Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-81-RC2, 2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

NHESSD

Interactive comment

Interactive comment on "Accounting for Non-stationarity in Extreme Snow Loads: a Comparison with Building Standards in the French Alps" by Erwan Le Roux et al.

Anonymous Referee #2

Received and published: 25 May 2020

Dear authors

I am happy to see this field getting attention. The paper is nice to read and due to the simple language mostly easy to follow. It provides valuable results certainly worth to be published. However, prior to final publication I recommend consideration of one major point and a number of technical corrections summarized below.

General comments:

My main concern is about a missing (short) elaboration on the data the study is based on. I miss a validation of the GSL values (or at least a description of the errors) produced by the reanalysis of Vernay (2019), in particular that of the yearly maximum

Printer-friendly version

values. In addition it would be nice to have an explanation of how GSL values are assigned to the massif scale. Moreover, the text contains many spelling and grammar mistakes. However most of them are repetitive.

Specific comments:

The manuscript lacks a description of (i) error measures of GSL data used as basis of the extreme value statistics, and (ii) general remarks on the reanalysis used to provide that data. In particular it would be crucial to tell something about the BIAS or absolute errors of the yearly maximum GSL values. Otherwise provided uncertainty assessments are less valuable. Furthermore a general description of some aspects of the reanalysis is missing. How is GSL calculated for the massif scale? Is the 50-year GSL return level computed by your models valid for the whole massif just depending on altitude? The abstract of Vernay (2019) states also a dependency on aspect and slope. You should clarify if your results are valid for distinct elevations or elevation bands (as it is stated here and there). In the latter case you should explain, how GSL values are assigned to that band (see lines 59, 71 in your manuscript).

Technical corrections:

I added a list of technical corrections. Most of them are language related.

A general comment about the figures: Smaller fonts in plots are difficult to read even with 200% enlargement (e.g. Fig. 8).

- 8: ...from snow depth _maxima_ and constant...
- 9: You do not talk about layers in the snowpack, so it is clear that always the full snowpack is concerned. I suggest to remove _full_ (also in line 281)
- 12: I would the year 2006 not call recently...
- 20: This is where snow water equivalent is introduced. The short form SWE could be added here instead of several other places in the manuscript (caption of Table 1, lines

NHESSD

Interactive comment

Printer-friendly version

29: check format of first reference

32: Table 1: Column name is "Trend", in the caption it is "trend".

36: remove i.e.; _on_ instead of in average

48: _of 50-year return levels_ instead of _in 50-year return_

60: _denote_

70: remove _the_ before SWE

75: Caption of Figure 2: w.r.t. altitude. Remove _the_

76: at stations, not in

78: the characteristic

80: As maximum values are relevant in this study, the procedure of _removing the top annual maximum when considered exceptional_ should be shortly addressed. I can imagine that one can find information about that in the given reference, but this is in French...

84: What exactly do you mean with _relative change_? Relative to what? (see also line 48)

85: _of_ not in

89: replace rarer extremes with _extremes that are more rare_ or similar; parenthesis: (EVT, Coles, 2001)

112: remove _that_; correspond_s_ to

119: represent, not represents; its not an elevation _band_ but a distinct altitude, right?

NHESSD

Interactive comment

Printer-friendly version

(see also lines 59, 71, 123)

122, 126: I wonder if these complex expressions are necessary to understand the content? If not you could remove them.

130: this test _assesses_; you could replace the sloppy term _move_ with something more statistical like _to reject the stationary Gumbel model M0 in favor of the selected model MN _ or similar.

134: Shouldn't there somewhere be the M0 model in the expression of the LR test?

136: remove _it means that_

137: If the selected...; remove _then_

138: Return level_s_

141: _on_ average

150: For the selected model MN the return level is defined as...

151: remove _that_

159: associated_with_ the maximum

161: Therefore, under regularity: remove _we have that_

168-169: fit models _to_ time series

169: only those _models_; we _make_this choice

173: Result_s_

177: Gumbel models are always more _often_ selected _than_ their

180: model_s_; that _the_majority

181: _are white colored_: white is not a color. At the end of the sentence: replace _lt_ with _This_

NHESSD

Interactive comment

Printer-friendly version

184-185: You should rephrase the sentence "This uncertainty....robustly."

186: _In_ instead of On figure

187: The altitude in Fig. 4 is 1800 m, not 1500 m

188-191: Your hypothesis was already raised for snow depth by Blanchet & Lehning, 2010, Blanchet & Davison, 2011 and Schellander et al., 2018, who all found similar results in terms of the shape parameter.

Figure 4: The legend is somewhat hard to read. I guess these are jpgs or similar, which should be replaced by pdfs. The grey color in the rightmost panel has no description. In the caption: model_s_; significant _trends_.

