝑠: 𝐶(𝑥) = 𝑖   and    𝑙𝑎𝑏𝑒𝑙(𝑥) = 𝑗} (8) 

This matrix is used for performance analysis of classifiers. Here we derive the performance measures from confusion 190 

matrix𝑎𝑖𝑗  with 𝑖, 𝑗 ∈ {0 ,1}(0: No-avalanche day and 1: Avalanche day) as summarized in Table 4 to describe model 

performance. 

 

 

 195 

Table 3: Summary statistics of BG sector avalanche dataset (Dec 2010 – Mar 2013). Avalanches are unlikely 

when SNOW_HEIGHT < 0.50m. 

Number of days in a winter season* 121 

Mean number of avalanche days per season 32 

Mean number of days per season with SNOW_HEIGHT > 0.50m 87 

Mean number of avalanche days per season with SNOW_HEIGHT > 0.50m 31 

* From 01-December of a year to 31-March of following year 

 

 

Table 4: Model performance measures (Wilks, 1995). 𝒊, 𝒋 ∈ {𝟎, 𝟏} where 0: No-avalanche day and 1: 

Avalanche day. 

Measure name Description Expression in terms of confusion matrix 

False Alarm Rate 

(FAR) 

Conditional probability of returning 

an avalanche day given underlying 

day is no avalanche day  

𝑎10

𝑎10 + 𝑎00

 

Probability of 

Detection (POD) 

Conditional probability of 

forecasting an avalanche day given 

underlying day is avalanche day   

𝑎11

𝑎11 + 𝑎01

 

Precision Fraction of predicted days which are 

avalanche days   

𝑎11

𝑎11 + 𝑎10

 

Heidke Skill Score 

(HSS)  

Measures  the forecast performance 

of classifier over of a defined 

random forecast   

2(𝑎11𝑎00 − 𝑎10𝑎01)

(𝑎11 + 𝑎01)(𝑎01 + 𝑎00) + (𝑎11 + 𝑎10)(𝑎10 + 𝑎00)
 

Hansen Kuipers Skill 

Score or True Skill 

Score (TSS) 

Measures  the forecast performance 

of classifier over of a defined 

random forecast   

𝑎11𝑎00 − 𝑎10𝑎01

(𝑎00 + 𝑎10)(𝑎01 + 𝑎11)
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4.3 Model training and hyper-parameters tuning 

A classification model is trained and cross-validated with hyper-parameters tuned for optimized performance. The hyper-

parameters tuning is an expert task and may involve a few trial experiments. There are following two hyper-parameters in 

RF technique: 

𝐷 : Maximum depth allowed (number of features considered) for each tree in the ensemble 200 

 𝑁: Number of trees used in ensemble 

RF model outputs the estimated probability of an avalanche against a query expressed in terms of input variables defined in 

Table 1-2. To convert the probability output to a binary classification, a threshold value for probability is fixed. If 

probability prediction for a query is greater than the threshold, it is classified as an avalanche day (class label = 1) 

otherwise a no-avalanche day (class label = 0). The choice of threshold sets a trade-off between the risks of missing an 205 

avalanche day against the risks of false alarm on a no-avalanche day. Low threshold values give high false alarm rates but 

fewer avalanche days are misclassified as no-avalanche days. High threshold choice gives few false alarms (improves 

precision) but misses more avalanche days. Forecaster can select a threshold optimal for his risk management strategy 

without retraining the model. Thus for any given set of values of hyper-parameters, the performance of RF model in terms 

 

Figure 3: HSS–Threshold probability curves (5-fold cross-validation on training data) for different values of 𝑵and 𝑫. 
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Figure 4: FAR, POD and Precision curves against threshold probability (5-fold cross-validation on training data) for 𝑫 =
𝟑 and 𝑵=5000. 
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of binary outputs will also vary with choice of threshold probability. Based on this premise, model training (i.e. ensemble 210 

construction) experiments were conducted with 5-fold cross-validation using training data (refer section 4.1) with all 

possible combinations out of following values of hyper-parameters for search of optimal set of values: 

𝐷: 2, 3 4, and 5 

𝑁: 2000, 5000, 10000, and 20000 

Trees tend to over-fit for large values of 𝐷. But for 𝑁, large values are preferred because the output of ensemble is the 215 

mean of individual tree outputs and as 𝑁 increases the variance of mean output decreases and decision boundaries become 

smoother (Breiman, 2001). This explains the above-mentioned choices for search of optimal values of 𝐷and 𝑁. 

