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Suggestions from Anonymous Referee #1

2. I missed some validation or references to validation of the GLS data. As mentioned

by  the  authors,  Safran  has  a  number  of  biases.  Crocus  might  be  based  on

assumptions which are not always fulfilled and so the end product, GLS, might also

suffer from a number of shortcomings.

We added a paragraph in Sect. 2 emphasizing that the SAFRAN-Crocus reanalysis
have been well validated.

3.  In addition, there is no validation of the GEV models, just the final selection

among the models in Table 2. These are based on AIC and likelihood ratios. So the

best model is selected. But do they fit well ? What if none of the models were really

adequate (even the best one among them) ? Maybe some qq-plots analyses should be

included.

Quantile-Quantile (Q-Q) analysis is performed for all selected models. To apply this
analysis to both stationary and non-stationary model, we rely on Coles (2001) that
suggests 1) to transform the data to stationary Gumbel 2) to use a Q-Q plot analysis
on  the  transformed  data  w.r.t.  to  a  Gumbel  distribution.  Q-Q plots  reveal  that
transformed data is well fitted by a stationary Gumbel distribution, hence that data is
well fitted by the selected models. 
Moreover, according to the comparative study of Abidin et al., (2012), the most
powerful Goodness of Fit test for the Gumbel distribution is a combination of the
Anderson-Darling test and the Maximum Likelihood Estimator. We apply this test on
the transformed data, and found using Ali Saeb (2018) that we cannot reject the null
hypothesis (samples generated from the Gumbel model) at the 5% significance level
for 98% of the time series, justifying the good fit of our selected models.
We added these test results at the beginning of the Result section. In an Appendix
section, we detail an explanation on the methodology of Coles (2001) and display Q-
Q plots for the time series presented in section 2.

4. Given the amount of literature, I found it a bit disappointing that no attempt was

made to rely on models that make use of more data, not only annual maxima as

mentioned in the discussion. For instance, the tail index is taken to be constant in

view of the difficulty to estimate it. There are many ways around this, one of which

is the so-called regional analysis.

SAFRAN  reanalysis  are  the  result  of  a  postprocessing  of  the  meteorological
observations at the  massif scale and, as  such, already  represents  “regionalized”
data.  In  this  context,  it  does  not  seem clear  how a regional  analysis  could  be
performed.

5 The authors argue that the number of years of the GSL reanalysis is too short to

attempt to use anything else than linear relationships in the non-stationary models.

Nevertheless, they recognize that other extreme value approaches, such as peaks-

overthreshold, can be apply to exploit more data (more than a maxima per year).

This seems a bit contradictory. If the authors could show that the GEV models with

linear  non-stationarities  fit  well  the  data  without  too  much  uncertainty  in  the

estimates, then it would alleviate this issue



Our goal is to implement a clear comparison with French standards. For this reason,
thus we prefer to rely on the Gumbel distribution & extensions of this distribution,
which explains our choice to use Gumbel and GEV distributions. 
Furthermore, the impact of the uncertainty in the estimates is already shown on our
main figures (black bars on Figure 9). Despite that these uncertainty interval can
sometimes be large, it does impact the main conclusions of this article. For instance,
we would still have between 40 and 80% of massifs whose return levels in 2019
exceed French standards.

6.2. P.3 What is the spatial resolution of Safran ? Does GSL has the same spatial

resolution ? 

 As explained on l.59, SAFRAN does not provide gridded data, it gives massif-level
data. More precisely, as detailed in Nousu et al, (2019): “ The principle of SAFRAN
is to perform a spatialization of the available weather data in mountain ranges with
so-called “massifs” of about 1000 km2 where meteorological conditions are assumed
to depend only on altitude.” In the Data section, we will add a sentence to make
that point clear. Otherwise, Crocus snowpack model takes SAFRAN data as inputs to
produce SWE (which we use to compute GSL), therefore yes, GSL data has the same
spatial resolution as Safran.

6.2. P.11 last sentence : "... often above effective return levels " effective in what

ways ?not sure what it means here

While classical stationary return levels do not depend on time, return levels are
denoted as effective when they depend on time (Katz et al., 2002, Mondal et al.,
2019) . To quote Katz et al., (2002): "[Effective design value] has an interpretation
similar to that for an ordinary design value (i.e., the quantile corresponding to a
specified return period), except that it varies depending on the time of year.".

6.3. -P.13 L.245-250 : " ... start the non-stationarity after the most likely year ",

what is meant by most likely year ?

For each model with a linearity in some parameters of the distribution we could
choose to start the linearity only after some starting year.
The most likely starting year is the year that gives the maximum likelihood for this
linear model (Blanchet et al., 2016). However, in the end we decided not to use this
approach. Therefore we remove this sentence altogether from the discussion Section
to avoid confusing the reader with unnecessary details.



Suggestions from Anonymous Referee #2

Specific comments: The manuscript lacks a description of (i) error measures of GSL

data used as basis of the extreme value statistics, and (ii) general remarks on the

reanalysis  used  to  provide  that  data.  In  particular  it  would  be  crucial  to  tell

something about the BIAS or absolute errors of the yearly maximum GSL values.

Otherwise provided uncertainty assessments are less valuable. Furthermore a general

description of some aspects of the reanalysis is missing. How is GSL calculated for

the massif scale? Is the 50-year GSL return level computed by your models valid for

the whole massif just depending on altitude? The abstract of Vernay (2019) states

also a dependency on aspect and slope. You should clarify if your results are valid

for distinct elevations or elevation bands (as it is stated here and there). In the latter

case you should explain, how GSL values are assigned to that band (see lines 59, 71

in your manuscript).

The  SAFRAN-Crocus  reanalysis  has  been  evaluated  against  various  observation
datasets, as reported in previous publications (Lafaysse et al., 2013, Vionnet et al.,
2016, Revuelto et al., 2018, Vionnet et al. 2019). In most cases, the evaluation is
carried out against in-situ snow depth observations and remote sensing snow cover
information.  For  example,  Vionnet  et  al.,  (2016)  evaluated  SAFRAN-Crocus  snow
depth data against 79 observed snow depth data in the French Alps for the 2010-
2014 time period, with mean bias and standard error values of 18 cm and 37 cm,
respectively. This corresponds to typical values for snow modelling systems applied in
various  regions  on Earth.  Because  of  lower  data  availability,  evaluations  against
observed SWE values are less frequent than against snow depth data, although we
note that Crocus has been shown to perform extremely well compared to other snow
cover models, in terms of SWE, across many observation sites worldwide (Krinner et
al., 2018) and SAFRAN-Crocus exhibits satisfying performance in terms of snow depth
and SWE in the Pyrenees (Quéno et al., 2016), providing confidence, with respect to
other existing datasets, in using this model chain for ground snow load (GSL) values.
Further  model  evaluations,  using  additional  datasets,  are  required  to  continue
assessing and improving the quality of the model chain.

Furthermore, we highlight that we only used SAFRAN-Crocus reanalysis values on flat
field, and we did not used simulations on slopes, hence it is not relevant to discuss
the impact of slope and aspect on the results of this study.

Technical corrections:

80: As maximum values are relevant in this study, the procedure of _removing the

top annual maximum when considered exceptional_ should be shortly addressed. I

can imagine that one can find information about that in the given reference, but this

is in French…

The  procedure  is  as  follows:  «If  the  ratio  of  the  largest  load  value  to  the

characteristic load determined without the inclusion of that value is greater than 1.5

then the largest load value shall be treated as an exceptional value» (Sanpaolesi et

al., 1998). This will be added to the revised version of the manuscript.



84: What exactly do you mean with _relative change_? Relative to what? (see also

line 48) 

We meant "relative change of 50-year return levels of GSL between 1960 and 2010".

We  will  clarify  it  when  necessary,  and  maybe  refer  to  formula  4 (detailed

expression).

126: I wonder if these complex expressions are necessary to understand the content?

If not you could remove them.

We do not believe that the expression of  the AIC is particularly complex.  Most
importantly,  we think that  this  expression is  necessary to understand the model
selection,  since  the  penalization  of  the  log-likelihood  by  the  number  of  fitted
parameters clearly appears.

219: Why of all  things 1800 m? Is this because Vercors top heights are around

1800m?

This is because French standards for extreme snow loads are defined from 200 m to
2000 m (Section 2). As we consider available altitudes between 200 m and 2000 m,
only results obtained with reanalysis from 300 m to 1800 m are shown. However,
the  SAFRAN-Crocus  reanalysis  can  provide  results  at  higher  elevation  for  the
mountain areas peaking above 1800 m elevation. 

Figure 8. Top left panel: Do you have a clue, why the uncertainties at lower altitudes

are larger than at higher altitudes? With respect to the smaller number of available

reanalysis stations at higher altitudes, this should be inverted, as can be seen in all

other panels. 

The reviewer must refer to the top-right panel (Vercors massif & Selected model)
which is certainly different from the other panel. 

Indeed, uncertainties usually grow larger with the altitude. Looking at similar plots
to Figure 8 for all other massifs (not shown), this pattern is always seen for the left
panels, i.e. with the stationary Gumbel model. However, for the right panels, i.e. for
the  selected  model,  6  massifs  out  of  23  (Vercors,  Ubaye,  Oisans,  Mercantour,
Maurienne, Haut  Var Haut Verdon) do not present this  pattern, i.e.  have larger
uncertainties at lower altitudes. Some of these uncertainties might be due to variance
in  the  estimated  parameters.  In  particular,  the  shape  parameter  of  the  GEV
distribution is known to be difficult to estimate. As shown in Figure 4, at 900 m the
Vercors massif (most western massif) is colored in brown, meaning than its shape
parameter roughly equals 0.3. This might explain the high uncertainty at 900 m in
the top-right panel, as small changes around 0.3 can have large effect in the 50-year
return level. 

257-258: You obtained the “same” results for time series with less than 10% of zero

GSL values. Can you provide a similar number used by French standards for the

decision to switch to a mixed discrete-continuous distribution?



In the French standards, the mixed discrete-continuous distribution was considered
for all time series, those with less than 10%, of zero GSL values, as well as those
with more than 10%.

299-300: This statement is unclear. I suggest to either remove it, or to provide more

details. If you really would like to leave that here, you should provide at least a

refer-ence for the European construction standards, and elaborate a little bit on those

safety coefficients that might alter very widely according to country, professional,

construction material, etc.

We agree with the reviewer that this paragraph should be more detailed, and we did
that in the revised manuscript.  Concerning European standards (Sanpaolesi  et  al.
1998, page 32, equation 8), the design value for the structure equals the sum of i)
the characteristic value of permanent action, i.e. self-weight, multiplied by a safety
coefficient equal to 1.35 and ii) the characteristic value of variable action, i.e. roof
snow load, multiplied by a safety coefficient equal to 1.5.
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Abstract. In a context of climate change, trends in extreme snow loads need to be determined to minimize the risk of structure

collapse. We study trends in annual maxima
::::::
50-year

:::::
return

:::::
levels

:
of ground snow load (GSL) using non-stationary extreme

value models. Trends in return levels of GSL
:::::
These

:::::
trends

:
are assessed at a mountain massif scale from GSL data, provided

for the French Alps from 1959 to 2019 by a meteorological reanalysis and a snowpack model. Our results indicate a temporal

decrease in 50-year return levels from 900 m to 4200 m, significant in the Northwest of the French Alps until 2100 m. Despite5

this decrease , in half of the massifs, the return level
::
We

::::::
detect

:::
the

::::
most

::::::::
important

:::::::
decrease

::
at
::::
900

::
m

::::
with

::
an

:::::::
average

::
of

::::::
−30%

::
for

::::::
return

:::::
levels

:::::::
between

:::::
1960

::::
and

:::::
2010.

