
1 

 

Trivariate copula to design coastal structures 

Olivier Orcel1, Philippe Sergent1, François Ropert1 

1Cerema, Margny-Lès-Compiègne, 60280, France 

Correspondence to: Philippe Sergent (philippe.sergent@cerema.fr) 

Abstract. Some coastal structures must be redesigned in the future due to rising sea levels caused by global warming. The 5 

design of structures subjected to the actions of waves requires an accurate estimate of the long return period of such parameters 

as wave height, wave period, storm surge and more specifically their joint exceedance probabilities. The simplified Defra 

method that is currently used in particular for European coastal structures makes it possible to directly connect the joint 

exceedance probabilities to the product of the univariate probabilities by means of a single factor. These schematic correlations 

do not, however, represent all the complexity of the reality because of the use of this single factor. That may lead to damaging 10 

errors in coastal structure design. The aim of this paper is therefore to remedy the lack of robustness of these current 

approaches. To this end, we use copula theory with a copula function that aggregates joint distribution function to its univariate 

margins. We select a bivariate copula that is adapted to our application by the likelihood method with a copula parameter that 

is obtained by the error method. In order to integrate extreme events, we also resort to the notion of tail dependence. We select 

the copulas with the same tail dependence as data. In the event of an opposite tail dependence structure, we resort to the 15 

survival copula. The tail dependence parameter makes it possible to estimate the optimal copula parameter. The most robust 

copulas for our practical case with applications in Saint-Malo and Le Havre (in Northern France) are the Clayton normal copula 

and the Gumbel survival copula. The originality of this paper is the creation of a new and robust trivariate copula with an 

analysis of the sensitivity to the method of construction and to the choice of the copula. Firstly, we select the best fitting of the 

bivariate copula with its parameter for the two most correlated univariate margins. Secondly, we build a trivariate function. 20 

For this purpose, we aggregate the bivariate function with the remaining univariate margin with its parameter. We show that 

this trivariate function satisfies the mathematical properties of the copula. We finally represent joint trivariate exceedance 

probabilities for a return period of 10, 100 and 1000 years. We finally conclude that the choice of the bivariate copula is more 

important for the accuracy of the trivariate copula than its own construction. 

1 Introduction 25 

The design of coastal structures requires the multiplicity of variables and their degree of correlation to be taken into account. 

We must therefore address the lack of robustness in the modelling procedure of the dependencies between the different 

variables characterizing the sea state (Sergent et al., 2014; Hawkes, 2005) such as wave height H, wave period T and storm 

surge S. The design of coastal structures is based in particular on the return periods of wave overtopping or of armour damage 

(Ciria et al., 2007). Since the applications on wave overtopping and armour damage depend on the parameters of the coastal 30 

structure, we will not deal with the return periods of these quantities. The aim of this paper is however to improve the methods 

of estimating them in order to avoid costly and inappropriate decisions (Li et al., 2008). To this end, we provide accurate 

estimates of the correlations between the variables H, T and S and obtain reliable return periods. Currently, in reference manuals 

such as the Rock Manual (Ciria et al., 2007), it is recommended that a factor be applied to the product of univariate survival 

functions in order to determine the joint period. Copulas are mathematical tools for modelling the dependence structure of 35 

several random variables. The theory of copulas was developed by the mathematician Sklar (1959). The copula is a written 

form of the joint distribution function that provides all the information on the dependency structure. The recent interest in 

copulas started in financial risk management and insurance. Its use in environmental science especially concerns hydrology 
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with the works for example of De Michele and Salvadori (2003), Favre et al. (2004), Grimaldi and Serinaldi (2006), Genest 

and Favre (2007), Zhang and Singh (2007), Aghakouchak et al. (2010), Lee et al. (2013), Chang et al. (2016). 40 

In coastal engineering, in order to estimate the probability of failure of coastal or offshore structures caused in particular by 

the critical appearance of the combinations of parameters during a storm, Salvadori et al. (2007) use a copula in order to link 

the intensity of storm surge to its duration. Using the copula theory, Hawkes (2005) obtains, for example, all the pairs of 

variables wave height H and surge S for a given return period. The bivariate return period can be generalized to the multivariate 

case (Charpentier, 2014).  45 

In this paper we propose the use of copulas to take into account the dependence between three variables H, T and S. Copulas 

generally aggregate only two random variables. The purpose of this article is the creation of a new trivariate copula and the 

evaluation of its robustness. Nelsen (1985) mentions that the construction of a trivariate copula requires a specific attention. 

In the literature the Chakak and Koehler (1995) method is commonly used and in particular by Joe (1997) and Salvadori et al. 

(2007). This method is based on bivariate conditional distributions and requires the use of three bivariate copulas. The method 50 

has a compatibility problem. There is no guarantee that the method gives the same result when the order of variables is changed. 

Aas and Berg (2009) propose copula construction with conditional sets : the pair copula construction (PCC). As the bivariate 

copulas that are selected as the most promising in our application are Archimedean copulas, simpler methods of construction 

are available.  

Gouldby et al. (2014) propose a methodology for deriving extreme nearshore sea conditions for structural design with waves, 55 

winds and sea levels as offshore variables using also conditional distributions.  

Corbella and Strech (2013) nevertheless study trivariate copula based on storm magnitude, storm duration and wave height.  

They show that the fully nested method of creating hierarchical copulas provides the best results for their case study. This 

method appears moreover to be simpler than the Chakak and Koehler (1995) procedure and the conditional mixture with its 

complicated integral to solve. According to Corbella and Stretch (2013), the conditional mixture is conceptually similar to that 60 

of Chakak and Koehler (1995). Based on these conclusions concerning results and complexity, we propose to use a fully nested 

hierarchical trivariate copulas and to test the sensitivity of the results to the method of construction and to the choice of the 

copula. Showing that Archimedean copulas give the best results, we can indeed adopt a fully nested hierarchical copula. 

