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Abstract. In a context of climate change, trends in extreme snow loads need to be determined to minimize the risk of structure

collapse. We study trends in annual maxima of ground snow load (GSL) using non-stationary extreme value models. Trends

in return levels of GSL are assessed at a mountain massif scale from GSL data, provided for the French Alps from 1959 to

2019 by a meteorological reanalysis and a snowpack model. Our results indicate a temporal decrease in 50-year return levels

from 900 m to 4200 m, significant in the Northwest of the French Alps until 2100 m. Despite this decrease, in half of the5

massifs, the return level in 2019 at 1800 m exceeds the return level designed for French building standards under a stationary

assumption. We believe that this high number of exceedances is due to questionable assumptions concerning the computation

of current standards. For example, these were devised with GSL, estimated from snow depth and constant snow density set to

150 kg m−3, which underestimate typical GSL values for the full snowpack.

1 Introduction10

Extreme snow loads can generate economic damages and casualties. For instance, more than $200 million in roof damages

occurred during the Great Blizzard of 1993 (O’Rourke and Auren, 1997). Recently, at the Katowice International Fair in 2006,

the roof of one of the buildings collapsed under a layer of snow, leading to 65 casualties and 140 injured (BBC News, 2006).

In France, snow loads over Roussillon in 1986, caused both 17 million euros in damages and a major power outage due to

overloading of electrical cables and pylons by sticking snow (Vigneau, 1987; Naaim-Bouvet et al., 2000).15

Ground snow load (GSL) is defined as the pressure exerted by accumulated snow on the ground, which can be directly

associated to accumulated snow on structures, e.g. on roofs (Sanpaolesi et al., 1998). In details, the observed height of

accumulated snow is called snow depth (in m). The density of this snow can vary widely between precipitation particles

(ρSNOW ≈ 100 kg m−3) and a ripe snowpack (ρSNOW ≈ 500 kg m−3). Multiplying snow depth by snow density gives the sur-

facic mass of snow (in kg m−2). Surfacic mass of snow corresponds to the snow water equivalent which is the height of water20

(in mm) we could obtain if we melt all the snow in a 1 m2 area. Indeed, since water density is ρWATER = 1000 kg m−3, we have

that 1 mm of water on 1 m2 has a surfacic mass of 1 kg m−2. Snow load is the pressure exerted by this surfacic mass of snow

(in N m−2 or Pa) and equals the snow water equivalent times the gravitational acceleration (g = 9.81 m s−2).
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Snowpack variables related to GSL (snow depth, snow water equivalent) evolve with climate change. As shown in Table 1,

literature on past trends in snowpack variables for the Western Alps shows a decreasing trend. Literature on projected trends also25

points to a decrease (stronger for the second half of the 21st century under a high greenhouse gas emission scenario than with

strong reductions in greenhouse gas emissions) for mean winter (December-May) snow water equivalent in the European Alps

(IPCC, 2019). However, anthropogenic climate change impacts climatic variables in their averages, but also in their extremes

(G Klein Tank and K Nnen, 2003; IPCC, 2012). For instance, annual maxima of snow depth have decreased in Switzerland

(Marty and Blanchet, 2012). Projected trends in extreme snowpack variables are prone to strong uncertainties (Strasser, 2008;30

Beniston et al., 2018) as both mean winter temperature (IPCC, 2019) and winter precipitation extremes (Rajczak and Schär,

2017) are projected to increase in the European Alps.

Variable Indicator Trend Country Time Source

HS

Seasonal mean (Nov to Apr) Decrease CH 1931-1999 Laternser and Schneebeli (2003)

Winter mean (Dec to Feb) Decrease in the North FR 1958-2007 Durand et al. (2009b)

Mean annual maxima Decrease CH 1930-2010 Marty and Blanchet (2012)

Seasonal mean (Nov to May) Decrease IT 1951-2010 Terzago et al. (2013)

Seasonal mean (Nov to Apr) Decrease in the South CH 1961–2012 Schöner et al. (2019)

SWE
1st of April value Decrease IT 1965-2007 Bocchiola and Diolaiuti (2010)

1st of April value Decrease FR, IT, CH 1968-2012 Marty et al. (2017)
Table 1. Past trends in snow depth (HS) and snow water equivalent (SWE) according to existing studies in the Western Alps, i.e. in Italy

(IT), France (FR), and Switzerland (CH). In the trend column, "North" and "South" refer to the considered country.