:::::::
Despite

::::
these

:::::::::
decreases,

:
in 2019 at 1800 m exceeds the return level

::::
return

::::::
levels

:::
still

::::::
exceed

:::::
return

:::::
levels

:
designed for French building standards under a stationary assumption.

::
At

::::::
worst,

:::
i.e.

:
at
:::::
1800

::
m,

::::::
return

:::::
levels

::::::
exceed

::::::::
standards

:::
by

::::
15%

:::
on

:::::::
average,

:::
and

::::
half

::
of

:::
the

:::::::
massifs

:::::::
exceeds

:::::::::
standards. We believe that this high number of

exceedances is
:::::
these

::::::::::
exceedances

:::
are

:
due to questionable assumptions concerning the computation of current standards. For10

example, these were devised with GSL, estimated from snow depth
:::::::
maxima and constant snow density set to 150 kg m−3,

which underestimate typical GSL values for the full snowpack.

1 Introduction

Extreme snow loads can generate economic damages and casualties. For instance, more than $200 million in roof damages

occurred during the Great Blizzard of 1993 (O’Rourke and Auren, 1997). Recently
:
In

:::::
2006, at the Katowice International Fairin15

2006, the roof of one of the buildings collapsed under a layer of snow, leading to 65 casualties and 140 injured (BBC News,

2006). In France, snow loads over Roussillon in 1986, caused both 17 million euros in damages and a major power outage due

to overloading of electrical cables and pylons by sticking snow (Vigneau, 1987; Naaim-Bouvet et al., 2000).

Ground snow load (GSL) is defined as the pressure exerted by accumulated snow on the ground, which can be directly

associated to
::::
with

:
accumulated snow on structures, e.g. on roofs (Sanpaolesi et al., 1998). In details, the observed height20

of accumulated snow is called snow depth (in m). The density of this snow can vary widely between precipitation particles

(ρSNOW ≈ 100 kg m−3) and a ripe snowpack (ρSNOW ≈ 500 kg m−3). Multiplying snow depth by snow density gives the sur-

1



facic mass of snow (in kg m−2). Surfacic mass of snow corresponds to the snow water equivalent
::::::
(SWE) which is the height

of water (in mm) we could obtain if we melt all the snow in a 1 m2 area. Indeed, since water density is ρWATER = 1000 kg m−3,

we have that 1 mm of water on 1 m2 has a surfacic mass of 1 kg m−2. Snow load is the pressure exerted by this surfacic mass25

of snow (in N m−2 or Pa) and equals the snow water equivalent
::::
SWE

:
times the gravitational acceleration (g = 9.81 m s−2).

Snowpack variables related to GSL (snow depth, snow water equivalent
::::
SWE) evolve with climate change. As shown in

Table 1, literature on past trends in snowpack variables for the Western Alps shows a decreasing trend. Literature on projected

trends also points to a decrease (stronger for the second half of the 21st century under a high greenhouse gas emission scenario

than with strong reductions in greenhouse gas emissions) for mean winter (December-May) snow water equivalent
::::
SWE30

in the European Alps (IPCC, 2019). However, anthropogenic climate change impacts climatic variables in their averages,

but also in their extremes (Klein Tank and Können, 2003; IPCC, 2012). For instance, annual maxima of snow depth have

decreased in Switzerland (Marty and Blanchet, 2012). Projected trends in extreme snowpack variables are prone to strong

uncertainties (Strasser, 2008; Beniston et al., 2018) as both mean winter temperature (IPCC, 2019) and winter precipitation

extremes (Rajczak and Schär, 2017) are projected to increase in the European Alps.35

Variable Indicator Trend Country Time Source

HS

Seasonal mean (Nov to Apr) Decrease CH 1931-1999 Laternser and Schneebeli (2003)

Winter mean (Dec to Feb) Decrease in the North FR 1958-2007 Durand et al. (2009b)

Mean annual maxima Decrease CH 1930-2010 Marty and Blanchet (2012)

Seasonal mean (Nov to May) Decrease IT 1951-2010 Terzago et al. (2013)

Seasonal mean (Nov to Apr) Decrease in the South CH 1961–2012 Schöner et al. (2019)

SWE
1st of April value Decrease IT 1965-2007 Bocchiola and Diolaiuti (2010)

1st of April value Decrease FR, IT, CH 1968-2012 Marty et al. (2017)
Table 1. Past trends in

:::::::
snowpack

:::::::
variables, snow depth (HS) and snow water equivalent (SWE), according to existing studies in the Western

Alps, i.e. in Italy (IT), France (FR), and Switzerland (CH). In the trend
:::::
Trend column, "North" and "South" refer to the considered country.

The impact of climate change on GSL was not taken into account in current European standards for structural design, a.k.a

Eurocodes (Sanpaolesi et al., 1998), which drive French standards (Biétry, 2005). These standards define that structures must

withstand their own weight plus a pressure proportional to a characteristic value. The latter is the stationary 50-year return

level of GSL, i.e. exceeded once every 50 years in
::
on

:
average. Thus, studying trends in 50-year return levels of GSL is needed

for updating these standards (Croce et al., 2018). In the literature, past and projected trends in 50-year return levels of GSL40

have rarely been investigated with the exception of (Rózsás et al., 2016; Il Jeong and Sushama, 2018; Croce et al., 2018). In

the French Alps, several studies focused on extreme snow variables (Biétry, 2005; Gaume et al., 2012, 2013) and their spatial

dependence (Nicolet et al., 2015, 2016, 2017, 2018). However, trends in 50-year return levels of GSL remain unexplored.

We fill these gaps by studying annual maxima of GSL provided every 300 m of elevation
::::::
altitude

:
at a mountain massif

scale for the 23 French Alps massifs. We rely on a reanalysis
::
the

:::::::::::::::
SAFRAN-Crocus

:::::::::
reanalysis

:::::::::::::::::
(Vernay et al., 2019) produced45

by the SAFRAN-Crocus chain (Durand et al., 2009a; Vionnet et al., 2012) available for the period 1959-2019. The major

2



advantage of this reanalysis is to take benefit of an advanced snowpack model which provides daily estimates of ground snow

load values, while previous studies relied on approximate values directly related to snow depth with a crude estimation of snow

density (Biétry, 2005). Our
:::::
Thus,

:::
our

:::::::
approach

::::::::
considers

::::
only

::::::
natural

:::::
snow

:::::::::
processes,

:::
i.e.

::
we

:::
do

:::
not

::::::
account

:::
for

:::::
snow

:::::::
removal

:::::::::
throughout

:::
the

::::
year

:::
and

:::::::
consider

:::
all

::::::::
processes

:::::::::::::
(accumulation,

::::::::::
thaw/freeze,

::::
melt,

::::::::::
compaction

::::
etc.)

::::::::
occurring

::::::
during

:::
the

::::::
winter50

::::::
season.

:::
Our

::::::::
statistical

:
methodology consists in applying stationary and non-stationary extreme value models to annual maxima

time series. We select one model by massif and altitude with the AIC statistical criterion,
:::::::
validate

:::
the

:::::::
selected

:::::
model

:::::
with

::
the

::::::::::::::::
Anderson-Darling

::::
test, and assess its significance with the likelihood ratio statistical test. Finally, for each massif and

altitude, we compute the relative change in
:
of
:

50-year return level
::::
levels

:::
of

::::
GSL

:
between 1960 and 2010, and we compare55

the non-stationary return level in 2019 with the stationary return level designed for French building standards. Our approach

considers only natural snow processes, i.e. we do not account for snow removal throughout the year and consider all processes

(accumulation, thaw/freeze, melt, compaction etc.) occurring during the winter season.

This paper is organized as follows. Section 2 presents our data. Section 3 describes standards for ground snow load. Then,

section 4 explains our methodology. Results, discussion and conclusions are introduced in Sections 5, 6 and 7, respectively.60

2 Ground snow load data

The study area covers the French Alps which are located between Lake Geneva to the north and the Mediterranean Sea to the

south (Fig. 1). The climate is contrasted, colder and wetter in the northern Alps and much drier in the southern Alps (Durand

et al., 2009a). This region is typically divided into 23 mountain massifs . In this work, we rely on a
:
of

:::::
about

:::::::::
1000 km2.

:::
We

::::
rely

::
on

:::
the

:::::::::::::::
SAFRAN-Crocus reanalysis (Vernay et al., 2019) from the SAFRAN-Crocus chain (Durand et al., 2009a; Vionnet et al.,65

2012) available from August 1958 to July 2019 at the scale of these massifs, for
::::
every

:
300 m elevation bands

::
of

::::::
altitude

:
from

300 m to 4800 m. However
:::::::
Contrary

:::
to

::::::
gridded

::::::::
products,

::::
this

::::::::
reanalysis

:::::::
assumes

:::
for

::
a
:::::
given

::::::
altitude

:::
the

:::::::::::
homogeneity

:::
of

:::
the

:::::::
different

::::::::
variables

:
at
:::

the
:::::
scale

::
of

:::
the

::::::
massif.

:::::
Also, annual maxima are only available from 1959 to 2019. Indeed, in this work,

annual maxima denotes
:::::
annual

:::::::
maxima

::::::
denote the maxima during a year centered on the winter season, e.g. annual maxima

for the year 1959 correspond to the maxima from the 1st of August 1958 to the 31st of July 1959.70

::
To

::::
sum

:::
up,

::::
GSL

:::::
equals

:::::
SWE

::::
from

:::
the

:::::::::::::::
SAFRAN-Crocus

::::::::
reanalysis

:::::
times

:::
the

::::::::::
gravitational

:::::::::::
acceleration.

:::
We

:::::
study

::::
time

:::::
series

::
of

:::::
annual

:::::::
maxima

:::
of

::::
GSL

:::
for

::::
each

::::::
massif

::::
from

::::
1959

:::
to

::::
2019

:::::
every

:::
300

::
m
:::
of

::::::
altitude

:::::
from

:::
300

::
m

::
to

:::::
4800

::
m

::::
(Fig.

:::
1).

:::
The

:::::::::::::::
SAFRAN-Crocus

::::::::
reanalysis

::
is
::::::::
produced

:::
by

:
a
:::::
chain

::
of

::::
two

::::::
models.

:::::
First,

:
SAFRAN meteorological reanalysis (Durand

et al., 2009a) provides consistent meteorological
:::::::
performs

::
a

:::::::::::
spatialization

:::
of

:::
the

:::::::
weather

:
data (precipitation, temperature,

humidity, radiation, wind speed) over the considered mountain massifs and elevations. The
::::::
massifs

:::
and

::::::::
altitudes.