The experimental results in terms of HSS (refer Table 4) against varying threshold probability values were analysed. These 

results have been obtained with thresholds uniformly spaced between 0 and 1 with gap of 0.01. It was observed that there is 

no significant change in the performance as measured by HSS by varying the value of 𝑁from 2000 to 20000 for any 220 

particular values of𝐷  (refer Figure 3). Also increasing values of 𝐷  beyond 3 decreased the HSS on most threshold 

 

 

 

 

 

 

Figure 5: Model prediction results against observed avalanche activity (by default, for all the cases with 

SNOW_HEIGHT < 0.50m the prediction probability value is set as 0) 
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probability choices. Hence, we chose 𝐷 = 3 and 𝑁 = 5000as the values of hyper-parameters of the ensemble for the study 

area. Training with these values requires low computational resources and still ensures model convergence. 

Figure4 shows 5-fold cross-validation results in terms of FAR, POD and Precision scores for the above-selected hyper-

parameters values. High classification threshold probability means only days when the model is highly confident are 225 

classified as positive (avalanche days). This is well reflected in Figure 4 where increasing threshold improves precision and 

lowers false alarms. However, beyond threshold of 0.92 precision is zero, because 0.92 is the highest predicted probability 

on the training data. As the value (= 0.92)of highest predicted probability is significantly lower than the perfect value of 1, 

this is a shortcoming of ensemble forecast in theoretical sense. 

Rate of change of POD with respect to FAR is high for lower values of FAR (say less than 0.2). In contrast, allowing 230 

higher FAR beyond a certain value (say beyond 0.6) gives smaller gains in POD. Avalanches may occur due to complex 

situations not represented by training data. Therefore the model is not confident when avalanches occur due to such 

reasons. Simpler situations e.g. high NEW_SNOW and high SNOW_HEIGHT can be easily detected by model at lower 

FAR. Predicting complex situations demand higher FAR. The details presented in Figure 4 along with corresponding HSS–

Threshold probability curve from Figure 3can be used to choose a reasonable FAR-HSS trade-off and fix the threshold 235 

probability value for operational use of the model. 

 

4.4 Model generalization 

After training, the ability of a machine learning model to generalize (response to new data) well is central to its success. So 

after having tuned the hyper-parameters through cross-validation experiments for optimized performance as explained in 240 

previous section, we constructed the ensemble using entire training data and then tested its generalization ability using test 
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 Figure 6:  HSS–Threshold probability curve (testing 

phase) with𝑫=3 and 𝑵=5000 

 Figure 7:  Precision, POD and FAR for various 

thresholds (testing phase) with 𝑫=3 and 𝑵=5000 
 

 

 

Table 5: Comparison of cross-validation and generalization performance at various FAR levels 

FAR 
  Cross-validation   Generalization 

 POD Precision HSS  POD Precision HSS 

0.2  0.53 0.58 0.33  0.65 0.54 0.42 

0.3  0.59 0.51 0.28  0.76 0.47 0.38 

0.4  0.68 0.47 0.25  0.83 0.43 0.34 

0.5  0.70 0.42 0.19  0.88 0.40 0.28 

0.6  0.78 0.41 0.14  0.91 0.36 0.21 

0.7  0.83 0.39 0.09  0.93 0.33 0.15 
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data (refer Section 4.1). The prediction probability values corresponding to each day of the test period against expected 

probability values (1: avalanche day, 0: no-avalanche day) are presented in Figure 5.The performance has also been 

evaluated using scores described in Table 4 with thresholds uniformly spaced between 0 and 1 with gap of 0.01 (Figure 6-

7).  245 

We find that performance scores obtained against test data(Figure 6-7) are even better than what we obtained during cross-

validation experiments (Figure 3-4). A comparison of performance scores obtained from cross-validation and those 

obtained from generalization exercise against a range of FAR values is presented in Table 5 for easy comprehension. It 

testifies that the constructed ensemble has good generalisation ability.  