The impact of climate change on GSL was not taken into account in current European standards for structural design, a.k.a

Eurocodes (Sanpaolesi et al., 1998), which drive French standards (Biétry, 2005). These standards define that structures must

withstand their own weight plus a pressure proportional to a characteristic value. The latter is the stationary 50-year return35

level of GSL, i.e. exceeded once every 50 years in average. Thus, studying trends in 50-year return levels of GSL is needed

for updating these standards (Croce et al., 2018). In the literature, past and projected trends in 50-year return levels of GSL

have rarely been investigated with the exception of (Rózsás et al., 2016; Il Jeong and Sushama, 2018; Croce et al., 2018). In

the French Alps, several studies focused on extreme snow variables (Biétry, 2005; Gaume et al., 2012, 2013) and their spatial

dependence (Nicolet et al., 2015, 2016, 2017, 2018). However, trends in 50-year return levels of GSL remain unexplored.40

We fill these gaps by studying annual maxima of GSL provided every 300 m of elevation at a mountain massif scale for the

23 French Alps massifs. We rely on a reanalysis produced by the SAFRAN-Crocus chain (Durand et al., 2009a; Vionnet et al.,

2012) available for the period 1959-2019. The major advantage of this reanalysis is to take benefit of an advanced snowpack

model which provides daily estimates of ground snow load values, while previous studies relied on approximate values directly

related to snow depth with a crude estimation of snow density (Biétry, 2005). Our methodology consists in applying stationary45

and non-stationary extreme value models to annual maxima time series. We select one model by massif and altitude with the

AIC statistical criterion, and assess its significance with the likelihood ratio statistical test. Finally, for each massif and altitude,
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we compute the relative change in 50-year return level between 1960 and 2010, and we compare the non-stationary return

level in 2019 with the stationary return level designed for French building standards. Our approach considers only natural snow

processes, i.e. we do not account for snow removal throughout the year and consider all processes (accumulation, thaw/freeze,50

melt, compaction etc.) occurring during the winter season.

This paper is organized as follows. Section 2 presents our data. Section 3 describes standards for ground snow load. Then,

section 4 explains our methodology. Results, discussion and conclusions are introduced in Sections 5, 6 and 7, respectively.

2 Ground snow load data

The study area covers the French Alps which are located between Lake Geneva to the north and the Mediterranean Sea to the55

south (Fig. 1). The climate is contrasted, colder and wetter in the northern Alps and much drier in the southern Alps (Durand

et al., 2009a). This region is typically divided into 23 mountain massifs. In this work, we rely on a reanalysis (Vernay et al.,

2019) from the SAFRAN-Crocus chain (Durand et al., 2009a; Vionnet et al., 2012) available from August 1958 to July 2019

at the scale of these massifs, for 300 m elevation bands from 300 m to 4800 m. However, annual maxima are only available

from 1959 to 2019. Indeed, in this work, annual maxima denotes the maxima during a year centered on the winter season, e.g.60

annual maxima for the year 1959 correspond to the maxima from the 1st of August 1958 to the 31st of July 1959.

Figure 1. Left: Three time series of annual maxima for ground snow load (GSL) from 1959 to 2019 for 3 massifs at low (900 m), mid (1800

m) or high (2700 m) altitude. Right: 23 mountains massifs of the French Alps and their orographic features (Durand et al., 2009a).

SAFRAN meteorological reanalysis (Durand et al., 2009a) provides consistent meteorological data (precipitation, temper-

ature, humidity, radiation, wind speed) over the considered mountain massifs and elevations. The Crocus snowpack model

(Vionnet et al., 2012) infers snow depth and snow water equivalent (SWE) based on SAFRAN time series. Crocus is a one-
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dimensional multilayer physical snow scheme, which simulates the snowpack evolution over time, by accounting for several65

processes such as thermal diffusion, phase changes and metamorphism. A large intercomparison of snow models illustrates

that Crocus is among the top models to simulate SWE (Krinner et al., 2018). Furthermore, another recent intercomparison

of SWE products emphasizes Crocus usefulness as it concludes that ensembles containing Crocus (and/or Crocus driven by

ERA-Interim reanalysis) perform better than those that do not (Mortimer et al., 2019).

In this paper, GSL equals the SWE from the SAFRAN-Crocus chain times the gravitational acceleration. We study time70

series of annual maxima of GSL for each massif from 1959 to 2019 for 300 m elevation bands from 300 m to 4800 m (Fig. 1).

3 Standards for ground snow load in the French Alps

GSL French standards (Biétry, 2005) are based mostly on Eurocodes (Sanpaolesi et al., 1998) and on prior French standards

(AFNOR, 1996). Each French department, and by extension each French Alps massif, is associated with a region (C or E) that

sets characteristic 50-year return level values of GSL between 200 m and 2000 m of altitude (Fig. 2).75

Figure 2. Left: French standards 50-year return levels of ground snow load (GSL) w.r.t the altitude for regions C and E. Right: Regions map.