::::::
Then,

:::
the75

Crocus snowpack model (Vionnet et al., 2012) infers snow depth and snow water equivalent (SWE )
::::
SWE based on SAFRAN

time series. Crocus is a one-dimensional multilayer physical snow scheme, which simulates the snowpack evolution over time,

by accounting for several processes such as thermal diffusion, phase changes and metamorphism. A large intercomparison of

snow models illustrates that Crocus is among the top models to simulate SWE (Krinner et al., 2018a). Furthermore, another
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Figure 1. Left: Three time series of annual maxima for
::
of ground snow load (GSL) from 1959 to 2019 for 3 massifs at low (900 m), mid

(1800 m) or high (2700 m) altitude. Right: 23 mountains massifs of the French Alps and their orographic features (Durand et al., 2009a).

recent intercomparison of SWE products emphasizes Crocus usefulness as it concludes that ensembles containing Crocus80

(and/or Crocus driven by ERA-Interim reanalysis) perform better than those that do not (?).

In this paper, GSL equals the SWEfrom the
:::
The

:
SAFRAN-Crocus chain times the gravitational acceleration. We study time

series of annual maxima of GSL for each massif from 1959 to 2019 for 300 m elevation bands from 300 m to 4800 m (Fig.

1)
::::::::
reanalysis

:::
has

::::
been

::::::::
evaluated

::::::
against

::::::
various

::::::::::
observation

:::::::
datasets,

::
as

:::::::
reported

::
in

:::::::
previous

::::::::::
publications

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lafaysse et al., 2013; Vionnet et al., 2016; Revuelto et al., 2018; Vionnet et al., 2019)

:
.
::
In

::::
most

:::::
cases,

:::
the

::::::::
evaluation

::
is
::::::
carried

:::
out

::::::
against

::::::
in-situ

::::
snow

:::::
depth

::::::::::
observations

::::
and

::::::
remote

::::::
sensing

:::::
snow

::::
cover

:::::::::::
information.85

:::
For

::::::::
example,

:::::::::::::::::
Vionnet et al. (2016)

::::::::
evaluated

:::::::::::::::
SAFRAN-Crocus

:::::
snow

:::::
depth

::::
data

::::::
against

:::
79

::::::::
observed

::::
snow

:::::
depth

::::
data

:::
in

:::
the

::::::
French

::::
Alps

:::
for

:::
the

::::::::::
2010-2014

::::
time

::::::
period,

:::::
with

:::::
mean

::::
bias

::::
and

:::::::
standard

:::::
error

::::::
values

::
of

:::
18

:::
cm

::::
and

::
37

::::
cm,

:::::::::::
respectively.

::::
This

::::::::::
corresponds

::
to

::::::
typical

::::::
values

:::
for

:::::
snow

:::::::::
modelling

:::::::
systems

::::::
applied

:::
in

::::::
various

:::::::
regions

::
on

::::::
Earth.

:::::::
Because

:::
of

:::::
lower

::::
data

:::::::::
availability,

::::::::::
evaluations

::::::
against

::::::::
observed

:::::
SWE

::::::
values

:::
are

:::
less

::::::::
frequent

::::
than

::::::
against

:::::
snow

:::::
depth

::::
data,

::::::::
although

:::
we

::::
note

::::
that

::::::
Crocus

:::
has

:::::
been

:::::
shown

:::
to

:::::::
perform

:::::::::
extremely

::::
well

::::::::
compared

:::
to

:::::
other

::::
snow

::::::
cover

:::::::
models,

::
in

:::::
terms

::
of

::::::
SWE,

::::::
across

:::::
many90

:::::::::
observation

:::::
sites

:::::::::
worldwide

:::::::::::::::::::
(Krinner et al., 2018b)

:::
and

:::::::::::::::
SAFRAN-Crocus

:::::::
exhibits

::::::::
satisfying

:::::::::::
performance

::
in

:::::
terms

:::
of

:::::
snow

::::
depth

::::
and

:::::
SWE

::
in

:::
the

::::::::
Pyrenees

:::::::::::::::::
(Quéno et al., 2016),

:::::::::
providing

::::::::::
confidence,

::::
with

::::::
respect

::
to

:::::
other

:::::::
existing

::::::::
datasets,

::
in

:::::
using

:::
this

:::::
model

:::::
chain

:::
for

:::::
GSL

::::::
values.

::::::
Further

::::::
model

::::::::::
evaluations,

:::::
using

::::::::
additional

::::::::
datasets,

:::
are

:::::::
required

::
to

:::::::
continue

::::::::
assessing

::::
and

::::::::
improving

:::
the

::::::
quality

::
of
:::
the

::::::
model

:::::
chain.

:::::::::::
Furthermore,

:::
we

::::::::
highlight

:::
that

:::
we

::::
only

::::
used

:::::::::::::::
SAFRAN-Crocus

:::::::::
reanalysis

:::::
values

:::
on

:::
flat

::::
field,

::::
and

:::
we

:::
did

:::
not

::::
used

::::::::::
simulations

::
on

:::::::
slopes,

:::::
hence

:
it
::

is
::::
not

::::::
relevant

:::
to

::::::
discuss

:::
the

::::::
impact

::
of

:::::
slope

::::
and

:::::
aspect

:::
on

:::
the95

:::::
results

::
of

::::
this

:::::
study.
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3 Standards for ground snow load in the French Alps

GSL French standards (Biétry, 2005) are based mostly on Eurocodes (Sanpaolesi et al., 1998) and on prior French standards

(AFNOR, 1996). Each French department, and by extension each French Alps massif, is associated with a region (C or E) that

sets characteristic 50-year return level values of GSL between 200 m and 2000 m of altitude (Fig. 2).100

Figure 2. Left: French standards 50-year return levels of ground snow load (GSL) w.r.tthe . altitude for regions C and E. Right: Regions map.

French standards were elaborated with annual maxima time series of snow depth on the ground measured in
::
at

:
stations

from 1945 to 1992. GSL data were approximated from annual maxima of snow depth and by assuming that snow density

equals 150 kg m−3. Following Eurocodes,
::
the

:
characteristic value of GSL is defined as the 50-year return level of a Gumbel

distribution (Sect. 4.1
:
4). This distribution was fitted using the least squares method and by removing the top annual maximum

when considered exceptional (Biétry, 2005)
:::::::
according

:::
to

:
a
::::::::

criterion
:::
not

::::::::
explicitly

::::::::::
mentioned

::
in

:::
the

::::::
French

::::::
report

::::
cited

:::
as105

::::::::
reference.

::::::::
However,

:::
in

:::
the

:::::::::
Eurocodes,

::::
the

:::::::
standard

:::::::
method

::::
was

::
to

:::::::
consider

:::
the

::::
top

:::::::::
maximum

::
as

::::::::::
exceptional

::
if

::
it

:::
was

::::
1.5

::::
times

:::::
larger

::::
than

:::
the

::::::
second

::::::
largest

:::::::::
maximum

::::::::::::::::::::
(Sanpaolesi et al., 1998).

::
In

::::
our

:::::::::::
methodology,

:::
we

::
do

:::
not

:::::::
remove

:::
the

:::
top

::::::
annual

::::::::
maximum.

4 Statistical Methodology

Following extreme value theory, we employ 2 stationary models and 6 non-stationary models for time series of annual maxima110

of GSL (Sect. 4.1). We select a single model for each time series (i.e. for each massif and altitude) with the AIC statistical

criterion,
::::::
validate

::::
this

:::::
model

:::::
with

:::
the

:::::::::::::::
Anderson-Darling

::::
test,

:
and assess its significance with the likelihood ratio statistical

test (Sect. ??
::
4.2). Finally, we compute the relative change in

:
of

:
50-year return levels of GSL , and quantify their uncertainty

:::::::
between

::::
1960

::::
and

:::::
2010,

:::::::
quantify

:::
the

::::::::::
uncertainty

::
of

::::::
return

:::::
levels

::
in

:::::
2019

::
to

::::::::
compare

::::
them

::::
with

::::
the

::::::::
stationary

:::::
return

::::::
levels

:::::::
designed

:::
for

::::::
French

::::::::
standards

:
(Sect. 4.3).115
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4.1 Stationary and non-stationary models based on extreme value distributions

Climate extremes are generally studied with statistics. As underlined in the IPCC special report on climate extremes, a large

amount of statistical literature builds on extreme indices to examine moderate extremes (IPCC, 2012). However, since we

focus on rarer extremes
::::::::
extremes

:::
that

:::
are

:::::
more

:::
rare, it is recommended to rely on extreme value theory (EVT) (Coles, 2001)

:
,

:::::::::
Coles 2001

:
). Such statistical models provide and hypothesize additional prior information in order to compensate the limited120

amount of empirical observations that commonly span only several decades. These models can be used to extrapolate beyond

the empirical observations, and to estimate return levels (Sect. 4.3).

EVT offers a suitable framework to analyse extreme values, i.e. to model the form of the tail for almost any probability

distribution. Asymptotically, as the central limit theorem motivates sample means modelling with the normal distribution, the

Fisher–Tippett–Gnedenko theorem (Fisher and Tippett, 1928; Gnedenko, 1943) encourages sample maxima modelling with125

the GEV distribution. This theorem justifies that the maximum of finite-sized blocks with a large enough block size can be

modeled with the GEV distribution. In practice, an annual maximum is thus usually considered as a realization of a GEV

distribution. Three parameters define the GEV distribution: a location µ, a scale σ > 0 and a shape ζ (a.k.a extremal index or

tail index). The GEV distribution includes three specific types of distributions: Weibull (ζ < 0), Fréchet (ζ > 0) and Gumbel

(ζ = 0). Thus, by definition, if Y represents
::
Z

::::::::
represents

::
an

:
annual maximum of GSL, we can assume that Y

:
Z
:
follows a GEV130

distribution, i.e. Y ∼ GEV(µ,σ,ζ)
::::::::::::::
Z ∼ GEV(µ,σ,ζ), which implies that:

P (Y Z
:
≤ yz

:
) =

 exp[−(1+ ζ z−µσ )
− 1
ζ

+ ] if ζ 6= 0 and where u+ denotes max(u,0),

exp[−exp(− z−µσ )] if ζ = 0, in other words if Z ∼ Gumbel(µ,σ).
(1)

In a context of climate change, a large amount of hydrological literature builds on non-stationary modelling (Milly et al.,

2008) to assess whether a time series is generated by a unique probability distribution (stationary model), or if the generat-

ing probability distribution is changing (non-stationary model). Non-stationary extremes are usually studied with both non-135

stationary modelling and EVT (Katz et al., 2002). Annual maxima are assumed independent but not necessarily identically

distributed (Serinaldi and Kilsby, 2015). Such approaches combine a stationary random component (a fixed extreme value

distribution) with non-stationary deterministic functions that map each temporal covariate t to the changing parameters of the

distribution (Montanari and Koutsoyiannis, 2014). In a non-stationary context, Zhang et al. (2004) showed that tests based on

this parametric approach have stronger power of detection when compared with non-parametric methods.140

In this paper, we
::
We

:
consider non-stationarity for both the Gumbel distribution and the more general GEV distribution,

since they represent natural extensions of the Gumbel distribution which was used for French building standards (Sect. 3). For

any model, we have that Y (t)∼ GEV(µ(t),σ(t), ζ(t))
:::::::::::::::::::::::
Z(t)∼ GEV(µ(t),σ(t), ζ(t)), as the Gumbel distribution correspond

::::::::::
corresponds to ζ(t) = 0. For a modelM, we denote as θM all parameters for its functions (µ(t),σ(t) and ζ(t)). We focus on

simple linear functions due to the limited length of time series (60 years). The linearity starts in 1959 which is the first winter145

with available data. As shown in Table 2, we consider only models with a constant shape parameter, but where the location

and/or the scale parameter can vary linearly with years t.