In a first part, we define the theory by presenting, partly in appendix, the marginal distribution, the recommended method of 

the Rock Manual, the normal copula, the bivariate copula, the tail dependence, the survival copula, the trivariate copula and 65 

isovalue lines for different return periods. We obtain a bivariate copula and the copula parameter by the method of maximum 

likelihood and the method of the error. We show that the trivariate function that is obtained satisfies the mathematical properties 

of a copula.  

In a second part, we present the isovalue lines for applications at the ports of Le Havre and Saint-Malo (Northern France) with 

bivariate copulas corresponding to different return periods. We show that the Clayton and Gumbel copulas are the most robust 70 

copulas for our practical applications of coastal engineering.  

Finally, in a third part, we apply trivariate copulas in Le Havre. 

2 Theoretical approach 

The notations and the main notions of copula for a bivariate distribution function are recalled in appendix A. In order to 

determine the return period of events that lead to wave overtopping or armour damages, we choose to use survival functions. 75 

As mentioned by Serinaldi (2015), this option is not unique and will lead to a specific return period that he denotes TAND. We 

present here the sets of data on the sites, the selection of the best bivariate copula and the construction of trivariate copulas. 

2.1 Sets of data 

The approach is applied in two ports in Northern France, Saint-Malo and Le Havre that are presented in Figure 1. 
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Figure 1 : The Saint–Malo and Le Havre sites. 

 

To characterize oceanic forcing, we introduce three random variables, wave height H, wave period T and storm surge S. The 

wave height is the significant wave height that is noted H in order to simply the notation. 85 

By convention, the random variables are written in capital letters and the realizations of these random variables are written in 

lowercase (h, t, s). 

The probability density functions (PDF) fH, fT and fS are the result of calibrations of statistic exponential laws of data recorded 

at high tide and collected by the Candhis wave buoy network for waves and by tide gauge measurements recorded in the ports 

for storm surge. 90 

As the study focuses on the integration of tidal range in the macrotidal environment in the calculation of the probability of 

joint occurrence of waves and water levels, the used data are those of waves and surges taken at high tide. The sample is made 

of 706 events per year using the same definition as in the Rock Manual. The independence assumption is not completely valid 

when two tuples per day are selected but that is an approximation commonly used. Another approximation is the assumption 

of the presence of a unique wave population. This assumption is also not completely valid when we consider the wave direction 95 

of extreme events. The topic has already been discussed by Hawkes (2002) and Mazas (2017, 2019), among others. The 

treatment of wave direction can also be considered as a fourth random variable of the oceanic forcing but has not been included 

in this work. 

For low and moderate values the density functions are the empirical density functions. For the strongest and extreme values, 

the density functions result from an adjustment of the exponential law.  100 

Kergadallan (2015) recommends selecting the maximum H value within a time window centered on the time of high water. 

Using the same data, this recommendation is followed. 

 

2.2 Selection of the best bivariate copula by two methods 

2.2.1 The error method 105 

We illustrate the method for the random variables wave height H and storm surge S. This method consists in determining the 

mean error e between the calculated joint cumulative distribution function 𝐹𝑐𝑎𝑙(ℎ, 𝑠, 𝜃) with the copula C and its parameter θ 

and the observed joint cumulative distribution function 𝐹𝑚𝑒𝑠(ℎ, 𝑠). 

 

𝑒 =
1

𝑛
∑ |ln

𝐹𝑐𝑎𝑙(ℎ𝑖 , 𝑠𝑖 , 𝜃)

𝐹𝑚𝑒𝑠(ℎ𝑖 , 𝑠𝑖)
|

𝑖=1,𝑛

 (1) 

with n the number of pairs of values (ℎ𝑖 , 𝑠𝑖). 110 
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For each copula, we first determine the parameter θ that minimizes the error e. We then select the copula with the lowest 

minimum error. 

2.2.2 The maximum likelihood method 

Let us call X the sample of measures (x1, x2, ..., xn) with bivariate xi = (hi, si), i = 1, .., n. The likelihood function L is defined 

by equation (2) : 115 

𝐿(𝑋, 𝜃) = ∏ 𝑓𝑐𝑎𝑙(ℎ𝑖 , 𝑠𝑖 , 𝜃)

𝑛

𝑖=1

 (2) 

where 𝑓𝑐𝑎𝑙  is the probability density function of the bivariate cumulative distribution function 𝐹𝑐𝑎𝑙 . θ is the parameter of the 

copula. 

The maximum likelihood method consists in finding the parameter θ, which maximizes the probability of obtaining the sample 

(Tassi, 2004). Since likelihood is a product of density we take its log-likelihood in order to facilitate calculations. We can thus 

work with the sum and derive it with respect to θ. 120 

∂

∂𝜃
ln 𝐿(𝑋 , 𝜃) =

𝜕

𝜕𝜃
ln ∑ 𝑓𝑐𝑎𝑙(ℎ𝑖 , 𝑠𝑖 , 𝜃)

𝑛

𝑖=1

 (3) 

The best copula is the copula with the largest likelihood. 

2.3 Construction of a trivariate copula 

For more than two variables, C is not generally a copula (impossibility theorem of Genest (1995)). According to Nelsen (2006), 

it is difficult to construct n-order copulas from n-1 copulas. We present two methods for the construction of trivariate copulas. 

In the first method, a trivariate copula generalizes the bivariate copula with three random variables and one parameter. In the 125 

second method, a trivariate copula associates two bivariate copulas with their two respective parameters. 

2.3.1 Definition of a copula in dimension d > 2 

A copula in dimension d is a distribution function on [0,1]d whose marginal laws are uniform on [0,1]. 