 250 

5. Model Output Interpretability 

Machine learning based methods are often characterized as ‘black-boxes’. RF model addresses this aspect by generating 

descriptive outputs. Such descriptive outputs help forecasters to understand the reasoning behind the decision taken. This 

information is also useful to find particular unstable slopes as well as to estimate the type and magnitude of avalanches. In 

a decision tree, a path from root to a leaf node can be interpreted as a sequence of conditions defining the forecasting rules. 255 

Out of the ensemble of trees, the subset of trees predicting highest avalanche probabilities represent logic applied to current 

situation and the strength of its predictive value. In our experiments, the trees have shown non-trivial reasoning which may 

be difficult to discover otherwise. As an example, for 01-Feb-2017 predicted ensemble mean probability was 0.54.This 

 
 
Figure 8: Decision Tree demonstrating contributing factors on 01–Feb–2017 at BG sector, selected from ensemble for 

visualisation due to its high probability output. 

 
 

 

 
 

Figure 9: Decision Tree demonstrating contributing factors on 28–Mar–2017 at BG sector, selected for visualisation 

from ensemble due to its high probability output. The tree indicates that melting maybe a major reason for threat. 

Numerical thresholds obtained can be helpful for further data mining. 
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value indicates high snowpack instability as avalanches have triggered in at least about 50% of cases when predicted mean 

probability was ≥ 0.5 (refer Figure 7 where for threshold probability ≥ 0.50, the precision is ≥ 0.49). Corresponding to this  260 

case, ten decision trees with predicted probabilities ≥ 0.9 were analysed. Most trees show that snowfall in past 10 days and 

high wind speed caused hazard. Tree in Figure 8 demonstrates this reasoning pattern. Following the reasoning path from 

root to terminal leaf node (shown in red colour) we get the following heuristic satisfied: 

IF  (SNOW_HEIGHT>0.795m) AND (NEW_SNOW10>1.345m) AND (WIND10 >1.39m/s) 

THEN (avalanche probability>0.90) 265 

Such reasoning is known to experienced forecasters. In this case model gives numerical estimates for intuition. Trees also 

suggest patterns which are difficult for forecasters to observe manually. Figure 9 demonstrates such a pattern. This was 

visualised for case of 28-Mar-2017.Suggested rule satisfied for the day is: 

 IF(-2.75 ºC< MIN_TEMP ≤ -0.75ºC) AND (MAX_TEMP ≥ 1.75ºC)  

THEN (avalanche probability >0.90) 270 

The above rule about temperature bounds suggests that snow melt maybe causing hazard and wet avalanche is likely. Such 

a simple yet effective rule in terms of temperature only is difficult to find for a forecaster. Notwithstanding the observation, 

other features correlated to the temperature bounds may actually be causing hazard. To rule such a possibility out, we made 

a simple univariate analysis, where variables with significantly different distributions in temperature filtered and original 

datasets were analysed. To analyse effect of snow height, we applied another filtering to get data where snow height is 275 

greater than the mean snow height of temperature filtered data. Statistics from these three datasets are compared in Table 6. 

The data mining results in Table 6 show that when the temperature bound rule is satisfied snowfall leads to higher 

triggering probability. This is due to combination of factors: formation of melt-freeze crusts and higher density of fresh 

snow at higher temperatures (Statham et al., 2014; Meløysund et al., 2007). The fresh snow bonds poorly with crust and 

due to its higher density it is also more likely to slip from crust. When ruleis satisfied and little or no snowfall occurs, the 280 

triggering probability is higher than days when mean snow height is much higher. This suggests significant melting 

instability. Temperature trend within these bounds can be another indicator of instability: warming trend can decrease 

stability, cooling trend can increase stability. In March, temperature usually shows a warming trend (refer Figure 2). 