6



Model type Distribution Model name µ(t) σ(t) ζ(t) θM # θM

Stationary
Gumbel M0

µ0 σ0

0 (µ0, σ0) 2

GEV Mζ0 ζ0 (µ0, σ0, ζ0) 3

Non-stationary
Gumbel Mµ1

µ0 + µ1× (t− 1959) σ0

0 (µ0, µ1, σ0) 3

GEV Mζ0,µ1 ζ0 (µ0, µ1, σ0, ζ0) 4

Non-stationary
Gumbel Mσ1

µ0 σ0 + σ1× (t− 1959)
0 (µ0, σ0, σ1) 3

GEV Mζ0,σ1 ζ0 (µ0, σ0, σ1, ζ0) 4

Non-stationary
Gumbel Mµ1,σ1

µ0 + µ1× (t− 1959) σ0 + σ1× (t− 1959)
0 (µ0, µ1, σ0, σ1) 4

GEV Mζ0,µ1,σ1 ζ0 (µ0, µ1, σ0, σ1, ζ0) 5
Table 2. Statistical models considered for annual maxima of GSL are based on the Gumbel or the GEV distribution, and are extensions of

the stationary Gumbel model. For non-stationary models, the location and/or the scale vary linearly with years t after the starting year 1959.

4.2 Model selection,
:::::::::
validation

::::
and

::::::::::
significance

Let y = (y1959, ...,y2019) represents
:::::
Model

::::::::
selection

:
.
:::
Let

:::::::::::::::::
z = (z1959, ...,z2019)::::::::

represent
:
a time series of annual maxima of

GSL, i.e. for a massif and an elevation band
::::::
altitude (Sect. 2). First, models are fitted with the maximum likelihood method. For150

every modelM, we compute the maximum likelihood estimator θ̂M which corresponds to the parameter θM that maximizes

the likelihood:

θ̂M = argmax
θM

L(θM;z) where L(θM;z) = p(z|θM) =
∏
t

p(yz
:t|µ(t),σ(t), ζ(t)) =

∏
t

∂P (Y (t)≤ yt)
∂yt

∂P (Z(t)≤ zt)
∂zt

::::::::::::

.

(2)

Then, for each y
:
z, i.e. for each massif and elevation band

::::::
altitude, we select the modelMN with the minimal AIC value

(Akaike, 1974), as it is the best information criterion in a non-stationary context with small sample sizes (Kim et al., 2017).155

We definethat:

MN = argmin
M∈Table2

AIC(M) where AIC(M) = 2× [#θM− logL(θ̂M;z)], where #θM is the cardinality of θM. (3)

The selected modelMN can be any model from Table 2, i.e. a stationary or a non-stationary model. The subscript N desig-

nates the number of additional parameters compared to the stationary Gumbel modelM0, i.e. N =#θMN −#θM0 .

160

If
:::::
Model

:::::::::
validation

:
.
:::::::::::::::
Quantile-Quantile

:::::
(Q-Q)

:::::::
analysis

::
is
:::::::::
performed

:::
for

:::
all

:::::::
selected

::::::
models.

:::
To

:::::
apply

:::
this

:::::::
analysis

:::
to

::::
both

::::::::
stationary

:::
and

:::::::::::::
non-stationary

::::::
model,

:::
we

:::
rely

:::
on

::::::::::::::::::::
Richard W. Katz (2012)

:::
that

::::::::
suggests

::
(i)

:::
to

::::::::
transform

:::
the

::::
data

::
to

:::::::::
stationary

::::::
Gumbel

:::
(ii)

::
to

:::
use

::
a

::::
Q-Q

:::
plot

:::::::
analysis

::
on

:::
the

::::::::::
transformed

::::
data

::::
w.r.t.

::
to
::
a
:::::::
Gumbel

::::::::::
distribution.

::::
Q-Q

::::
plots

:::::
reveal

::::
that

::::::::::
transformed

:::
data

::
is

::::
well

:::::
fitted

::
by

:
a
:::::::::
stationary

:::::::
Gumbel

::::::::::
distribution,

:::::
hence

:::
that

::::
data

::
is

::::
well

::::
fitted

:::
by

:::
the

:::::::
selected

::::::
models

:::::
(App.

:::
B).

:::::::::
Moreover,

7



::::::::
according

::
to

:::
the

::::::::::
comparative

:::::
study

::
of

::::::::::::::::
Abidin et al. (2012)

:
,
:::
the

::::
most

::::::::
powerful

::::::::
Goodness

::
of

:::
Fit

:::
test

:::
for

:::
the

:::::::
Gumbel

::::::::::
distribution165

:
is
::
a
::::::::::
combination

::
of
:::

the
::::::::::::::::

Anderson-Darling
:::
test

:::
and

:::
the

:::::::::
Maximum

:::::::::
Likelihood

:::::::::
Estimator.

:::
We

:::::
apply

::::
this

:::
test

:::
on

:::
the

::::::::::
transformed

:::
data

:::::
using

:::::::::::
Saeb (2018),

::::
and

:::::
found

::::
that

:::
we

::::::
cannot

:::::
reject

:::
the

:::
null

::::::::::
hypothesis

:::::::
(samples

:::::::::
generated

::::
from

:::
the

:::::::
Gumbel

:::::::
model)

::
at

::
the

::::
5%

:::::::::
significance

:::::
level

::
for

::::::
almost

:::
all

:::
our

::::::
selected

:::::::
models

::::::
(98%),

::::::::
justifying

::::
their

::::
good

:::
fit.

:::
We

::::
refer

::
to

::::
App.

::
B

:::
for

::::
more

::::::
details.

:

:::::
Model

:::::::::::
significance.

::
If

:::
the

:::::::
selected

:::::
model

:
MN is not the modelM0 then, since models are nested, we can compute the sig-170

nificance ofMN w.r.t.M0 with a likelihood ratio test (Coles, 2001). This test assess whether there is enough evidence to move

from
:::::
reject the stationary Gumbel modelM0 to

::
in

::::
favor

::
of

:
the selected modelMN . The null hypothesis can be stated as: theN

additional parameters of the modelMN can be set to zero. In other words, we want to check if setting to zero the N additional

parameters of the modelMN is supported by the data y
:
z. Under the null hypothesis, the likelihood ratio test statistic (LR) has

an asymptotic χ2
N -distribution: LR(θ̂MN , θ̂M0 ,y) = 2log

L(θ̂MN
;y)L(θ̂MN ;y)∼̇χ2

N :::::::::::::::::::::::::::::::::::::::::::::
LR(θ̂MN , θ̂M0 ,z) =−2log

L(θ̂M0 ;z)L(θ̂MN ;z)∼̇χ2
N ,175

where ∼̇ means distributed under suitable regularity conditions.

In practice, the test works as follows. We first choose a 0.05 level of significance. Then, if LR is greater than qχ2
N

, the

1− 0.05 = 0.95 quantile of the χ2
N distribution, it means that we reject the nested modelM0 in favor of the selected model

MN . In this case, if
:
If the selected modelMN is non-stationary, then we consider the associated trend as significant.

4.3 Return level
:::::
levels180

In a stationary context, the T -year return level, which corresponds to a return period of T years, is the classical metric to

quantify hazards of extreme events (Cooley, 2012). For a stationary model, there is a one-to-one relationship between a return

level (a quantile exceeded each year with probability p) and a return period (a duration exceeded every T = 1
p years in

::
on

average).

In a non-stationary context, return level and return period concepts (Cooley, 2012) become further ambiguous, prone to185

misconceptions and can lead to misleading conclusions (Serinaldi, 2015). We focus on the yearly level for a fixed probability

of exceedance, a.k.a effective return level (Katz et al., 2002; Cheng et al., 2014), as it conveys best that hazard evolves with time.

For the stationary Gumbel modelM0, the return level zp(θM0) is defined as the level exceeded each year with probability

p. In other words, if Y
::
Z denotes an annual maximum, then P (Y ≤ zp(θM0)) = 1− p

:::::::::::::::::::::
P (Z ≤ zp(θM0)) = 1− p. This return190

level is constant through time and equals zp(θM0) = µ0−σ0 log(− log(1− p)). In this paper, we set p= 1
50 = 0.02 as it

corresponds to the 50-year return period defined by French standards (based on European standards) for the design working

life of buildings (Sect. 3).

For the selected modelMN , we define our return level
::
the

::::::
return

::::
level

::
is

::::::
defined

:
as the yearly level for a fixed probability of

exceedance p. For any model considered in Table 2, we obtain that zp(θMN , t) = µ0+µ1× (t−1959)− σ0+σ1×(t−1959)
ζ0

[1−195

(− log(1− p))−ζ0 ], where we set µ1,σ1 or ζ0 to 0 if they are not defined in the model MN . For example, for the Gum-

bel model M0, the return level is constant: for any year t, zp(θM0 , t) = limζ0→0[µ0 +
σ0

ζ0
(1− (− log(1− p))−ζ0)] = µ0−

σ0 log(− log(1− p)).

8



For any considered model, the time derivative of the return level is constant, as ∂zp(θMN
,t)

∂t = µ1−σ1

ζ0
(1−(− log(1− p))−ζ0).

It quantifies the yearly change in
:
of

:
return level. Thus, the relative difference of return levels between year t1 and year t2 is:200

Relative change(zp(θMN , t1),zp(θMN , t2)) =
zp(θMN , t2)− zp(θMN , t1)

zp(θMN , t1)
=

t2− t1
zp(θMN , t1)

× ∂zp(θMN , t)

∂t
. (4)

In the context of maximum likelihood estimation, uncertainty related to return levels can be derived by the delta method,

which quickly provides confidence intervals both in the stationary and non-stationary case (Coles, 2001; Gilleland and Katz,

2016). First, the return level estimator associated to
::::
with the maximum likelihood estimator simply equals zp(θ̂M). Then, due

to the asymptotic normality of the maximum likelihood estimator (MLE), we can assume that, even with a finite number of data,205

the MLE is normally distributed. Therefore, we have that under regularity conditions, limits of the 1−α= 95% confidence

interval are θ̂M± qα2 × vzp(θ̂M) where qα
2

is the 1-α2 quantile of the standard normal distribution, and vzp is a function

that associates to each parameter θM the variance of the approximate normal distribution associated to
:::
with

:
its return level

zp(θM). For a full expression of the function vzp and for details on the delta method, we refer to Theorem 2.4 of Coles (2001).