A copula is a function C: [0,1]d ─> [0,1], which satisfies the following three conditions : 

𝑖) 𝐶(𝑢1, . . , 𝑢𝑖−1, 0, 𝑢𝑖+1 , . . , 𝑢𝑑) = 0 ∀𝑢𝑖 ∈ [0,1]

𝑖𝑖) 𝐶(1, … ,1, 𝑢𝑖 , 1, … ,1) = 𝑢𝑖 ∀𝑢𝑖 ∈ [0,1]

𝑖𝑖𝑖) 𝐶 𝑖𝑠 𝑑 − 𝑔𝑟𝑜𝑤𝑖𝑛𝑔  

 

 

(4) 

 

A function h : [0,1]d ─> R is called d-growing if for any hyper-rectangle [a,b] of 𝑅𝑑, 𝑉ℎ([a,b]) ≥ 0, where  130 

𝑉ℎ([𝑎, 𝑏]) = ∆𝑎
𝑏ℎ(𝑡) = ∆𝑎𝑑

𝑏𝑑∆𝑎𝑑−1

𝑏𝑑−1 … … ∆𝑎2

𝑏2 ∆𝑎1

𝑏1 ℎ(𝑡) (5) 

For each t,  ∆𝑎𝑖

𝑏𝑖ℎ(𝑡) = ℎ(𝑡1, … , 𝑡𝑖−1, 𝑏𝑖 , 𝑡𝑖+1, … . , 𝑡𝑛) − ℎ(𝑡1, … , 𝑡𝑖−1, 𝑎𝑖 , 𝑡𝑖+1, … . , 𝑡𝑛). 

2.3.2 Trivariate copula with one parameter : a multi-level Archimedean trivariate 

Since we are looking for the correlation between three variables, the first idea is to generalize the bivariate copula 𝐶(𝑢1, 𝑢2)  

to obtain 𝐶(𝑢1, 𝑢2, 𝑢3). We must check that 𝐶(𝑢1, 𝑢2, 𝑢3) is a copula, which is difficult. However Archimedean copulas like 

Gumbel and Clayton can be extended to an order greater than 2 using the property of Archimedean copulas (see appendix A). 135 

For a Clayton copula of order n, this gives : 

  𝐶(𝑢1, … , 𝑢𝑛)  =  [𝑢1
−

1
𝜃 + 𝑢2

−
1
𝜃 + ⋯ + 𝑢𝑛

−
1
𝜃 − (n − 1)]−𝛩 (6) 

For Clayton copula of order 3, it gives : 

  C(𝑢1, 𝑢2, 𝑢3)  =  [𝑢1
−

1
𝜃 + 𝑢2

−
1
𝜃 + 𝑢3

−
1
𝜃 − 2]−𝛩 (7) 

For Gumbel copula of order n, it gives : 
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  𝐶(𝑢1, … , 𝑢𝑛) = exp (−[(−Ln 𝑢1)𝜃 + (−Ln 𝑢2)𝜃 + ⋯ + (−Ln 𝑢𝑛)𝜃]
1
𝜃) =  exp (− [∑(−Ln 𝑢𝑖)

𝜃

𝑖

]

1
𝜃

) (8) 

For Gumbel copula of order 3, it gives : 

  𝐶(𝑢1, 𝑢2, 𝑢3) = exp (−[(−Ln 𝑢1)θ + (−Ln 𝑢2)θ + (−Ln 𝑢3)θ]
1
𝜃) (9) 

By taking a single copula parameter for the three variables, we do not differentiate the two-to-two correlations of the variables 140 

even though some variables may be more correlated than others.  

2.3.3 Trivariate copula with two parameters : a fully nested hierarchical copula 

To better take into account the correlations of variables two by two, one option is to build trivariate functions from bivariate 

copulas as a fully nested hierarchical copula: 

  𝐶(𝑢1, 𝑢2, 𝑢3) = 𝐶1(𝐶2(𝑢1, 𝑢2), 𝑢3) (10) 

Corbella (2013) tests a fully nested hierarchical copula but he uses a unique bivariate copula and does not distinguish the two 145 

bivariate copulas 𝐶1 and 𝐶2. 𝐶1 is a bivariate copula with 𝜃1 as copula parameter. 𝐶2 is a bivariate copula with 𝜃2 as copula 

parameter. We must check that this function (10) is a copula and satisfies the properties of equations (4). We first aggregate 

the two most correlated variables with the copula 𝐶2  and its copula parameter. We then add the third random variable with the 

copula 𝐶1 and its copula parameter. We will show later that this order provides the most robust copula. 

2.3.4 Validity of copula properties for 2.3.3  150 

We do not know any general methods to build high order copulas from low order copulas (Durrleman, 2010). Generally 

𝐶(𝑢1, 𝑢2, 𝑢3) = 𝐶1(𝐶2(𝑢1, 𝑢2), 𝑢3) is not a copula. To prove that 𝐶(𝑢1, 𝑢2, 𝑢3) is a copula, we must check that 𝐶(𝑢1, 𝑢2, 𝑢3) 

satisfies the three properties of equation (4) with d = 3, which is difficult. However Charpentier (2014) points out that C is a 

copula if it satisfies i) or ii). 

i) 𝐶1 and 𝐶2 are both Clayton or Gumbel copulas with parameters 𝜃1 for 𝐶1 and 𝜃2 for 𝐶2 positive and growing. 155 

ii) 𝐶1  and 𝐶2  are both Archimedean copulas of respective generator 𝜙1 , 𝜙2  with 𝜙2 o𝜙1
−1  being the inverse of a Laplace 

transform. 