The model inferred the effect of a critical snowpack feature (melt-freeze crust) from meteorological data. Capturing more 

complex snowpack properties e.g. persistence and strength of buried weak layers requires further feature exploration. 285 

Effect of persistent snowpack structures and climatic oscillations on avalanche activity has been analysed in detail by many 

researchers (Laternser and Schneebeli, 2003; Hägeli and McClung, 2003; Thumlert et al., 2014). The resulting 

Table 6: Verification of decision tree output by comparing statistics of data filtered using tree output and 

unfiltered/control datasets (𝒏: sample size). 

Statistic Unfiltered 

Dataset 

Dataset filtered by 

temperature bounds 

Dataset filtered by 

SNOW_HEIGHT> 1.0 m 

Proportion of Avalanche days 0.21 (𝑛 = 849) 0.43 (𝑛 = 95) 0.4 (𝑛 = 330) 

Mean SNOW_HEIGHT 0.81m (𝑛 = 849) 1.01m (𝑛 = 95) 1.45m (𝑛 = 330) 

Proportion of Avalanche days when  

0 ≤ NEW_SNOW ≤  0.2 m 

0.27 (𝑛 = 194) 0.61 (𝑛 = 29) 0.45 (𝑛 = 95) 

Proportion of Avalanche days when  

0.2 m ≤ NEW_SNOW ≤  0.4 m 

0.41 (𝑛 = 70) 0.68 (𝑛 = 16) 0.5 (𝑛 = 44) 

Proportion of Avalanche days when 

NEW_SNOW> 0.4 m 

0.51 (𝑛 = 36) 0.71 (𝑛 = 6) 0.58 (𝑛 = 24) 
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characterisations of avalanche climates can be used to derive relevant indexes to forecast (Haegeli and McClung, 2007; 

Shandro and Haegeli, 2018). This model can be expected to account for these complex effects using simple and relevant 

extracted features.  290 

Following are examples of some other frequently used avalanche forecast models with descriptive outputs: 

(a) Nearest neighbours model lists similar days and their attributes (Buser, 1983; Purves et al., 2003; Singh et al., 

2014). 

(b) Expert systems list applicable rules (Schweizer and Föhn, 1996). 

(c) Support Vector Machines can list vectors which define the maximal margin hyperplane (Pozdnoukhov et al., 295 

2011). 

The descriptive output of k-nearest neighbours model is a list of most similar days to the day being forecasted. From this 

list forecaster makes inferences about important variables contributing and unstable slopes. However, understanding 

interactions between variables is difficult using this approach since numerical data about variable combinations causing 

hazard is unavailable. Forecasters have to use only few similar days, therefore variable interactions are deduced from 300 

experience largely. In contrast, visuals of trees can show important interactions between variables and give useful 

numerical data. Trees show the critical variables for a day and the range of values of these variables which were 

historically related to avalanche hazard. The path of a decision tree can be interpreted as a forecasting heuristic with 

confidence estimates from past data. 

 305 

6. Comparisons with other models 

The model has reasonably good classification performance (refer Table 5) given the difficulty of forecasting natural 

avalanches. Even the false alarms may indicate un-triggered snow instability. Descriptive output can provide more 

information about nature of these instabilities and their probable locations. The model uses lesser data and has potential for 

complete automation of decision making process for avalanche forecasting .Sufficient historical data is not available for 310 

many places therefore a data efficient model may prove to be quite helpful for avalanche forecasting in such places. We 

compared the proposed model with other available avalanche forecasting models based on skill scores, selection of 

Table 7: Summary of comparisons with other model (HSS scores strongly depend on the training and 

testing datasets used). 