In particular, this theorem explains that the delta method is valid for ζ0 < 1, which is respected in our case as −0.5≤ ζ0 ≤ 0.5210

(Sect. 5
:::
4.4). Also, uncertainty of non-stationary return levels zp(θ̂M, t) can be obtained by incorporating the covariate t in the

function zp.

4.4 Application

First, we exclude 4 times series of annual maxima with more than 10% of zeros, i.e. years without GSL. Then, we fit models

on
:
to

:
time series, and retain only those

::::::
models with −0.5≤ ζ̂0 ≤ 0.5. This impacts 3 time series. We made

::::
make

:
this choice215

because ζ̂0 > 0.5 designates distributions with an "exploding" tail which are known to be physically implausible (Martins

and Stedinger, 2000). We
::::::::
Following

::::
Sect.

::::
4.2,

:::
we

:
select one model for each time series (i.e. for each massif and altitude)

with the AIC statistical criterion, and assess its significance with the .
::::::
Then,

:::
we

::::::
exclude

::::
the

:
5
:::::
times

:::::
series

:::::
(2%)

::::::
where

:::
the

::::::
selected

::::::
model

:::
do

:::
not

::::
pass

:::
the

::::::::
Anderson

::::
test.

:::::::
Finally,

:::
we

:::::
assess

::
if
:::
the

:::::::
selected

::::::
model

::
is

::::::::::
significantly

:::::
more

::::::::::
appropriate

::::
than

::
the

:::::::::
stationary

:::::::
Gumbel

:::::
model

::::
M0::::

with
::
a likelihood ratio test(Sect. ??).220

5 Result
:::::::
Results

5.1 Selected models

Figure 3 shows that a stationary model, i.e. modelsM0 andMζ0 , is selected for a majority (57%) of time series studied (Sect.

2). Models with a linearity in both the location and scale parameters are the most frequently selected non-stationary models

(22%). For both stationary and non-stationary models, Gumbel models are always more
::::
often

:
selected that their corresponding225

GEV models (Fig. 3, Fig. 4). All in all, we highlight that 40
::
39% of selected models are significantly different from

::::
more

:::::::::
appropriate

::::
than

:
the stationary Gumbel modelM0.

9



Figure 3. Distribution of selected models. Frequency of selected model (in %) w.r.t
:
. all time series, i.e. for all massifs and altitudes. For the

selection procedure and the definition of significance, we refer to Sect. ??
::
4.2.

Figure 4 depicts shape parameter values for the selected model
::::::
models at 900 m, 1800 m and 2700 m. We notice that a ma-

jority of massifs are white-colored
::::
white

:
illustrating that a (stationary or non-stationary) Gumbel model (i.e. ζ̂0 = 0) is selected

(Sect. 5). It
::::
This

:
emphasizes that a Gumbel distribution often explains more succinctly the data than a GEV distribution. Also,230

with the GEV distribution, the estimated most likely shape parameter ζ̂0 is often quite uncertain, i.e. confidence intervals are

large, which is the main reason why French standards did not rely on it. This uncertainty
::
in

::̂
ζ0:::::

likely
:
comes from the limited

length of time series, and longer time series would certainly reduce it, and thus estimate the most likely shape parameter more

robustly.
:::::::::
Therefore,

::::::::
additional

::::
data

::::::
would

:::::
enable

::
to
::::::::
estimate

::̂
ζ0:::::

more
:::::::
robustly,

:::
and

::::
thus

::::::
reduce

:::::::::
uncertainty.

Figure 4.
:::::
Shape

::::::::
parameter

:::::
values

::
for

:::
the

::::::
selected

::::::
models

::
at

:::
low

::::
(900

:::
m),

:::
mid

:::::
(1800

::
m)

::
or
::::
high

:::::
(2700

::
m)

:::::::
altitude.

::::::
Markers

::::
show

:::::::
selected

:::::
model

:::::
MN ::::

while
::::
filled

:::::::
markers

::::::::
symbolize

:::::
models

::::
that

::
are

::::::::::
significantly

::::
better

::::
than

:::
the

::::::
Gumbel

:::::
model

::::
M0 ::::

(Sect.
::::
4.2).

::::
Grey

::::
areas

::::::
denote

::::
either

::::
time

::::
series

:::
that

::::
were

:::::::
excluded

:::::
(Sect.

:::
4.4)

::
or

::::::
missing

::::
data,

:::
e.g.

:::::
when

::
the

::::::
altitude

::::::::
considered

::
is

:::::
above

::
the

:::
top

::::::
altitude

::
of

::
the

::::::
massif.

:
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On
::
In Figure 4, we further observe that non-null shape parameters at low altitudes (≤ 900 m) are always positive (brown-235

colored massifs), i.e. a Fréchet distribution is preferred. On the other hand, for high altitudes (≥ 1500
::::
1800

::
m

:::
and

:::::
2700

:
m)

non-null shape parameters are always negative (green-colored massifs), i.e. a Weibull distribution is favored. We hypothesize

that this might be due to
::::::
Similar

::::::
results

:::
for

:::
the

:::::
shape

::::::::
parameter

:::::
have

::::
been

::::::::
observed

:::
for

::::
snow

:::::
depth

:::
by

::::::::::::::::::
Blanchet et al. (2009)

:
,
::::::::::::::::::::::::
Blanchet and Lehning (2010)

:::
and

:::::::::::::::::::::::
Schellander and Hell (2018)

:
.
::::
This

::::::
reflects

:
the different nature of annual maxima of GSL

between low and high altitudes. At high altitudes, annual maxima are mainly due to snowpack accumulation during several240

months, while at low altitudes this accumulation is limited, and thus annual maxima roughly correspond to heavy precipitations
::::::::::
precipitation.

Shape parameter values for the selected model at low (900 m), mid (1800 m) or high (2700 m) altitude. Markers show

selected modelMN . Filled markers symbolize significant trend. For the selection procedure and the definition of significance,

we refer to Sect. ??.

5.2 Trends in return levels of ground snow load245

Figure 5 maps the relative change between 1960 and 2010 for
::
of 50-year return levels of GSL

:::::::
between

:::::
1960

:::
and

:::::
2010

::::
(Eq.

::
4) at 900 m, 1800 m and 2700 m (see App. A for maps at all altitudes). Quantitatively, for Northwest massifs, we observe

that return levels have decreased by up to 60% at 900 m (dark blue), while at 1800 m this decrease is less marked (pale blue).

Qualitatively, these decreasing trends are frequently due to significant changes both in the location and scale parameters of

the Gumbel or GEV distribution (
::::
small

:::
and

:::::
large

:
diamond-shaped filled markers). At 2700 m, or in the South at 900 m and250

1800 m, no trends are found (whitecolor
:::
we

::::
often

:::
do

:::
not

::::::
observe

::::
any

:::::
trends

::::::
(white), since stationary models are often selected

(
::::::
selected

::::::
(small

:::
and

::::
large

:
cross-shaped markers).

Figure 5. Trends in 50-year return levels of ground snow load (GSL)
::::::
between

::::
1960

:::
and

::::
2010

:
at low (900 m), mid (1800 m) or high (2700

m) altitude. Markers show selected modelMN . Filled
::::
while

::::
filled

:
markers symbolize significant trend

:::::
models

:::
that

:::
are

:::::::::
significantly

:::::
better

:::
than

:::
the

::::::
Gumbel

:::::
model

:::
M0:::::

(Sect. Colors illustrate relative change for 50-year non-stationary return levels of GSL between 1960 and 2010.

For
:::
4.2).

::::
Grey

:::::
areas

:::::
denote

::::::
missing

::::
data,

:::
e.g.

:::::
when

:
the selection procedure and

::::::
altitude

::::::::
considered

::
is

:::::
above the definition

:::
top

::::::
altitude of

significance, we refer to Sect. ??
::

the
:::::
massif.
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Figure 6 emphasizes the evolution of decreasing trends between 900 m and 4800 m of altitude. We observe that decreasing

trends are significant for more than one-third of the massifs, located in the Northwest of the Alps (Sect
:::
App. A), until 2100 m

(black bars). In half a century, return levels have dropped in
::
on

:
average by up to 30% at 900 m. At higher altitudes

::::
Until

:::::
3300255

::
m,

:
we observe a decline in the percentage of massifs with a significant decreasing trend, which is non null up to .

::::::
Above

:
3300

m. However, for ,
:::
we

::
do

:::
not

::::
find

:::
any

:::::::::
significant

:::::::::
decreasing

:::::
trend.

::::
For both the relative decrease and the percentage of massifs

with a decreasing trend, even if we notice a similar declining pattern, we also detect a slight growth above .
:::
We

::::
also

::::::
notice

::::
more

::::::
decline

::::::::
between

::::
3300

:::
m

:::
and

:::::
3900

::
m

::::
than

::
at 3000 m. This ,

::::::
which echoes results from Lüthi et al. (2019), which

::::
who

found that, in the Alps above 3000 m, the relative decrease for projected winter-mean of fresh snow water equivalent
::::
SWE is260

more marked than at 3000 m (see their Figure 8). We emphasize, however, that most meteorological observations used as input

to the SAFRAN-Crocus reanalysis are situated below 2000 m. Therefore, trends beyond 2000 m altitude should be considered

with great caution.

Figure 6. Temporal decreasing trend of 50-year return levels of ground snow load (GSL) between 900 m and 4800 m of altitude.

Left: Time series of annual maxima for ground snow load (GSL) for 3 massifs either at 300 m or 600 m of altitude. Right:

Trend for annual maxima of ground snow load (GSL) at 300 m and 600 m of altitude. Markers show selected modelMN .265

Figure 7 illustrates that, for altitudes 300 m and 600 m, in general no trend
:::::
trends

:
are found except few decreasing trends at

600 mand 3 ,
::::
and

:
2 time series (1 at 300 m, 2

:
1 at 600 m) with sometimes important increasing trends (+100% for the Parpaillon

:::
one massif at 600 m). Despite this important increase in relative change, recorded annual maxima of snow load remain small

(< 1 kN m−2). Indeed, we found that these annual maxima correspond to snow load accumulated in few days, and thus are

mainly driven by heavy precipitations
:::::::::::
precipitation rather than a full season

:::::::
seasonal

:
snowpack accumulation. In particular, we270

hypothesize that the 2 massifs with important increasing trends (red color
:::::::
important

:::::::::
increasing

:::::
trend

:::::::
observed

:::
in

:::
the

:::::
South

::
at

:::
600

::
m

:::::
(color

:::
red) might be caused by a local phenomenoncalled "East return" which is a low pressure system coming from the
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Mediterranean sea
::::
cause

:::
by

:
a
::::::::

regional
:::::::::::
phenomenon,

::::::::
resulting

::::
from

:::::::::::::
Mediterranean

:::::
humid

:::
air

::::::
masses

:::::::
flowing

:::::::::
northward

::::
into

::
the

::::::
North

::
of

::::
Italy

::::
and

::::
then

::::::::
westward

::
to

:::
the

:::::::
eastern

:::
part

:::
of

:::
the

::::::
French

::::
Alps, that might be intensifying with global warming

(Garavaglia et al., 2010; Faranda, 2019)
:::::::::::::::::::::::::::::::::::::::::::::::::
(Garavaglia et al., 2010; Gottardi et al., 2012; Faranda, 2019).275

To sum up trends in return levels of ground snow load: from 900 m to 4800 m, either no trend or decreasing trend
:::::
trends

::
or

:::::::::
decreasing

:::::
trends of 50-year return levels of GSL are found (Fig. 5, Fig. 6and ,

:
Fig. A1).