French standards were elaborated with annual maxima time series of snow depth on the ground measured in stations from

1945 to 1992. GSL data were approximated from annual maxima of snow depth and by assuming that snow density equals

150 kg m−3. Following Eurocodes, characteristic value of GSL is defined as the 50-year return level of a Gumbel distribu-

tion (Sect. 4.1). This distribution was fitted using the least squares method and by removing the top annual maximum when

considered exceptional (Biétry, 2005).80
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4 Statistical Methodology

Following extreme value theory, we employ 2 stationary models and 6 non-stationary models for time series of annual maxima

of GSL (Sect. 4.1). We select a single model for each time series (i.e. for each massif and altitude) with the AIC statistical

criterion, and assess its significance with the likelihood ratio statistical test (Sect. 4.2). Finally, we compute the relative change

in 50-year return levels of GSL, and quantify their uncertainty (Sect. 4.3).85

4.1 Stationary and non-stationary models based on extreme value distributions

Climate extremes are generally studied with statistics. As underlined in the IPCC special report on climate extremes, a large

amount of statistical literature builds on extreme indices to examine moderate extremes (IPCC, 2012). However, since we focus

on rarer extremes, it is recommended to rely on extreme value theory (EVT) (Coles, 2001). Such statistical models provide and

hypothesize additional prior information in order to compensate the limited amount of empirical observations that commonly90

span only several decades. These models can be used to extrapolate beyond the empirical observations, and to estimate return

levels (Sect. 4.3).

EVT offers a suitable framework to analyse extreme values, i.e. to model the form of the tail for almost any probability

distribution. Asymptotically, as the central limit theorem motivates sample means modelling with the normal distribution, the

Fisher–Tippett–Gnedenko theorem (Fisher and Tippett, 1928; Gnedenko, 1943) encourages sample maxima modelling with95

the GEV distribution. This theorem justifies that the maximum of finite-sized blocks with a large enough block size can be

modeled with the GEV distribution. In practice, an annual maximum is thus usually considered as a realization of a GEV

distribution. Three parameters define the GEV distribution: a location µ, a scale σ > 0 and a shape ζ (a.k.a extremal index or

tail index). The GEV distribution includes three specific types of distributions: Weibull (ζ < 0), Fréchet (ζ > 0) and Gumbel

(ζ = 0). Thus, by definition, if Y represents annual maximum of GSL, we can assume that Y follows a GEV distribution, i.e.100

Y ∼ GEV(µ,σ,ζ), which implies that:

P (Y ≤ y) =





exp[−(1 + ζ y−µσ )
− 1
ζ

+ ] if ζ 6= 0 and where u+ denotes max(u,0),

exp[−exp(−y−µσ )] if ζ = 0, in other words if Y ∼ Gumbel(µ,σ).
(1)

In a context of climate change, a large amount of hydrological literature builds on non-stationary modelling (Milly et al.,

2008) to assess whether a time series is generated by a unique probability distribution (stationary model), or if the generat-

ing probability distribution is changing (non-stationary model). Non-stationary extremes are usually studied with both non-105

stationary modelling and EVT (Katz et al., 2002). Annual maxima are assumed independent but not necessarily identically

distributed (Serinaldi and Kilsby, 2015). Such approaches combine a stationary random component (a fixed extreme value

distribution) with non-stationary deterministic functions that map each temporal covariate t to the changing parameters of the

distribution (Montanari and Koutsoyiannis, 2014). In a non-stationary context, Zhang et al. (2004) showed that tests based on

this parametric approach have stronger power of detection when compared with non-parametric methods.110
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In this paper, we consider non-stationarity for both the Gumbel distribution and the more general GEV distribution, since

they represent natural extensions of the Gumbel distribution which was used for French building standards (Sect. 3). For any

model, we have that Y (t)∼ GEV(µ(t),σ(t), ζ(t)), as the Gumbel distribution correspond to ζ(t) = 0. For a model M, we

denote as θM all parameters for its functions (µ(t),σ(t) and ζ(t)). We focus on simple linear functions due to the limited

length of time series (60 years). The linearity starts in 1959 which is the first winter with available data. As shown in Table 2,115

we consider only models with a constant shape parameter, but where the location and/or the scale parameter can vary linearly

with years t.