For Gumbel and Clayton copulas 𝐶1 and 𝐶2 that are Archimedean copulas we check the condition (ii) that there is a function 

f  for which the inverse Laplace transform 𝑇𝐿
−1 satisfies :  

𝑇𝐿
−1[𝑓] = ϕ2oϕ1

−1 (11) 

with 𝜙1, 𝜙2 generators of the copulas C1 and C2. 𝑇𝐿[𝑓](𝑠) = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡
+∞

0
 is the Laplace transform of f. 160 

For 𝐶1 and 𝐶2 Clayton copulas we have as the generator of 𝐶2 and as the inverse generator of 𝐶1 : 

𝜙2(𝑡) =  
𝑡−𝜃2−1

𝜃2
 ; 𝜙1

−1(𝑡) =  (1 + 𝜃1t)
−

1

𝜃1 (12) 

This gives : 

𝜙2o𝜙1
−1(𝑡) =

[(1 + 𝜃1𝑡)
𝜃2
𝜃1 − 1]

𝜃2

 (13) 

We can find that : 

𝑇𝐿[ϕ2oϕ1
−1](𝑠) =

[𝑒
𝑠

𝜃1Γ(
𝜃2

𝜃1
+ 1,

𝑠
𝜃1

) − 1]

𝑠𝜃2

 
(14) 

With Γ(𝑎, 𝑥) the incomplete Gamma function set by for a complex with real part(a) > 0 : 

Γ(𝑎, 𝑥) =  ∫ 𝑡𝑎−1𝑒−𝑡
+∞

𝑥

𝑑𝑡 (15) 

We conclude that there is a function f such that ϕ2oϕ1
−1 = 𝑇𝐿

−1[𝑓] : 165 
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𝑓 =   
[𝑒

𝑠
𝜃1Γ(

𝜃2

𝜃1
+ 1,

𝑠
𝜃1

) − 1]

𝑠𝜃2

 
(16) 

For 𝐶1 and 𝐶2 Gumbel copulas we have as generator of 𝐶2 and as the inverse generator of 𝐶1 : 

𝜙2(𝑡) = (− ln 𝑡)𝜃2 ; 𝜙1
−1(𝑡) =  𝑒−𝑡

1
𝜃1

 
(17) 

This gives : 

𝜙2o𝜙1
−1(𝑡) = [−ln ( 𝑒−𝑡

1
𝜃1)]

𝜃2

= 𝑡
𝜃2
𝜃1                   (18) 

We can find that : 

𝑇𝐿[ϕ𝟐oϕ1
−1](𝑠) = 𝑇𝐿 (𝑡

𝜃2
𝜃1) = Γ (

𝜃2

𝜃1

) 𝑠
−

𝜃2+𝜃1
𝜃1  (19) 

With Γ Gamma function, defined by :  

 170 

Γ(𝑎) = ∫ 𝑦𝑎−1𝑒−𝑦
+∞

0

𝑑𝑦 (20) 

We conclude that there is a function f such that 𝜙2o𝜙1
−1 = 𝑇𝐿

−1[𝑓] : 

 

𝑓  =  Γ (
𝜃2

𝜃1

) 𝑠
−

𝜃2+𝜃1
𝜃1   (21) 

 

 

2.4 Determination of the contour of equal joint exceedance probability 175 

The determination of the contour of equal joint exceedance probability consists in obtaining all the variables (H, T, S) 

associated with different return periods : T10 (10-year event), T100 (100-year event) and T1000 (1000-year event). 

2.4.1 Bivariate probability without tide 

We deal with a set of pairs of values (h, s) that satisfy : 

𝐶̅[�̅�𝐻 , �̅�𝑠] =  𝑓10, 𝑓100 or 𝑓1000  (22) 

𝐶̅ is the selected bivariate survival copula. �̅�𝐻 , �̅�𝑠 are survival functions associated with the variables. The values f10, f100 or f1000 180 

are the frequencies corresponding to the ten-year, hundred-year and thousand-year periods. 

2.4.2 Bivariate probability with tide 

The bivariate probability with tide requires the development of the copula connecting wave height and storm surge. We can 

then define the joint survival function of the wave height and the storm surge. The chosen calculation method favors high tide. 

The sea levels considered are therefore the sums of the astronomical high tide (generated by the attraction of the moon and the 185 

sun without weather disturbance) and the storm surges raised at the time of these astronomical high tides. This method is of 

course valid only for macrotidal seas. The equation (23) established by Simon (1994) gives the probability that the sea level 

at high tide N exceeds a given value n : 

 

P(𝑛) = P[𝑁 > 𝑛] = ∫ 𝑓𝑀

𝑀𝑚𝑎𝑥

𝑀𝑚𝑖𝑛

(𝑧)�̅�𝑆(𝑛 − 𝑧)d𝑧   (23) 

z is the height of the high tide, between the minimum and maximum values 𝑀𝑚𝑖𝑛 and 𝑀𝑚𝑎𝑥  respectively at high tide. 190 

𝑓𝑀(𝑧)𝑑𝑧 is the probability that the high tide is between z and z + dz. 

�̅�𝑆(s) is the probability of observing a storm surge S larger than s, thus �̅�𝑆(s) = P(S > s). 