:
, while at 300 m and 600 m, no clear

trends are found (Fig. 7).

Figure 7.
::::
Left:

::::
Time

:::::
series

::
of

:::::
annual

::::::
maxima

:::
for

::::::
ground

::::
snow

::::
load

:::::
(GSL)

::
for

::
2

::::::
massifs

:::::
(Aravis

::::
and

::::::::
Parpaillon)

:::::
either

:
at
::::

300
::
m

::
or

:::
600

::
m

:
of
:::::::

altitude.
:::::
Right:

::::
Trend

:::
for

:::::
annual

::::::
maxima

::
of
::::::
ground

::::
snow

::::
load

:::::
(GSL)

::
at

:::
300

::
m

:::
and

:::
600

::
m

::
of

::::::
altitude.

::::::
Markers

::::
show

:::::::
selected

:::::
model

::::
MN

::::
while

::::
filled

:::::::
markers

::::::::
symbolize

:::::
models

::::
that

::
are

::::::::::
significantly

::::
better

::::
than

:::
the

::::::
Gumbel

:::::
model

::::
M0:::::

(Sect.
::::
4.2).

::::
Grey

::::
areas

:::::
denote

:::::
either

::::
time

::::
series

:::
that

::::
were

:::::::
excluded

:::::
(Sect.

:::
4.4)

::
or

::::::
missing

::::
data,

:::
e.g.

::::
when

:::
the

::::::
altitude

::::::::
considered

::
is

::::
above

:::
the

:::
top

::::::
altitude

::
of

::
the

::::::
massif.

5.3 Comparison of return levels of ground snow load with French standards

Every 300 m of altitude, from 300 m to 1800 m, we compute
::
We

::::::::
compare 50-year return levels

:
of

:::::
GSL and their uncertainty280

from GSL data (Sect. 4.3) , and compare them to French standards
:::
first

:::
for

:
2
::::::
massifs

:::::
(Fig.

::
8)

::::
then

:::::::
globally

::::
(Fig.

::
9).

::::
We

:::::::
consider

::::
GSL

::::
data

::::
from

:::
300

::
m
::
to
:::::
1800

::
m

:::::::
because

::::::::
standards

:::
are

::::::
defined

::::
from

::::
200

::
m

::
to

::::
2000

:::
m (Sect. 3)for the 23 French Alps massifs.

Figure 8 illustrates these levels and their uncertainty for two massifs (Vercors and Beaufortain) associated to
:::
with

:
different

French standards regions. Standards are often exceeded at higher altitudes (e.g. at 1800 m). Also, Figure 8 exemplifies the

impact of accounting for decreasing trends in return levels. Indeed, we observe that return levels from the stationary Gumbel285

modelM0 (Left
:::
left) are often above

::::
larger

::::
than

:
effective return levels in 2019 (last year of data) from the selected modelMN

(Right
::::
right).

Figure 9 sums up the comparison between French standards and our results
::::::
50-year

:::::
return

::::::
levels

:::
for

::
all

:::
23

:::::::
massifs. We

display
::
(i)

:
the percentage of massifs whose return level estimated from data exceeds return level from standards. The number

of massifs with available data is equal to 11 at 300 m, 18 at 600 m, and 23 at 900 m and above
:::::::
exceeds

::::::::
standards,

::::
and

:::
(ii)

:::
the290

::::
mean

:::::::
relative

::::::::
difference

::::::::
between

:::::
return

:::::
levels

:::
and

::::::::
standards. Limits of the confidence intervals (black bars) are computed

:::
are

:::::::::::
approximated as the percentage of exceedances

:::::
(resp.

:::::
mean

::::::
relative

:::::::::
difference)

:
for the limits of return levels’ 95% confidence
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Figure 8.
::::::
50-year

::::
return

:::::
levels

::
of

:::::
ground

::::
snow

::::
load

:::::
(GSL)

::::
from

:::::
altitude

:::
300

::
m
::
to

::::
1800

::
m

::
for

::::::
Vercors

::::
(top)

:::
and

:::::::::
Beaufortain

:::::::
(bottom)

::::::
massifs.

:::::
Return

::::
levels

::::::
(green

:::
line)

:::
and

::::
their

:::::::::
uncertainty

::::::
(shaded

::::
green

:::
and

:::::
black

::::
bars)

::
are

::::::::
estimated

::::
from

::
the

::::
data

:::::
either

:::
with

:::
the

:::::::
stationary

:::::::
Gumbel

:::::
model

::::
M0::::

(left)
::
or

::::
with

:::
the

::::::
selected

:::::
model

::::
MN::::::

(right).
::
If

::::
MN :

is
::

a
:::::::::::
non-stationary

:::::
model,

:::
the

:::::
return

::::
level

::
is

::
the

:::::::
effective

:::::
return

::::
level

::
in

::::
2019,

:::
and

:::
we

:::::
display

:::
the

:::::
change

::
of
:::::
return

:::::
levels

:::
per

:::::
decade

::::::
(striped

:::::::::
histogram),

::
i.e.

:::
10

::::
times

:::
the

:::
time

::::::::
derivative

::
of

::::
return

::::
level

:::::
(Sect.

::::
4.3).

interval (black bars on
::
in Fig. 8) ..

:::
and

::::::::
displayed

::::
with

:::::
black

::::
bars

:::::
(resp.

:::::::
shaded

:::::
blue).

::::
The

::::::
number

:::
of

::::::
massifs

::::::::::
considered

::
is

::::
equal

::
to
::
7
::
at

:::
300

:::
m,

::
17

::
at
::::
600

::
m,

::::
and

::
23

::
at

::::
900

::
m

:::
and

::::::
above.

First, if we estimate return levels from data with
::
the

:
French standards method (Fig. 9 Left

:::
left), i.e. with a stationary Gumbel295

modelM0, and GSL data approximated with snow depth obtained from reanalysis and ρSNOW = 150 kg m−3, then we observe

few exceedances (always less than 10%)
:::
and

::::
that

:::
on

:::::::
average

:::::
return

::::::
levels

:::::::
remains

:::::
below

:::::::::
standards,

:::
as

:::
the

:::::
mean

:::::::
relative

::::::::
difference

:::::::
remains

:::::
below

::::
zero. Thus, in this setting, estimations from our reanalysis are consistent with French standards.

However, if we consider the actual GSL, i.e. computed with the snow water equivalent from
:::::
SWE

::::
from

:::
the

:
reanalysis,

then French standards drastically underestimate return levels. Indeed, with a stationary Gumbel modelM0, then for altitudes300

above or equal to 900 m, French standards are exceeded for a majority of massifs (Fig. 9 Center
::::
center). But, if we consider

the selected modelMN , i.e. if we account for the decreasing trend in 50-year return levels, we have less exceedances at all

altitudes (Fig. 9 Right
:::
right). In the latter case, at worst, i.e. at 1800 m,

:::::
return

:::::
levels

::::::
exceed

::::::::
standards

::
by

:::::
15%

::
on

:::::::
average,

::::
and

half of the massifs still exceed French standardsreturn levels.

50-year return levels of ground snow load (GSL) from altitude 300 m to 1800 m for Vercors (Top) and Beaufortain (Bottom)305

massifs. Return levels (green line) and their uncertainty (shaded green and black bars) are estimated from the data either with

the stationary Gumbel model M0 (Left) or with the selected model MN (Right). If MN is a non-stationary model, return
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Figure 9.
:::::::::
Comparison

::
of

::::::
50-year

:::::
return

::::
levels

::
of
::::::
ground

::::
snow

::::
load

:::::
(GSL)

:::
with

::::::
French

:::::::
standards

:::::::
between

:::
300

::
m

:::
and

::::
1800

::
m.

:::
We

::::
show

:::
the

::::::::
percentage

::
of

::::::
massifs

:::::
(green

::::::::
histogram)

:::::
whose

:::::
return

:::::
levels

:::::
exceed

::::::
French

:::::::
standards,

::::
and

::
the

:::::
mean

:::::
relative

::::::::
difference

::::
(blue

::::
line)

:::::::
between

::::
return

:::::
levels

:::
and

::::::::
standards.

::::
Left:

::::::
similar

::
to

:::::
French

:::::::
standard

::::::::
estimation

::::::::
(stationary

::::::
Gumbel

:::::
M0,

:::
and

::::
GSL

::::::::::
approximated

::::
with

::::
snow

:::::
depth

::::::
obtained

::::
from

:::
the

:::::::
reanalysis

:::
and

::::::::::::::::::
ρSNOW = 150 kg m−3).

:::::
Center:

::::::::
stationary

::::::
Gumbel

::::
M0,

:::
and

:::::
actual

::::
GSL,

:::
i.e.

:::::::
computed

::::
with

::::
SWE

::::
from

:::
the

::::::::
reanalysis.

:::::
Right:

::::::
selected

:::::
model

::::
MN ::

(if
::::
MN::

is
:::::::::::
non-stationary,

:::
the

::::
return

::::
level

::
is

::
the

:::::::
effective

:::::
return

::::
level

::
in

::::
2019)

:::
and

:::::
actual

::::
GSL.

:

level is the effective return level in 2019, and we display the change in return level per decade (striped histogram), i.e. 10 times

the time derivative of return level (Sect. 4.3).

Percentage of massifs (green histogram) whose 50-year return levels of ground snow load (GSL) is above French standards310

between 300 m and 1800 m. Uncertainty (black bars) is approximated as the percentage of exceedances for return levels’

95% confidence interval limits. Left: similar to French standard estimation (stationary GumbelM0, and GSL approximated

with snow depth obtained from reanalysis and ρSNOW = 150 kg m−3). Center: stationary Gumbel M0, and actual GSL, i.e.

computed with the snow water equivalent from reanalysis. Right: selected modelMN (ifMN is non-stationary, return level

is the effective return level in 2019) and actual GSL.
:::::
(60%)

:::::::
exceeds

:::::::::
standards.315

::::::::::
Furthermore,

:::::::
despite

::::
that

:::::::::
uncertainty

::::::::
intervals

:::::
(black

:::::
bars)

::::
can

::
be

:::::
large,

::
it
::::
does

::::
not

::::::
impact

:::
the

:::::
main

::::::::::
conclusions

::
of

::::
this

:::::
article.