196-197: you say: "Gumbel or GEV distribution (diamond-shaped filled markers)." But diamond shaped filled markers describe only Gumbel models, and not GEV models.

197: you say "no trends", but actually I see one trend (green colored massif in the south at 2700m); _white color_: white is no color

Figure 5: Grey color has no description (see Figure 4). In the caption: symbolize _a_significant trend.

200: Sect. A should be Appendix A

201: _on_average

201-202: What is a null decline? I think a decline is always non-null, isn't it?

204: The word "growth" is misleading (growing decline?). You could instead say "less declining"; Lüthi et al. (2019) _who_ found

208: trend_s_

209: What do you mean with "sometimes important" here?

210: You mention "recorded annual maxima". Do you compare with observed GSL

NHESSD

Interactive comment

Printer-friendly version

values? How are they recorded? If manually (weekly or biweekly) you cannot be sure to get the maximum. Or does recorded mean "modeled" here?

212: precipitation not precipitation_s_; season_al_

212-213: "the 2 massifs with important increasing trends (red color) might be caused". The trends may be caused but not the massifs.

216: decreasing trend_s_; comma instead of dot after parenthesis in "(Fig. 5, Fig. 6 and Fig. A1). While"

Figure 7: No description for grey color.

219: Why of all things 1800 m? Is this because Vercors top heights are around 1800 m?

221: associated _with_

224: (_l_eft); replace above with _larger than_; (_r_ight)

225: While reading and coming from Fig. 8 one assumes that Fig. 9 sums up only two massifs. You could state here that Fig. 9 encompasses all 23 massifs.

228: There should only be one dot at the end of the sentence.

229: _the_ French standards; _l_eft

232: remove "the" in "...computed with with the snow water equivalent...."; _the_ re-analysis

234: _c_enter

235: _r_ight

236: _more than_ half of the massifs

Figure 8: I suggest to put parts of the legend in the caption for a cleaner layout. E.g. all additional information with respect to the left plot except the "Change per decade". Top

NHESSD

Interactive comment

Printer-friendly version

left panel: Do you have a clue, why the uncertainties at lower altitudes are larger than at higher altitudes? With respect to the smaller number of available reanalysis stations at higher altitudes, this should be inverted, as can be seen in all other panels. Caption: All panel references should start with a small letter (_top_ instead of Top ...). Several times _the_ return level. The change in return level_s_ per decade

Figure 9: Title: "Stationary Gumbel model M0 (stationary)": I suggest to omit Stationary at the beginnig. Caption: _larger than_ instead of above. Remove _the_ in "...computed with the snow water equivalent...". It should be _the_ reanalysis (2 times) and _the_ return level.

245: we focus on _a_ simple function

257-258: You obtained the "same" results for time series with less than 10% of zero GSL values. Can you provide a similar number used by French standards for the decision to switch to a mixed discrete-continuous distribution?

267-273: This paragraph is a little bit confusing. Descriptions in the text do not match the plots parameters and captions. The easiest way to fix that would be to interchange left and right panels.

267: HS instead of GSL? Annual maxima _are_; _The_ main reason; _I_eft etc.

268: _are_reached; _on_ average

269: _c_enter

270: _on_ average (2 times)

271: _are_ reached

272: _r_ight

280: estimated from _maximum_ snow depth_s_?

281: What do you mean with "full snowpack"? You could use only "snowpack" or "bulk

NHESSD

Interactive comment

Printer-friendly version

density", which refers to the density of the whole snowpack.

282: _in_ Fig. 2; You could say e.g. "French standards return levels increase linearly with altitude in three steps" instead of "French standards return levels augment linearly by parts w.r.t the altitude."

285: Remove "might" in "French standards might underestimate"

286: percentage of exceedance _observed with_ altitude; _r ight

288-289: considering time series of annual maxima as _spatially_ independent

290: reference without parenthesis: (e.g. Soci et al., 2016)

291: _to_ a wider geographical scale

294: remove comma in (e.g., snowpack model errors)

295: _r_ight297: return level_s_

298: remove second parenthesis

299-300: This statement is unclear. I suggest to either remove it, or to provide more details. If you really would like to leave that here, you should provide at least a reference for the European construction standards, and elaborate a little bit on those safety coefficients that might alter very widely according to country, professional, construction material, etc.

306, 310: E.L.R or ELR

309: _The_ dataset

311: for _his_ "extRemes" package

Figure A1: No explanation of the grey massifs.

Interactive comment on Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-

NHESSD

Interactive comment

Printer-friendly version

NHESSD

Interactive comment

Printer-friendly version