The bivariate survival function for wave height H and sea level N is therefore written as follows : 
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�̅�𝐻𝑁(ℎ, 𝑛) = ∫ 𝑓𝑀

𝑀𝑚𝑎𝑥

𝑀𝑚𝑖𝑛

(𝑧)�̅�𝐻𝑆(ℎ, 𝑛 − 𝑧)𝑑𝑧  (24) 

This can be written by introducing the survival copula 𝐶̅ : 

�̅�𝐻𝑁(𝐻, 𝑁) =  ∫ 𝑓𝑀

𝑀𝑚𝑎𝑥

𝑀𝑚𝑖𝑛

(𝑧)𝐶̅(�̅�𝐻(ℎ), �̅�𝑆(𝑛 − 𝑧))𝑑𝑧  (25) 

The set of pairs (h, n) corresponding to the different return periods, the ten-year, hundred-year and thousand-year periods, 195 

satisfies : 

∫ 𝑓𝑀

𝑀𝑚𝑎𝑥

𝑀𝑚𝑖𝑛

(𝑧)𝐶̅(�̅�𝐻(ℎ), �̅�𝑆(𝑛 − 𝑧))𝑑𝑧 =  𝑓10, 𝑓100 or 𝑓1000   (26) 

It is thus possible to represent the contour of equal joint exceedance probability associated with the variables wave height 

and sea level . 

2.4.3 Trivariate probability without tide 

Here we have chosen the method of construction of a trivariate copula with two parameters known as fully nested hierarchical 200 

copula. We have : 

�̅�𝐻𝑇(ℎ, 𝑡) =  𝐶1̅(�̅�𝐻(ℎ), �̅�𝑇(𝑡))   (27) 

�̅�𝐻𝑇𝑆(ℎ, 𝑡, 𝑠) = 𝐶2̅(�̅�𝐻𝑇(ℎ, 𝑡), �̅�𝑆(𝑠))   (28) 

 

with 𝐶1̅ and 𝐶2̅ the selected bivariate survival copula. From equations (27) and (28) we therefore obtain the equation (29) :  

 

�̅�𝐻𝑇𝑆(ℎ, 𝑡, 𝑠) = 𝐶2̅(𝐶1̅(�̅�𝐻(ℎ), �̅�𝑇(𝑡)), �̅�𝑆(𝑠))    (29) 

The triplets of values (h, t, s) corresponding to the different return periods, T10 (10-year event), T100 (100-year event) and 205 

T1000 (1000-year event) satisfy : 

 

𝐶2̅(𝐶1̅(�̅�𝐻(ℎ), �̅�𝑇(𝑡)), �̅�𝑆(𝑠)) = 𝑓10, 𝑓100 or 𝑓1000 (30) 

It is thus possible to represent the contours of equal joint exceedance probability associated with the variables wave height, 

wave period and sea level. 

2.4.4 Trivariate joint exceedance probability with tide 210 

The trivariate survival function for wave height H, wave period T and sea level N is written as follows: 

�̅�𝐻𝑇𝑁(ℎ, 𝑡, 𝑛) = ∫ 𝑓𝑀

𝑀𝑚𝑎𝑥

𝑀𝑚𝑖𝑛

(𝑧)�̅�𝐻𝑇𝑆(ℎ, 𝑡, 𝑛 − 𝑧)𝑑𝑧  (31) 

This can be written by introducing the selected survival copula 𝐶2̅ : 

�̅�𝐻𝑇𝑁(ℎ, 𝑡, 𝑛) =  ∫ 𝑓𝑀(𝑧)
𝑀𝑚𝑎𝑥

𝑀𝑚𝑖𝑛

𝐶2̅(�̅�𝐻,𝑇(ℎ, 𝑡), �̅�𝑆(𝑛 − 𝑧))𝑑𝑧  (32) 

This expression can be written by introducing the survival copula 𝐶1̅ connecting F̅𝐻 and �̅�𝑇. 

�̅�𝐻𝑇𝑁(ℎ, 𝑡, 𝑛) =  ∫ 𝑓𝑀(𝑧)
𝑀𝑚𝑎𝑥

𝑀𝑚𝑖𝑛

𝐶2̅(𝐶1̅(�̅�𝐻(ℎ), �̅�𝑇(𝑡)), �̅�𝑆(𝑛 − 𝑧))𝑑𝑧  (33) 

The triplets of values (h, t, n) corresponding to the different return periods, T10 (10-year event), T100 (100-year event) and 

T1000 (1000-year event) satisfy : 215 

∫ 𝑓𝑀(𝑧)
𝑀𝑚𝑎𝑥

𝑀𝑚𝑖𝑛

𝐶2̅(𝐶1̅(�̅�𝐻(ℎ), �̅�𝑇(𝑡)), �̅�𝑆(𝑛 − 𝑧))𝑑𝑧 = 𝑓10, 𝑓100 or 𝑓1000  (34) 

It is thus possible to represent the contours of equal joint exceedance probability associated with the variables wave height, 

wave period and sea level with tide. 

2.5 Tail dependence of the sample 

It is necessary to treat the extreme events that are characterized by a very low occurrence. The difficulty of taking them into 

account is of a statistical nature: the scarcity of observations. In order to take the extreme events into account, we introduce 220 

the concept of tail dependence. For a bivariate copula, it measures the probability of simultaneous extreme realizations (Clauss, 
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2009). It describes the dependences of distribution tails for the simultaneous occurrence of extreme values. It is a highly 

relevant tool for the study of extreme values. We distinguish lower and upper tail dependences. They are characterized by their 

lower and upper tail dependence coefficients that are deduced from the following conditional probabilities, whose value is 

given by equations (35) and (36) that, in tum, are given by (Clauss, 2009) : 225 

P(𝑈1 ≤ 𝑢1|𝑈2 ≤ 𝑢2) =
P(𝑈1 ≤ 𝑢1, 𝑈2 ≤ 𝑢2)

𝑃(𝑈2 ≤ 𝑢2)
  =

𝐶(𝑢1, 𝑢2)

𝑢2

 (35) 

 

P(𝑈1 >  𝑢1|𝑈2 > 𝑢2) =
𝑃(𝑈1 > 𝑢1, 𝑈2 > 𝑢2)

𝑃(𝑈1 > 𝑢1)
 =

1 + 𝐶(𝑢1, 𝑢2) − 𝑢1 − 𝑢2

1 − 𝑢2

 (36) 

Since we fix the lower tail dependence coefficient 𝜆𝐿 and upper tail dependence coefficient  𝜆𝑈  by equations (37) and (38) : 

𝜆𝐿 = 𝑙𝑖𝑚𝑢 0 P(𝑈1 ≤ 𝑢1|𝑈2 ≤ 𝑢2) (37) 

 

𝜆𝑈 = 𝑙𝑖𝑚𝑢 1 P(𝑈1 > 𝑢1|𝑈2 > 𝑢2) (38) 

We deduce the definitions of tail dependence coefficients. 