:::::::
Indeed,

::
in

::::::
Figure

:
9
::::
right

::
at
:::::
1800

::
m,

:::
we

::::
still

::::
have

:::::::
between

::::
40%

::::
and

::::
80%

::
of

:::::::
massifs

::::::::
exceeding

::::::
French

:::::::::
standards.

6 Discussion

6.1 Methodological considerations

We discuss in depth the statistical models chosen for this study. It is well-known that an annual maximum based approach320

can be wasteful in terms of data (Coles, 2001). However, since our objective is to estimate 50-year return levels and since

we have 60 years of data, we still decide to rely on the annual maximum based approach (with the GEV distribution) rather

than on the concurrent approach based on threshold exceedances (with the Generalized Pareto distribution). Also, with the
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GEV distribution(and its particular case: the Gumbel distribution) ,
:
our methodology is a direct extension of French building

standards (Sect. 3).325

For the non-stationary models, we focus on simple deterministic function
::::::::
functions of time (µ(t),σ(t), ζ(t)) due to the

limited length of time series. A linear non-stationarity seems preferable to a non-stationarity based on the Heaviside step

function due to the continuous nature of climate change. We start the linear non-stationary at the initial year, i.e. 1959. We tried

to start the non-stationarity only after a most likely year (Blanchet et al., 2016) but our results lacked coherence both between

close massifs (no clear spatial pattern for the most likely years) and w.r.t. the altitude (no clear trend in most likely years as330

altitude rises).

We decided to consider non-stationarity only for the location and scale parameter. Indeed, in the literature, a linear non-

stationarity is considered sometimes only for the location parameter (Fowler et al., 2010; Tramblay and Somot, 2018) but more

often both for the location and the scale (or log-transformed scale for numerical reasons) parameters (Katz et al., 2002; Kharin

and Zwiers, 2004; Marty and Blanchet, 2012; Wilcox et al., 2018). Another reason for which we considered
:::::
Also,

::
we

::::::::
consider335

a non-stationarity for both parameters is that we did not find
::::::
because the scale parameters to be

::::
were

:::
not

:
proportional to the

location parameters, which could have otherwise simplified our parametrization. Also
:::::
Finally, the shape parameter is typically

considered constant , with few exceptions in the literature
:
, and we follow this approach.

For time series containing zeros, French standards rely on a mixed discrete-continuous distribution. We did not rely on

this choice because for time series containing zeros considered in this study, i.e. with less than 10%
::::
They

::
fit

::::
both

::
a

:::::::
Gumbel340

:::::::::
distribution

:::
on

:::::::
non-zero

::::::
annual

:::::::
maxima

:::
and

:::
the

:::::::::
probability

::
of

::::::
having

:
a
::::::::
non-zero

::::::
annual

:::::::
maxima.

::::::::
However,

::::
with

:::
our

:::::::::
reanalysis

::::
data,

:::
this

::::::::
approach

:::::::::
sometimes

:::::
leads

::
to

:::::
fitting

::::::::::::
non-stationary

:::::::
extreme

:::::
value

::::::
models

::::
with

:::
less

::::
than

:::
40

:::::::
non-zero

::::::
annual

::::::::
maxima.

::::::::
Therefore,

:::
we

:::::
rather

::::::
decide

::
to

:::::::
exclude

:::
any

::::
time

:::::
series

::::
with

:::::
more

::::
than

::::
10%

:
of zeros (Sect. 5), we almost obtain the same

::::
4.4),

::
to

:::::
ensure

::::
that

:::
we

::
fit

::::::
models

::::
with

:::::
more

::::
than

::
55

::::::::
non-zero

::::::
annual

:::::::
maxima.

:::
In

:::::::
practice,

:::
our

::::::::
approach

:::::
gives 50-year return levels

with this distribution than with our approach
:::::
return

:::::
levels

:::::
close

::
to

:::
the

::::::::
approach

:::::
from

::::::
French

::::::::
standards

:
(absolute difference345

remains lower than 0.1 kN m−2).

6.2 On the limitation to approximate annual maxima of ground snow load with annual maxima of snow depth

Snow water equivalent (SWE )
::::
SWE

:
times the gravitational constant equals GSL. However, most countries do not measure

SWE but only have access to snow depth (HS) (Haberkorn et al., 2019). In that case, snow density is required to obtain

SWE (and subsequently GSL) from HS (Sect. 1). In particular, French standards approximate annual maxima of GSL with350

annual maxima of HS and by assuming a constant snow density, equal to ρSNOW = 150 kg m−3. We
::
In

:::::
Figure

:::
10,

:::
we highlight

limitations of such approaches with our reanalysis (Sect. 2) that provides, for the whole snowpack, daily values of SWE, HS,

and thus of snow density.

We find that annual maxima of GSL is
:::
are always underestimated by French standards’ approximation (Fig. 10 Left). Main

::::
left).

::::
The

::::
main

:
reason is that, when annual maxima of GSL is

:::
are reached, snow density is in

::
on

:
average largely superior355

to ρSNOW = 150 kg m−3 (Fig. 10 Center
::::
center). Indeed, we observe that at the time of the annual maxima of GSL the snow

density is around ≈ 350 kg m−3 in
::
on average at 2700 m, and close to ≈ 250 kg m−3 in

::
on

:
average at 900 m. Finally, despite
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high variations along the years, we also notice that, when annual maxima of GSL is
:::
are reached, snow depth can be much lower

than the annual maxima of snow depth (Fig. 10 Right
::::
right), which is another argument against the use of snow depth maxima

as a proxy for GSL maxima.360

Figure 10. Limitation of approximating annual maxima of ground snow load (GSL) from annual maxima of snow depth (HS). Left: Differ-

ence between annual maxima of GSL and GSL computed from annual maxima of HS and ρSNOW = 150 kg m−3. Center: Snow density when

annual maxima of GSL is
::
are reached. Right: Difference between annual maxima of HS and HS when annual maxima of GSL is

::
are

:
reached.

7 Conclusions

Based on both a reanalysis and a snowpack model, we detect an overall temporal decreasing trend w.r.t to
::
of 50-year return

levels of ground snow load (GSL) between 900 m and 4200 m, which is significant until 2100 m in the Northwest of the French

Alps. This confirms other studies in the Western Alps which also found overall decreasing trends in linked snowpack variables:

snow water equivalent
::::
SWE

:
and snow depth. Despite decreasing return levels , in half of the massifs the 50-year return level in365

:::
The

::::::
largest

:::::::
decrease

::
is

:::::
found

::
at

:::
900

::
m

::::
with

::::::
−30%

:::
for

:::::
return

:::::
levels

:::::::
between

::::
1960

::::
and

:::::
2010.

::::::
Despite

:::::
these

::::::::
decreases,

::
in
:
2019 at

1800 m exceeds the stationary return level
:::::
return

:::::
levels

::::
still

::::::
exceed

:::::
return

:::::
levels designed for French

:::::::
building

::::::::
standards

:::::
under

:
a
::::::::
stationary

:::::::::::
assumption.

::
At

::::::
worst,

:::
i.e.

::
at

::::
1800

:::
m,

:::::
return

::::::
levels

::::::
exceed

::::::::
standards

::
by

:::::
15%

::
on

::::::::
average,

:::
and

::::
half

::
of

:::
the

:::::::
massifs

::::::
exceeds

:
standards.

We hypothesize that this amount of exceedances might be due to an underestimation of GSL by French standards. Indeed,370

these standards were devised with GSL estimated from snow depth
::::::
maxima

:
and constant snow density equal to 150 kg m−3,

which underestimate typical GSL values for the full snowpack. Another reason for these exceedances might be ill-designed

relationships between altitude and snow load. As shown on
::
in Fig. 2, French standards return levels augment linearly by parts

w.r.t the altitude
:::::::
increase

::::::
linearly

:::::
with

::::::
altitude

::
in

:::::
three

::::
steps. Indeed, French standards (Biétry, 2005) follow previous national

standards (AFNOR, 1996) that advised for a linear relationship between altitude and snow load instead of relying on European375

standards’ results that showed a quadratic relationship for the Alpine Region (Sanpaolesi et al., 1998). Thus, at higher altitudes,

French standards might underestimate actual return levels which might explain the augmenting percentage of exceedance that

we observe w.r.t
::::::::
observed

::::
with the altitude (Fig. 9 Right

::::
right).
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Many potential extensions of this work could be considered. First, our methodology could be extended with more advanced

definitions of non-stationary return levels (Rootzén and Katz, 2013; Serinaldi, 2015). Also, instead of considering time series380

of annual maxima as
::::::
spatially

:
independent, we believe that our analysis may benefit from an explicit modelling of the spa-

tial dependence between extremes. Then, reanalyses are increasingly available at the European scale (e.g. Soci et al. (2016)

::::::::::::
Soci et al. 2016), which could be used for extending this work at

::
to a wider geographical scale. This requires, however, to

remain cognizant of the limitations of such reanalyses, in particular (i) the temporal heterogeneity of the meteorological data

input to these reanalyses (Vidal et al., 2010), (ii) the lack of observations at high elevations
:::::::
altitudes, requiring caution in ana-385

lyzing trends for high elevation
::::::
altitude locations and (iii) model errors (e.g. , snowpack model errors) which need to be taken

into account when analyzing the results.

Finally, even if, according to our analysis, GSL exceeds French standards return levels in the French Alps, (Fig. 9 Right
::::
right),

few destructions related to snow loads actually occurred. Several reasons might explain that. First, French standards consider a

coefficient that maps GSL return levels to roof snow load return level, i.e. multiplication by a coefficient that summarizes several390

roof features: shape, exposure and thermal transmission (Sanpaolesi et al., 1998)). This coefficient might be overprotective.

Also, following European standards,
::::
roof

::::::::
designers

::::
must

:::
add

:::::
safety

::::::::::
coefficients to ensure roofsreliability, designers ’

:::::::::
reliability.

::::::
Indeed,

::::
they actually build roofs that withstand return levels of

::
the

::::
sum

::
of

:::
(i)

:::
the

:::::::::::
characteristic

:::::
value

::
of

:::::::::
permanent

::::::
action,

:::
i.e.

:::::::::
self-weight,

:::::::::
multiplied

:::
by

:
a
::::::

safety
:::::::::
coefficient

:::::
equal

::
to

::::
1.35

::::
and

:::
(ii)

:::
the

:::::::::::
characteristic

:::::
value

::
of

:::::::
variable

::::::
action,

:::
i.e.

:
roof snow

load
:::::
return

:::::
level, multiplied by a safety coefficient (

::::
equal

::
to

:
1.5

:::::::::::::::::::
(Sanpaolesi et al. 1998

::
Eq.

::
8). Above all, French standards395

do not take into account that, after intense days of snowfall, the snow accumulated on the roof either slides off or is removed.

In that case, the main risk lies in extreme snow events that might accumulate in few days enough snow to exceed French

standards. Undeniably, most known snow load destructions resulted from such intense snow events, sometimes combined with

liquid precipitation that often heavily increase snow load. The response of these short but extreme and complex snow events to

climate change might be an interesting topic for future research.400

Author contributions. E. L. R. performed the analysis and drafted the first version of the manuscript. All authors discussed the results and

edited the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Data availability. The dataset can be download from AERIS website https://www.aeris-data.fr/catalogue/ (type "S2M" in the search bar).