Model type Distribution Model name µ(t) σ(t) ζ(t) θM # θM

Stationary
Gumbel M0

µ0 σ0

0 (µ0, σ0) 2

GEV Mζ0 ζ0 (µ0, σ0, ζ0) 3

Non-stationary
Gumbel Mµ1

µ0 + µ1× (t− 1959) σ0

0 (µ0, µ1, σ0) 3

GEV Mζ0,µ1 ζ0 (µ0, µ1, σ0, ζ0) 4

Non-stationary
Gumbel Mσ1

µ0 σ0 + σ1× (t− 1959)
0 (µ0, σ0, σ1) 3

GEV Mζ0,σ1 ζ0 (µ0, σ0, σ1, ζ0) 4

Non-stationary
Gumbel Mµ1,σ1

µ0 + µ1× (t− 1959) σ0 + σ1× (t− 1959)
0 (µ0, µ1, σ0, σ1) 4

GEV Mζ0,µ1,σ1 ζ0 (µ0, µ1, σ0, σ1, ζ0) 5
Table 2. Statistical models considered for annual maxima of GSL are based on the Gumbel or the GEV distribution, and are extensions of

the stationary Gumbel model. For non-stationary models, the location and/or the scale vary linearly with years t after the starting year 1959.

4.2 Model selection

Let y = (y1959, ...,y2019) represents a time series of annual maxima of GSL, i.e. for a massif and an elevation band (Sect.

2). First, models are fitted with the maximum likelihood method. For every modelM, we compute the maximum likelihood120

estimator θ̂M which corresponds to the parameter θM that maximizes the likelihood:

θ̂M = argmax
θM

L(θM;y) where L(θM;y) = p(y|θM) =
∏

t

p(yt|µ(t),σ(t), ζ(t)) =
∏

t

∂P (Y (t)≤ yt)
∂yt

. (2)

Then, for each y, i.e. for each massif and elevation band, we select the modelMN with the minimal AIC value (Akaike,

1974), as it is the best information criterion in a non-stationary context with small sample sizes (Kim et al., 2017). We define

that:125

MN = argmin
M∈Table2

AIC(M) where AIC(M) = 2× [#θM− logL(θ̂M;y)], where #θM is the cardinality of θM. (3)

The selected model MN can be any model from Table 2, i.e. a stationary or a non-stationary model. The subscript N

designates the number of additional parameters compared to the stationary Gumbel modelM0, i.e. N = #θMN
−#θM0 .
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If MN is not the model M0 then, since models are nested, we can compute the significance of MN w.r.t M0 with a

likelihood ratio test (Coles, 2001). This test assess whether there is enough evidence to move from the stationary Gumbel130

modelM0 to the selected modelMN . The null hypothesis can be stated as: the N additional parameters of the modelMN

can be set to zero. In other words, we want to check if setting to zero the N additional parameters of the model MN is

supported by the data y. Under the null hypothesis, the likelihood ratio test statistic (LR) has an asymptotic χ2
N -distribution:

LR(θ̂MN
, θ̂M0 ,y) = 2log L(θ̂MN

;y)

L(θ̂MN
;y)
∼̇χ2

N , where ∼̇ means distributed under suitable regularity conditions.

In practice, the test works as follows. We first choose a 0.05 level of significance. Then, if LR is greater than qχ2
N

, the135

1− 0.05 = 0.95 quantile of the χ2
N distribution, it means that we reject the nested modelM0 in favor of the selected model

MN . In this case, if the selected modelMN is non-stationary, then we consider the associated trend as significant.

4.3 Return level

In a stationary context, the T -year return level, which corresponds to a return period of T years, is the classical metric to

quantify hazards of extreme events (Cooley, 2012). For a stationary model, there is a one-to-one relationship between a return140

level (a quantile exceeded each year with probability p) and a return period (a duration exceeded every T = 1
p years in average).

In a non-stationary context, return level and return period concepts (Cooley, 2012) become further ambiguous, prone to

misconceptions and can lead to misleading conclusions (Serinaldi, 2015). We focus on the yearly level for a fixed probability

of exceedance, a.k.a effective return level (Katz et al., 2002; Cheng et al., 2014), as it conveys best that hazard evolves with time.

145

For the stationary Gumbel modelM0, the return level zp(θM0) is defined as the level exceeded each year with probability

p. In other words, if Y denotes an annual maximum, then P (Y ≤ zp(θM0)) = 1−p. This return level is constant through time

and equals zp(θM0) = µ0−σ0 log(− log(1− p)). In this paper, we set p= 1
50 = 0.02 as it corresponds to the 50-year return

period defined by French standards (based on European standards) for the design working life of buildings (Sect. 3).