Definition: The lower tail dependence coefficient is defined by : 230 

𝜆𝐿 =  lim𝑢 0

𝐶(𝑢, 𝑢)

𝑢
   (39) 

The copula C has a lower tail dependence if 𝜆𝐿 exists with 𝜆𝐿 Є ]0,1].  

If 𝜆𝐿 = 0 then it does not have a lower tail dependence. 

Definition : The upper tail dependence coefficient is defined by : 

λ𝑈 = 𝑙𝑖𝑚𝑢 1

1 + 𝐶(𝑢, 𝑢) − 2𝑢

1 − 𝑢
 (40) 

The copula C has an upper tail dependence if 𝜆𝑈 exists with 𝜆𝑈 Є ]0,1].  

If 𝜆𝑈 = 0 then it does not have an upper tail dependence. 235 

The tail dependences of the different copulas are determined in (Nelsen, 2006) and (Roncalli, 2002) from their tail 

dependence coefficients. They are expressed in Table 1. 

Copula 𝜆𝐿 𝜆𝑈 

Fréchet 0 0 

Marshall-Olkin Min(α,β)                        0 

Plackett 0 0 

Clayton 2−
1
𝜃 0 

Franck 0 0 

Gumbel 0 2 - 2−
1

𝜃 

Joe 2 - 2−
1

𝜃 0 

Ali-Mikhail-Haq 0 0 

Gauss 0 0 

Table 1 : Tail dependence coefficients. 

We find that some copulas do not have lower and upper tail dependence coefficients. They cannot deal with extreme 

dependence. Some copulas have a lower tail dependence, others have an upper tail dependence. 240 

The tail dependence of the sample is firstly checked. For this we graphically represent the evolution of C(u, u)/u and determine 

its limit when u tends to 0. We can therefore decide whether the sample has or has not a lower or upper tail dependence.  

In choosing the copula, it is essential to satisfy the tail dependence of the sample. 

If the sample does not have a tail dependence, then the use of Gaussian copula or other copula with the same tail dependence 

characteristics is recommended. 245 
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If the sample has a lower tail dependence, the use of a copula with a lower tail dependence or the survival copula of a copula 

with an upper tail dependence is recommended. 

If the sample has an upper tail dependence, the use of a copula with an upper tail dependence or the survival copula of a copula 

with a lower tail dependence is recommended. 

We can also deduce the parameter of the copula from the tail dependence coefficient given by the sample. 250 

3 Results for bivariate copulas 

We select the most appropriate copulas at both the Le Havre and Saint-Malo (Northern France) sites using two methods. We 

analyze the tail dependence of the two samples. We represent the contour of equal joint exceedance probability with the 

selected copulas for three return periods in order to assess the relevance of the copulas.                                  

3.1 Statistical law for adjusting wave height, wave period and storm surge 255 

The representation of the contours requires knowledge of the statistical laws of adjustment of the different parameters. We 

therefore present these laws. For the two sites of Saint Malo and Le Havre we have used data files that provide the values for  

wave height, wave period and storm surge at high tide over a time period of about twenty years. The file for Le Havre site 

includes, for example, around 15.000 values. The wave data are extracted from the Anemoc digital database. Sea levels at high 

tide are extracted from tide gauge measurements. The astronomical tide is obtained from the Shom Predit software. 260 

Adjustments of the statistical laws are made according to the POT method on the basis of the exponential law.  

 

Figure 2 : Set of wave data in Le Havre (1979 – 2002). 

The copula parameters were calibrated from samples where wave height values less than one meter were excluded (see Figure 

2), thus reducing the sample size to about 3.000 values. The copulas are fitted to all pairs/triplets of observations where the 265 

wave height exceeds one meter. 

 

3.2 Current pratice : Defra method  

The use of the simplified Defra method in Ciria et al. (2007) is common among European coastal engineers for the study of 

wave overtopping or armor damages in coastal structures. It refers to the Defra method presented for example by Hawkes 270 

(2005) that is based on the Gauss copula. The simplified Defra method refers to univariate survival functions �̅�𝐻 and �̅�𝑆 of 

wave height and storm surge. The reason is that coastal engineers usually work with exceedance probability rather than with 

non exceedance probability. In this simplified method, the bivariate survival function is related to univariate survival functions 

by expression (41). In France, the order of magnitude for the FD coefficient is about 20. Kergadallan (2013) recommends 

however a minimum value of 25. 275 

�̅�𝐻𝑆 = FD �̅�𝐻�̅�𝑆 (41) 
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The equation (41) is used to determine the table 4.15 of Rock Manual (Ciria et al., 2007). Figure 3 shows the differences 

between observed bivariate survival functions and calculated bivariate survival functions using the simplified Defra method. 

The points of calculations in blue lie far from the first bisector in black in the figure. This shows that the use of the Defra 

simplified method is inappropriate. This is due mostly to the use of the simplified Defra method of equation (41) but the 

complete Defra method with Gauss copula would not represent also perfectly the extreme events because Gauss copula has 280 

not tail dependence as we will see later. 

 
Figure 3 : Comparison of calculated (with Defra method) and observed joint frequency for Le Havre. 