18

https://www.aeris-data.fr/catalogue/


Acknowledgements. ELR
::
E.

::
L.

::
R. holds a PhD grant from INRAE. The S2M data are provided by Météo-France - CNRS, CNRM Centre405

d’Etudes de la Neige, through AERIS. We are grateful to Eric Gilleland for its
::
his

:
"extRemes" R package. Finally, we are indebted to Jacques

Biétry for providing us the report on French standards w.r.t
:
. ground snow load and for his explanations on their methodology.

Appendix A: Trends in return levels of ground snow load

In this section, we report, for every 300 m of altitude from 900 m to 4200 m, the map of the relative change between 1960 and

2010 for the
::
of 50-year return levels of GSL

::::::
between

:::::
1960

:::
and

:::::
2010 (Fig. A1). Trends at 4500 m and 4800 m are not reported,410

since they only concern the Mont Blanc massif, where no significant trend is inferred at these altitudes.

Figure A1. Trends in return levels of ground snow load (GSL) between 900 m and 4200 m of altitude. Markers show selected modelMN

::::
while

::::
filled

:::::::
markers

::::::::
symbolize

:::::
models

::::
that

::
are

::::::::::
significantly

::::
better

::::
than

:::
the

::::::
Gumbel

:::::
model

::::
M0:::::

(Sect.
::::
4.2).

::::
Grey

::::
areas

:::::
denote

:::::
either

::::
time

::::
series

:::
that

::::
were

:::::::
excluded

:::::
(Sect.

:::
4.4)

::
or

::::::
missing

::::
data,

:::
e.g.

::::
when

:::
the

::::::
altitude

::::::::
considered

::
is

::::
above

:::
the

:::
top

::::::
altitude

::
of

::
the

:::::
massif.
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Appendix B:
:::::::
Detailed

:::::::::::
methodology

:::
for

::::
the

:::::
model

:::::::::
validation

:::::::::::::::
Quantile-quantile

::::
plot.

::::::::
Standard

::::::::
diagnosis

::::
tools

:::
for

::::
both

::::::::
stationary

:::
and

::::::::::::
non-stationary

:::::::
extreme

:::::
value

::::::
models

:::::::::::::::::::::::::::::::
(Coles, 2001; Richard W. Katz, 2012)

:::
rely

::
on

::
a
:::::::::
probability

::::::
integral

:::::::::::::
transformation

:
f
::
to

:::
the

:::::::
standard

:::::::
Gumbel

::::::::::
distribution,

:::
i.e.

:::::::::::
Gumbel(0,1).

:::::::
Indeed,

:
if
:::::::::::::::::::::::::
Z(t)∼ GEV(µ(t),σ(t), ζ(t)),

:::
then

:::::::::::::::::::::::::::::::::::::::::::::
f(Z(t)) = 1

ζ(t) log(1+ ζ(t)Z(t)−µ(t)
σ(t) )∼ Gumbel(0,1).

::::::
Thus,

::
if

:::::::::::::::::
z = (z1959, ...,z2019)::::::::

represent
::
a
::::
time

:::::
series

:::
of

::::::
annual415

:::::::
maxima,

::::
then

::
let

::::::::::::::::::::::::::::::::
z̃1959 = f(z1959), ..., z̃2019 = f(z2019).

::::::::::::::
Quantile-quantile

::::::
(Q-Q)

:::
plot

::
is
::
a
:::::::
standard

::::::::
diagnosis

::::::
based

::
on

:::
the

::::::::::
comparison

:::
of

::::::::
empirical

::::::::
quantiles

:::::::::
(computed

:::::
from

:::
the

::::::::
empirical

::::::::::
distribution)

:::
and

:::::::::
theoretical

::::::::
quantiles

:::::::::
(computed

:::::
from

:::
the

:::::::
expected

:::::::::::
distribution).

:::
On

::::
one

:::::
hand,

::::::::::
z̃(1), ...z̃(61) :::

are
:::
the

::::::::
empirical

::::::::
quantiles,

:::::
which

:::::::::
correspond

::
to

:::
the

::::::
ordered

::::::
values

::
of

:::
the

::̃
zt.:::

On
:::
the

:::::
other

::::
hand,

::::::::::::::::::::::::::::::::
− log(− log( 1

62 )), ...,− log(− log( 6162 ))

:::::::::
correspond

::
to

:::
the

::::::::
theoretical

:::::::::
quantiles.

::::::
Indeed,

:
if
::::::::::::::::
Z̃ ∼ Gumbel(0,1),

::::
then

::::::::::::::::::::::::::::::::::::::::::::
P (Z̃ ≤ z̃) = exp−e−z̃ = i

62 ↔ z̃ =− log(− log( i62 )).420

:::::
Thus,

::
the

::::
Q-Q

::::
plot

::
is

:::::::::
comprised

::
of

:::
the

::::
pairs

::::::::::::::::::::::::::::::::
{(− log(− log( i62 )), z̃(i)); i= 1, ...,61}.

:

::
In

:::::
Figure

::::
B1,

:::
we

::::::
display

::::
Q-Q

::::
plots

:::
for

:::
the

:::::
three

::::
time

:::::
series

::
of

::::::
annual

:::::::
maxima

::
of

::::
GSL

:::::::::
displayed

::
in

:::
Fig.

::
1.
:::
We

:::::::
observe

::::
that

::
the

::::
left

:::
and

:::
the

::::
right

::::
Q-Q

:::::
plots

::::
show

::
a

::::
good

:::
fit,

::
as

:::
the

:::::
points

::::
stay

:::::
close

::
to

:::
the

:::
line.

:::::::::
However,

::
for

:::
the

::::::
center

::::
Q-Q

::::
plot,

::
all

::::::
points

::
are

:::::
close

::
to
:::

the
:::::

line,
:::::
except

::::
the

::::::
highest

::::::::
empirical

:::::::
quantile

::::
that

::
is

::::::
largely

:::::
above

::::
the

::::::::::::
corresponding

:::::::::
theoretical

:::::::
quantile.

:::
As

::
a

:::::
whole,

:::::
when

:::::::::
observing

::
all

::::
Q-Q

::::
plots

::::
(not

::::::
shown)

:::::
most

::::
time

:::::
series

:::::
show

:
a
::::
good

:::
fit,

::::::
except

:::
few

::::
time

:::::
series

::::
(less

::::
than

:::
10)

::::::
which425

::::
have

:
a
::::::
pattern

::::::
similar

::
to

:::
the

::::::
center

::::
Q-Q

:::
plot

::
in

::::::
Figure

:::
B1.

:

Figure B1.
:::
Q-Q

::::
plots

::
of

::
the

:::::::
selected

:::::
models

:::
for

:::
the

::::
three

:::
time

:::::
series

:::::::
displayed

::
in
::::
Fig.

:
1.
::::

Left:
::::::

Ubaye
:::::
massif

::
at

::::
900m

::::
fitted

::::
with

:::
the

:::::
model

::::
Mζ0 .

::::::
Center:

::::::
Vercors

:::::
massif

::
at

:::::
1800m

::::
fitted

::::
with

:::
the

:::::
model

::::::
Mζ0,µ1 .

:::::
Right:

:::::::::
Beaufortain

::::::
massif

:
at
::::::
2700m

::::
fitted

::::
with

::
the

:::::
model

:::::
Mζ0 .

::::::::::::::::
Anderson-Darling

:::
test.

::::
Q-Q

::::
plot

::
is

:
a
:::::::::
qualitative

:::
tool

::
to

:::::::
validate

::
the

:::::::::::::
goodness-of-fit

:::
for

:::::::::
probability

:::::::
models.

:::
For

::
the

::::::::::
quantitative

::::::::
validation

::
of

:::
the

:::::::::::::
goodness-of-fit

::
of
::::

the
:::::::
selected

:::::::
models,

:::
we

:::
rely

:::
on

:::
the

:::::::::::::::
Anderson-Darling

:::::::::
statistical

::::
test,

:::::
which

::
is

:::
the

:::::
most

:::::::
powerful

:::
test

:::
for

:::
the

:::::::
Gumbel

::::::::::
distribution

::::::::
according

::
to

:::
the

:::::::::::
comparative

::::
study

:::
of

::::::::::::::::
Abidin et al. (2012).

:
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::
In

:::::::
practice,

::::
with

:::
this

::::
test,

:::
we

:::::
assess

::
if

::
the

::::::::::
transformed

::::::
annual

:::::::
maxima

:::::::::::
z̃(1), ..., z̃(61) :::

are
::::
likely

::
to
:::
be

::::::::
generated

::::
from

::
a

:::::::
standard430

::::::
Gumbel

:::::::::::
distribution.

:::
Let

::::::
n= 61

:::::::
denotes

:::
the

:::::::
number

::
of
::::::::

samples,
::::
and

::::
Femp:::::

(resp.
:::::
Fgum)

:::::::
denotes

:::
the

::::::::::
cumulative

::::::::::
distribution

:::::::
function

::
of

:::
the

::::::::
empirical

:::::
(resp.

:::::::
standard

::::::::
Gumbel)

::::::::::
distribution.

:::::
Then,

:::::::::::::::
Anderson-Darling

:::
test

::
is
:::::
based

:::
on

:::
the

:::::::
distance:

:

A2 = n

∫
(Femp(x)−Fgum(x))

2w(x)dFgum(x)≈−
n∑
i=1

2i− 1

n
{log

::::::::::::::::::::::::::::::::::::::::::::::::::::::

[Fgum(z̃(i))
::::::::

]+log[1−Fgum(z̃(n+1−i))]}−n.
::::::::::::::::::::::::::

(B1)

:::::
where

:::::
w(x)

:::::
places

:::::
more

::::::
weight

::
on

:::
the

:::
tail

::
of

:::
the

:::::::
standard

:::::::
Gumbel

::::::::::
distribution.

::::
For

::::::
details,

:::
we

::::
refer

::
to

::::::::::::::::
Abidin et al. (2012)

:
.

435

:::
We

:::::
apply

:::
this

:::
test

:::
on

:::
the

::::::::::
transformed

::::
data

:::::
using

::::::::::
Saeb (2018)

:
,
:::
and

:::::
found

::::
that

:::
we

:::::
cannot

:::::
reject

:::
the

::::
null

:::::::::
hypothesis

::::::::
(samples

::::::::
generated

::::
from

:::
the

:::::::
Gumbel

::::::
model)

::
at

:::
the

:::
5%

::::::::::
significance

::::
level

:::
for

::::::
almost

:::
all

:::
our

:::::::
selected

::::::
models

::::::
(98%),

::::::::
justifying

::::
their

:::::
good

::
fit.

:::
As

::::::::
explained

::
in

:::::
Sect.

:::
4.4,

:::
we

:::::::
exclude

::::
time

:::::
series

:::::
whose

:::::::
selected

:::::::
models

::
do

:::
not

::::
pass

:::
this

::::::::::::::::
Anderson-Darling

:::
test.

:
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