For the selected modelMN , we define our return level as the yearly level for a fixed probability of exceedance p. For any150

model considered in Table 2, we obtain that zp(θMN
, t) = µ0 +µ1× (t− 1959)− σ0+σ1×(t−1959)

ζ0
[1− (− log(1− p))−ζ0 ],

where we set µ1,σ1 or ζ0 to 0 if they are not defined in the modelMN . For example, for the Gumbel modelM0, the return

level is constant: for any year t, zp(θM0 , t) = limζ0→0[µ0 + σ0
ζ0

(1− (− log(1− p))−ζ0)] = µ0−σ0 log(− log(1− p)).
For any considered model, the time derivative of the return level is constant, as ∂zp(θMN

,t)

∂t = µ1−σ1
ζ0

(1−(− log(1− p))−ζ0).
It quantifies the yearly change in return level. Thus, the relative difference of return levels between year t1 and year t2 is:155

Relative change(zp(θMN
, t1),zp(θMN

, t2)) =
zp(θMN

, t2)− zp(θMN
, t1)

zp(θMN
, t1)

=
t2− t1

zp(θMN
, t1)
× ∂zp(θMN

, t)
∂t

. (4)

In the context of maximum likelihood estimation, uncertainty related to return levels can be derived by the delta method,

which quickly provides confidence intervals both in the stationary and non-stationary case (Coles, 2001; Gilleland and Katz,

2016). First, the return level estimator associated to the maximum likelihood estimator simply equals zp(θ̂M). Then, due to

the asymptotic normality of the maximum likelihood estimator (MLE), we can assume that, even with a finite number of data,160
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the MLE is normally distributed. Therefore, we have that under regularity conditions, limits of the 1−α= 95% confidence

interval are θ̂M± qα2 × vzp(θ̂M) where qα
2

is the 1-α2 quantile of the standard normal distribution, and vzp is a function that

associates to each parameter θM the variance of the approximate normal distribution associated to its return level zp(θM). For

a full expression of the function vzp and for details on the delta method, we refer to Theorem 2.4 of Coles (2001). In particular,

this theorem explains that the delta method is valid for ζ0 < 1, which is respected in our case as −0.5≤ ζ0 ≤ 0.5 (Sect. 5).165

Also, uncertainty of non-stationary return levels zp(θ̂M, t) can be obtained by incorporating the covariate t in the function zp.

4.4 Application

First, we exclude 4 times series of annual maxima with more than 10% of zeros, i.e. years without GSL. Then, we fit models

on time series, and retain only those with −0.5≤ ζ̂0 ≤ 0.5. This impacts 3 time series. We made this choice because ζ̂0 > 0.5

designates distributions with an "exploding" tail which are known to be physically implausible (Martins and Stedinger, 2000).170

We select one model for each time series (i.e. for each massif and altitude) with the AIC statistical criterion, and assess its

significance with the likelihood ratio test (Sect. 4.2).

5 Result

5.1 Selected models

Figure 3 shows that a stationary model, i.e. modelsM0 andMζ0 , is selected for a majority (57%) of time series studied (Sect.175

2). Models with a linearity in both the location and scale parameters are the most frequently selected non-stationary models

(22%). For both stationary and non-stationary models, Gumbel models are always more selected that their corresponding GEV

models (Fig. 3, Fig. 4). All in all, we highlight that 40% of selected models are significantly different from the stationary

Gumbel modelM0.

Figure 3. Distribution of selected models. Frequency of selected model (in %) w.r.t all time series, i.e. for all massifs and altitudes. For the

selection procedure and the definition of significance, we refer to Sect. 4.2.
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Figure 4 depicts shape parameter values for the selected model at 900 m, 1800 m and 2700 m. We notice that a majority of180

massifs are white-colored illustrating that a (stationary or non-stationary) Gumbel model (i.e. ζ̂0 = 0) is selected (Sect. 5). It

emphasizes that a Gumbel distribution often explains more succinctly the data than a GEV distribution. Also, with the GEV

distribution, the estimated most likely shape parameter ζ̂0 is often quite uncertain, i.e. confidence intervals are large, which is

the main reason why French standards did not rely on it. This uncertainty comes from the limited length of time series, and

longer time series would certainly reduce it, and thus estimate the most likely shape parameter more robustly.185

On Figure 4, we further observe that non-null shape parameters at low altitudes (≤ 900 m) are always positive (brown-

colored massifs), i.e. a Fréchet distribution is preferred. On the other hand, for high altitudes (≥ 1500 m) non-null shape

parameters are always negative (green-colored massifs), i.e. a Weibull distribution is favored. We hypothesize that this might

be due to the different nature of annual maxima of GSL between low and high altitudes. At high altitudes, annual maxima

are mainly due to snowpack accumulation during several months, while at low altitudes this accumulation is limited, and thus190

annual maxima roughly correspond to heavy precipitations.

Figure 4. Shape parameter values for the selected model at low (900 m), mid (1800 m) or high (2700 m) altitude. Markers show selected

modelMN . Filled markers symbolize significant trend. For the selection procedure and the definition of significance, we refer to Sect. 4.2.