 

In order to improve the results we now introduce the copula theory. 285 

3.3 Analysis of the tail dependence 

The sample is analyzed in order to determine its tail dependence. This will affect the choice of copula. Since the sample has a 

tail dependence, it should be known whether it has a lower tail dependence or an upper tail dependence. Indeed, the result will 

condition the choice of the copula depending on whether the sample has the same tail dependence as the copula or not. To 

simplify the notation, we will use the survival copula 𝐶̅  of equations (22), (26), (30), (34) as copula C. We determine its limit 290 

for u tending to 0.  

This choice of the survival copula 𝐶̅ enables to simplify the equations (22), (26), (30), (34). If we kept the standard notations, 

we would deal with the upper tail dependence and the chosen copulas (for example Clayton and survival Gumbel) would be 

said survival Clayton and Gumbel.  

In the two methods, we are interested in the extreme events with large wave heights and water levels. 295 



11 

 

a) Saint-Malo 

 

b) Le Havre 

 

 

Figure 4 : 
𝐶(𝑢,𝑢)

𝑢
 for a) Saint-Malo and b) Le Havre samples. 

For the Saint-Malo sample, 
𝐶(𝑢,𝑢)

𝑢
 tends to around 0.2 when u tends to 0. 

For the Le Havre sample, 
𝐶(𝑢,𝑢)

𝑢
 tends to around 0.4 when u tends to 0. 

These two samples have a lower tail dependence which justifies the use of the Clayton copula. We determine the Clayton 300 

copula parameter from the lower tail dependence coefficient of the sample. With the Clayton copula, we can determine the 

value of its copula parameter in Saint-Malo and Le Havre with equation (42). This copula parameter is 0.43 and 0.76 

respectively. 

𝜃 = −
ln 2

ln 𝜆𝐿

 (42) 

Note : as the Gumbel copula has an upper tail dependence, the use of its survival copula is recommended. This analysis of the 

sample makes it possible to understand why the Gumbel survival copula gives a minimum of error much close to the minimum 305 

error of the Clayton copula. We can therefore expect Gumbel survival copula results to be close to the results obtained by 

Clayton copula. 

3.4 Selection of the best bivariate copula for Le Havre and Saint-Malo samples 

3.4.1 The log-likelihood method 

Copula 
Copula 

Parameter 

Copula 

Parameter 

Maximum 

likelihood 

Maximum 

likelihood 

Sites Saint-Malo Le Havre Saint-Malo Le Havre 

Gumbel 1.09 1.29 52 185 

Survival  Gumbel 1.18 1.39 243 372 

Clayton 0.38 0.74 291 387 

Gauss 0.22 0.42 149 297 

Franck 1.25 2.67 124 271 

Student 0.22 0.42 157 303 

Plackett 1.88 3.58 127 277 

Joe 1.03 1.21 4 76 

AMH 0.71 0.96 196 375 

Galambos 0.31 0.54 41 175 

Table 2 : Copula parameter and maximum likelihood for the different copulas in Saint-Malo and Le Havre. 310 
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For the set of copulas we determine their maximum likelihood with their parameter. We will select the copula that has the 

same tail dependence as the sample with the largest likelihood. 

For the Saint-Malo sample, we choose the Clayton copula, which has the same tail dependence as the sample, with a log-

likelihood of 291 in table 2. For the Le Havre sample, we also choose the Clayton copula, which has the same tail dependence 315 

as the sample, with a log-likelihood of 387. 

The Clayton copula parameters obtained by the tail dependence coefficients come close to those obtained by the log-likelihood 

method for the Le Havre sample (3.040 values) and the Saint-Malo sample (5.888 values). 

For Saint-Malo, we obtain as 0.38 the parameter of the Clayton copula using the method of maximum likelihood and 0.43 with 

the tail dependence coefficient. 320 

For Le Havre, we obtain 0.74 as the parameter of the Clayton copula using the method of maximum likelihood and 0.76 with 

the tail dependence coefficient. 

The value of the log-likelihood of the Gumbel survival copula is as large as the log-likelihood of the Clayton copula. In 

addition, the Gumbel survival copula has the same tail dependence as the Clayton. It is therefore as suitable as the Clayton 

copula. 325 

The Gauss and especially the AMH copula have a relatively large likelihood. However, they do not have a correct tail 

dependence. They cannot therefore correctly represent the tail dependence. We will come back later to the AMH copula which 

has a special property. 

3.4.2 The error method for the Clayton, Gumbel and survival Gumbel Copula 

In order to select the most relevant copula, we represent the mean error e between the calculated survival function 330 

𝐹𝑐𝑎𝑙(ℎ, 𝑠, 𝜃) with the copula C and its parameter and the measured 𝐹𝑚𝑒𝑠(ℎ, 𝑠). 

 

a) Saint-Malo 

 

b) Le Havre 

 

 Figure 5 : Evolution of the error according to the Clayton, Gumbel and survival Gumbel copula parameter in a) Saint-Malo 

and b) Le Havre. 

 

Figure 5 for the ports of Saint-Malo and Le Havre shows that the error that is obtained with the Gumbel survival copula is very 

close to that obtained with the Clayton copula. The curve of the error obtained by the Gumbel copula survival however has a 335 

very acute minimum. Obtaining the parameter of this copula will therefore be very sensitive to the value of its minimum error. 

It will therefore be necessary to determine it very precisely. 
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Note: Gumbel and Clayton copula parameter supports are different and are [1, + ∞ [ and ] 0, + ∞ [ respectively. 