Modeling technique 

used 

Highest 

score 

achieved 

Training data used Automatic 

measurement 

of all features 

Descriptive output 

Support Vector 

Machines (Pozdnoukhov 

et al., 2008, 2011) 

HSS = 0.62 

TSS = 0.63 

10 years data (1991 – 

2000), Lochaber 

region (Scotland) 

No Explored support vectors of 

hyperplane of trained SVM 

Calibrated nearest 

neighbours (Singh et al., 

2014) 

HSS = 0.31 14 years data (1999 – 

2012), Chowkibal-

Tangdhar axis (India) 

No Returns a list of similar days 

and their attributes measured by 

calibrated metric 

Calibrated nearest 

neighbours (Purves et 

al., 2003) 

TSS = 0.61 8 years data (1991 – 

1998), Lochaber 

region (Scotland) 

No Returns a list of similar days 

and their attributes along with 

graphical visualisations of 

attributes and geo-map locations 

of similar days 

Random Forest (This 

model). 

HSS =0.42 

TSS = 0.47 

3 Years data (2010 – 

2013), BG sector 

(India) 

Yes Displays decision trees in 

ensemble predicting high 

avalanche probability 
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features, data efficiency, potential for automation and descriptive output features. A summary of comparison is presented 

in Table 7.  

 315 

7. Data Efficiency and Potential for Autonomous Process 

RF model demonstrated promising performance over four consecutive winter seasons while the data of only three winter 

seasons was used for model construction (refer Section 4). An explanation of this data efficiency is that while decision 

trees model decision reasoning, the ensemble accounts for the different causes of avalanches. Different features cause 

avalanche hazard under different situations. Therefore, the features involved in causing hazard vary across the sample 320 

space. Trees in ensemble can account for the important contributing features under different situations. The trees trained on 

features matching the contributing features for input day have higher probability outputs than other trees. Nearest 

neighbour models are unable to adapt to this variation in feature importance since they use the same distance metric to 

forecast in every neighbourhood of sample space. 

 The proposed ensemble prediction is based on features which can be measured automatically. Therefore such models can 325 

use data from dense sensor grid to improve performance. If new features are included to improve modelling process, only a 

few records of these new features are required for training an updated model. Therefore data efficiency of a model also 

implies economic sense from the point of view of setting up or updating a sensor grid.  

The model’s ability to discern different situations (even the likes of situations not encountered before) with reasonable 

accuracy due to its sophisticated learning process, data efficiency and amenity to automatic observations allow for setting-330 

up autonomous avalanche forecasting frameworks with minimum human intervention. Such set-ups can be useful for 

management of transport corridors sections and ski-slopes etc.  

 

8. Conclusions and future work 

Requirement of long term training data is a significant problem in operational use of machine learning models for 335 

avalanche forecasting. Data efficiency can reduce the cost of training a new model for a location or retraining an existing 

model to use different data. This paper demonstrates the use of Random Forest technique for avalanche forecasting on a 

dataset from an avalanche prone area in north-western Himalaya in India. The model demonstrated reasonable forecast 

skill while using low amount of training data. This is likely due to the ability of decision trees to model specific avalanche 

forecast knowledge and of ensemble to model the stochastic properties of data. Data used by model for prediction can be 340 

collected automatically. Automated data collected in high volume from a dense sensor grid can be used for generating 

localized forecasts. With these properties, the model has potential for implementing an autonomous decision making 

framework. Future research can explore reducing the data requirements further by using transfer learning techniques (Pang 

and Yang, 2010). 

Descriptive outputs explain reasoning for predicted avalanche hazard level and help forecasters’ judgement by giving them 345 

probability estimates and qualitative analysis of situation. The reasoning given by the model can help forecasters validate 

their assumptions about the current situation or alert them if these assumptions are invalid. Features combinations causing 

hazard and avalanche probabilities given the feature ranges are easily comprehensible from decision trees. Further data 

mining can be attempted using these ranges and features to find unstable slopes and type of instabilities. For other models 

presently being used, such conditions need to be inferred manually causing more subjective bias.  350 
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