5.2 Trends in return levels of ground snow load

Figure 5 maps the relative change between 1960 and 2010 for 50-year return levels of GSL at 900 m, 1800 m and 2700 m

(see App. A for maps at all altitudes). Quantitatively, for Northwest massifs, we observe that return levels have decreased

by up to 60% at 900 m (dark blue), while at 1800 m this decrease is less marked (pale blue). Qualitatively, these decreasing195

trends are frequently due to significant changes both in the location and scale parameters of the Gumbel or GEV distribution

(diamond-shaped filled markers). At 2700 m, or in the South at 900 m and 1800 m, no trends are found (white color), since

stationary models are often selected (cross-shaped markers).
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Figure 5. Trends in 50-year return levels of ground snow load (GSL) at low (900 m), mid (1800 m) or high (2700 m) altitude. Markers show

selected modelMN . Filled markers symbolize significant trend. Colors illustrate relative change for 50-year non-stationary return levels of

GSL between 1960 and 2010. For the selection procedure and the definition of significance, we refer to Sect. 4.2.

Figure 6 emphasizes the evolution of decreasing trends between 900 m and 4800 m of altitude. We observe that decreasing

trends are significant for more than one-third of the massifs, located in the Northwest of the Alps (Sect. A), until 2100 m (black200

bars). In half a century, return levels have dropped in average by up to 30% at 900 m. At higher altitudes we observe a decline

in the percentage of massifs with a significant decreasing trend, which is non null up to 3300 m. However, for both the relative

decrease and the percentage of massifs with a decreasing trend, even if we notice a similar declining pattern, we also detect

a slight growth above 3000 m. This echoes results from Lüthi et al. (2019), which found that, in the Alps above 3000 m, the

relative decrease for projected winter-mean of fresh snow water equivalent is more marked than at 3000 m (see their Figure 8).205

We emphasize, however, that most meteorological observations used as input to the SAFRAN-Crocus reanalysis are situated

below 2000 m. Therefore, trends beyond 2000 m altitude should be considered with great caution.

Figure 7 illustrates that, for altitudes 300 m and 600 m, in general no trend are found except few decreasing trends at 600

m and 3 time series (1 at 300 m, 2 at 600 m) with sometimes important increasing trends (+100% for the Parpaillon massif at

600 m). Despite this important increase in relative change, recorded annual maxima of snow load remain small (< 1 kN m−2).210

Indeed, we found that these annual maxima correspond to snow load accumulated in few days, and thus are mainly driven by

heavy precipitations rather than a full season snowpack accumulation. In particular, we hypothesize that the 2 massifs with

important increasing trends (red color) might be caused by a local phenomenon called "East return" which is a low pressure

system coming from the Mediterranean sea, that might be intensifying with global warming (Garavaglia et al., 2010; Faranda,

2019).215

To sum up trends in return levels of ground snow load: from 900 m to 4800 m, either no trend or decreasing trend of 50-year

return levels of GSL are found (Fig. 5, Fig. 6 and Fig. A1). while at 300 m and 600 m, no clear trends are found (Fig. 7).
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Figure 6. Temporal decreasing trend of 50-year return levels of ground snow load (GSL) between 900 m and 4800 m of altitude.

Figure 7. Left: Time series of annual maxima for ground snow load (GSL) for 3 massifs either at 300 m or 600 m of altitude. Right: Trend

for annual maxima of ground snow load (GSL) at 300 m and 600 m of altitude. Markers show selected modelMN .

5.3 Comparison of return levels of ground snow load with French standards

Every 300 m of altitude, from 300 m to 1800 m, we compute 50-year return levels and their uncertainty from GSL data (Sect.

4.3), and compare them to French standards (Sect. 3) for the 23 French Alps massifs.220

Figure 8 illustrates these levels and their uncertainty for two massifs (Vercors and Beaufortain) associated to different French

standards regions. Standards are often exceeded at higher altitudes (e.g. at 1800 m). Also, Figure 8 exemplifies the impact of

accounting for decreasing trends in return levels. Indeed, we observe that return levels from the stationary Gumbel modelM0

(Left) are often above effective return levels in 2019 (last year of data) from the selected modelMN (Right).
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Figure 9 sums up the comparison between French standards and our results. We display the percentage of massifs whose225

return level estimated from data exceeds return level from standards. The number of massifs with available data is equal to

11 at 300 m, 18 at 600 m, and 23 at 900 m and above. Limits of the confidence intervals (black bars) are computed as the

percentage of exceedances for the limits of return levels’ 95% confidence interval (black bars on Fig. 8)..

First, if we estimate return levels from data with French standards method (Fig. 9 Left), i.e. with a stationary Gumbel model

M0, and GSL data approximated with snow depth obtained from reanalysis and ρSNOW = 150 kg m−3, then we observe few230

exceedances (always less than 10%). Thus, in this setting, estimations from our reanalysis are consistent with French standards.

However, if we consider the actual GSL, i.e. computed with the snow water equivalent from reanalysis, then French standards

drastically underestimate return levels. Indeed, with a stationary Gumbel modelM0, then for altitudes above or equal to 900

m, French standards are exceeded for a majority of massifs (Fig. 9 Center). But, if we consider the selected modelMN , i.e.

if we account for the decreasing trend in 50-year return levels, we have less exceedances at all altitudes (Fig. 9 Right). In the235

latter case, at worst, i.e. at 1800 m, half of the massifs still exceed French standards return levels.

Figure 8. 50-year return levels of ground snow load (GSL) from altitude 300 m to 1800 m for Vercors (Top) and Beaufortain (Bottom)

massifs. Return levels (green line) and their uncertainty (shaded green and black bars) are estimated from the data either with the stationary

Gumbel modelM0 (Left) or with the selected modelMN (Right). IfMN is a non-stationary model, return level is the effective return level

in 2019, and we display the change in return level per decade (striped histogram), i.e. 10 times the time derivative of return level (Sect. 4.3).
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Figure 9. Percentage of massifs (green histogram) whose 50-year return levels of ground snow load (GSL) is above French standards between

300 m and 1800 m. Uncertainty (black bars) is approximated as the percentage of exceedances for return levels’ 95% confidence interval

limits. Left: similar to French standard estimation (stationary GumbelM0, and GSL approximated with snow depth obtained from reanalysis

and ρSNOW = 150 kg m−3). Center: stationary GumbelM0, and actual GSL, i.e. computed with the snow water equivalent from reanalysis.

Right: selected modelMN (ifMN is non-stationary, return level is the effective return level in 2019) and actual GSL.

6 Discussion

6.1 Methodological considerations

We discuss in depth the statistical models chosen for this study. It is well-known that an annual maximum based approach

can be wasteful in terms of data (Coles, 2001). However, since our objective is to estimate 50-year return levels and since240

we have 60 years of data, we still decide to rely on the annual maximum based approach (with the GEV distribution) rather

than on the concurrent approach based on threshold exceedances (with the Generalized Pareto distribution). Also, with the

GEV distribution (and its particular case: the Gumbel distribution) our methodology is a direct extension of French building

standards (Sect. 3).

For the non-stationary models, we focus on simple deterministic function of time (µ(t),σ(t), ζ(t)) due to the limited length245

of time series. A linear non-stationarity seems preferable to a non-stationarity based on the Heaviside step function due to the

continuous nature of climate change. We start the linear non-stationary at the initial year, i.e. 1959. We tried to start the non-

stationarity only after a most likely year (Blanchet et al., 2016) but our results lacked coherence both between close massifs

(no clear spatial pattern for the most likely years) and w.r.t. the altitude (no clear trend in most likely years as altitude rises).

We decided to consider non-stationarity only for the location and scale parameter. Indeed, in the literature, a linear non-250

stationarity is considered sometimes only for the location parameter (Fowler et al., 2010; Tramblay and Somot, 2018) but more

often both for the location and the scale (or log-transformed scale for numerical reasons) parameters (Katz et al., 2002; Kharin

and Zwiers, 2004; Marty and Blanchet, 2012; Wilcox et al., 2018). Another reason for which we considered a non-stationarity
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for both parameters is that we did not find the scale parameters to be proportional to the location parameters, which could have

otherwise simplified our parametrization. Also, the shape parameter is typically considered constant, with few exceptions in255

the literature and we follow this approach.

For time series containing zeros, French standards rely on a mixed discrete-continuous distribution. We did not rely on this

choice because for time series containing zeros considered in this study, i.e. with less than 10% of zeros (Sect. 5), we almost

obtain the same 50-year return levels with this distribution than with our approach (absolute difference remains lower than

0.1 kN m−2).260

6.2 On the limitation to approximate annual maxima of ground snow load with annual maxima of snow depth

Snow water equivalent (SWE) times the gravitational constant equals GSL. However, most countries do not measure SWE

but only have access to snow depth (HS) (Haberkorn et al., 2019). In that case, snow density is required to obtain SWE (and

subsequently GSL) from HS (Sect. 1). In particular, French standards approximate annual maxima of GSL with annual maxima

of HS and by assuming a constant snow density, equal to ρSNOW = 150 kg m−3. We highlight limitations of such approaches265

with our reanalysis (Sect. 2) that provides, for the whole snowpack, daily values of SWE, HS, and thus of snow density.

We find that annual maxima of GSL is always underestimated by French standards’ approximation (Fig. 10 Left). Main

reason is that, when annual maxima of GSL is reached, snow density is in average largely superior to ρSNOW = 150 kg m−3

(Fig. 10 Center). Indeed, we observe that at the time of the annual maxima of GSL the snow density is around ≈ 350 kg m−3

in average at 2700 m, and close to ≈ 250 kg m−3 in average at 900 m. Finally, despite high variations along the years, we also270

notice that, when annual maxima of GSL is reached, snow depth can be much lower than the annual maxima of snow depth

(Fig. 10 Right), which is another argument against the use of snow depth maxima as a proxy for GSL maxima.

Figure 10. Limitation of approximating annual maxima of ground snow load (GSL) from annual maxima of snow depth (HS). Left: Differ-

ence between annual maxima of GSL and GSL computed from annual maxima of HS and ρSNOW = 150 kg m−3. Center: Snow density when

annual maxima of GSL is reached. Right: Difference between annual maxima of HS and HS when annual maxima of GSL is reached.
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7 Conclusions

Based on both a reanalysis and a snowpack model, we detect an overall temporal decreasing trend w.r.t to 50-year return levels

of ground snow load (GSL) between 900 m and 4200 m, which is significant until 2100 m in the Northwest of the French Alps.275

This confirms other studies in the Western Alps which also found overall decreasing trends in linked snowpack variables: snow

water equivalent and snow depth. Despite decreasing return levels, in half of the massifs the 50-year return level in 2019 at

1800 m exceeds the stationary return level designed for French standards.

We hypothesize that this amount of exceedances might be due to an underestimation of GSL by French standards. Indeed,

these standards were devised with GSL estimated from snow depth and constant snow density equal to 150 kg m−3, which280

underestimate typical GSL values for the full snowpack. Another reason for these exceedances might be ill-designed relation-

ships between altitude and snow load. As shown on Fig. 2, French standards return levels augment linearly by parts w.r.t the

altitude. Indeed, French standards (Biétry, 2005) follow previous national standards (AFNOR, 1996) that advised for a linear

relationship between altitude and snow load instead of relying on European standards’ results that showed a quadratic relation-

ship for the Alpine Region (Sanpaolesi et al., 1998). Thus, at higher altitudes, French standards might underestimate actual285

return levels which might explain the augmenting percentage of exceedance that we observe w.r.t the altitude (Fig. 9 Right).

Many potential extensions of this work could be considered. First, our methodology could be extended with more advanced

definitions of non-stationary return levels (Rootzén and Katz, 2013; Serinaldi, 2015). Also, instead of considering time series of

annual maxima as independent, we believe that our analysis may benefit from an explicit modelling of the spatial dependence

between extremes. Then, reanalyses are increasingly available at the European scale (e.g. Soci et al. (2016)), which could be290

used for extending this work at a wider geographical scale. This requires, however, to remain cognizant of the limitations of

such reanalyses, in particular (i) the temporal heterogeneity of the meteorological data input to these reanalyses (Vidal et al.,

2010), (ii) the lack of observations at high elevations, requiring caution in analyzing trends for high elevation locations and

(iii) model errors (e.g., snowpack model errors) which need to be taken into account when analyzing the results.

Finally, even if, according to our analysis, GSL exceeds French standards return levels in the French Alps, (Fig. 9 Right),295

few destructions related to snow loads actually occurred. Several reasons might explain that. First, French standards consider a

coefficient that maps GSL return levels to roof snow load return level, i.e. multiplication by a coefficient that summarizes several

roof features: shape, exposure and thermal transmission (Sanpaolesi et al., 1998)). This coefficient might be overprotective.

Also, following European standards, to ensure roofs reliability, designers actually build roofs that withstand return levels of

roof snow load multiplied by a safety coefficient (1.5). Above all, French standards do not take into account that, after intense300

days of snowfall, the snow accumulated on the roof either slides off or is removed. In that case, the main risk lies in extreme

snow events that might accumulate in few days enough snow to exceed French standards. Undeniably, most known snow load

destructions resulted from such intense snow events, sometimes combined with liquid precipitation that often heavily increase

snow load. The response of these short but extreme and complex snow events to climate change might be an interesting topic

for future research.305
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Appendix A: Trends in return levels of ground snow load

In this section, we report, for every 300 m of altitude from 900 m to 4200 m, the map of the relative change between 1960 and

2010 for the 50-year return levels of GSL (Fig. A1). Trends at 4500 m and 4800 m are not reported, since they only concern315

the Mont Blanc massif, where no significant trend is inferred at these altitudes.
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Figure A1. Trends in return levels of ground snow load (GSL) between 900 m and 4200 m of altitude. Markers show selected modelMN .
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