We note Emin the minimum of the mean error e and Error rate = exp (Emin) - 1. Table 3 below shows the results obtained for 

Saint Malo and Le Havre. 340 

Copula Emin Emin Error rate Error rate Parameter Parameter 

Sites Saint-Malo Le Havre Saint-Malo Le Havre Saint-Malo Le Havre 

Gumbel 0.45 0.37  57 % 44 % 1.03 1.10 

Survival Gumbel  0.18 0.12 20 % 13 % 1.02 1.07 

Clayton 0.05 0.03 5 %  3 % 0.40 0.76 

Table 3 : Emin, error rate and copula parameter for the Clayton, Gumbel and Gumbel survival copula in the ports of Le Havre 

and Saint Malo. 

 

Table 3 is used to verify that Clayton copula is the most robust copula. It also appears that Gumbel survival copula is also an 

appropriate option. 345 

We have therefore shown by two methods that the Clayton copula is the most relevant for the Saint-Malo and Le Havre sites. 

The parameters of the copula obtained by the error method are close to those obtained by the method of maximum likelihood 

for the Clayton copula. 

3.5 Comparison of observed and calculated joint frequencies 

In order to assess the robustness of the copulas, we show in Figure 6 the observed and calculated joint frequencies for the Le 350 

Havre sample (3.040 pairs of values). The copula represents reality more closely as the points approach the bisector y = x. 

The simplified Defra method currently in use does not give a good representation of the reality of the joint frequencies for 

wave height and storm surge. The points obtained by this simplified Defra method are very far from the bisector. 

The Clayton copula provides a good representation of the reality of joint frequencies for wave height and storm surge. The 

points obtained by the Clayton copula come close to the bisector. 355 

In contrast, the Gumbel copula does not give a good representation of the reality of the joint frequencies for wave height and 

storm surge. The points obtained by the Gumbel copula move away from the bisector. The explanation is therefore in the 

analysis of the sample carried out in section 3.3: we showed that the sample had a lower tail dependence whereas the Gumbel 

copula has an upper tail dependence.  

The Gumbel survival copula provides a good representation of the reality of joint frequencies for wave height and storm surge. 360 

The points obtained by the Gumbel survival copula come close to the bisector. The explanation lies in the fact of introducing 

the survival copula. The tail dependence of the Gumbel survival copula is opposite to the tail dependence of the Gumbel 

copula. We therefore reestablish a right tail dependence which gives correct results. 

The results obtained by the AMH are surprisingly correct. Kumar (2010) shows that the AMH copula does not have tail 

dependence except if the copula parameter is equal to 1. In our case, the copula parameter is close to 1. The copula seems 365 

therefore to behave like a copula with a lower tail dependence. 

We show the utility of the Clayton copula in comparison with the Gumbel copula and the Defra method that is currently in 

use. 

The results highlight the importance in copula selection of the tail dependence analysis of the sample. If the sample has a tail 

dependence it is necessary to select a copula with the same tail dependence. The Clayton copula that has the same tail 370 

dependence as the sample gives a calculated joint frequency close to the observed joint frequency. Conversely the Gumbel 

copula does not correctly represent the observed joint frequency: it moves away from the bisector for the extreme points. This 

is because the sample has a tail dependence opposite to that of the Gumbel copula. In order to restore the proper tail dependence, 

we resort to the survival copula. The latter comes close the bisector but is slightly less robust than the Clayton copula. It should 

be noted that calibration is performed on the entire sample. By truncating the sample for joint frequency values below 0.01, 375 

we would have obtained a much larger parameter for the Gumbel copula with results that are closer to measurements. 
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Figure 6 : Comparison of the observed joint survival and the calculated joint survival function for Le Havre with (a) Defra 

method, (b) Clayton (0.42), (c) Gumbel (1.29), (d) Survival Gumbel (1.01), (e) AMH (0.96) and (f) Defra-Clayton-Gumbel. 

3.6 Contours of equal joint exceedance probability with bivariate copula 380 

3.6.1 Contours without tide for the Clayton, Gumbel, and Survival Gumbel copulas and the Defra method 

Figure 7 shows the joint exceedance probability (H, S) for the Le Havre (3.040 values) samples respectively with Clayton, 

Gumbel, Gumbel survival copulas and the Defra method. 
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a) Defra (20)  

          Clayton (0.74) 

b) Gumbel (1.29)  

      Clayton (0.74) 

c) Survival Gumbel (1.39)  

          Clayton (0.74) 

Figure 7 : Contours of equal joint exceedance probability with Clayton (0.74), Defra (20), Gumbel (1.29) and survival 

Gumbel (1.39) for return periods of 10, 100 and 1000 years for Le Havre.  

Figures 7a, 7b and 7c present the comparison of Clayton with respectively Defra, Gumbel and Survival Gumbel. Contours of 385 

equal joint exceedance probabilities obtained by Clayton are very far from those obtained by Gumbel and the Defra method. 

On the contrary, the joint exceedance curves obtained using the Gumbel survival copula are very similar to those obtained with 

Clayton. Results are therefore very sensitive to the choice of copula. A poor choice may lead to undersizing and may have 

economic consequences.        

3.6.2 Contours with tide for Clayton copula 390 

Figure 8 shows the contours of equal joint exceedance probability respectively for the port of Saint-Malo (5.000 tidal values) 

and the Le Havre sample (22.000 tidal values) with the Clayton copula. 

 

a) Saint-Malo 

 

b) Le Havre 

 

Figure 8 : a) Joint exceedance probability obtained with Clayton copula (0.38) with tide for return periods of 10, 100 and 

1000 years for Saint Malo and b) with Clayton copula (0.74) with tide for return periods of 10, 100 and 1000 years for  Le 

Havre. 
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With tide the effect of storm surge on the sea level is small. The tidal range, which has an amplitude much larger than the 

storm surge especially for the port of Saint Malo, mitigates the variations due to the storm surge. In particular, for the port of 395 

Saint-Malo, it can be seen that sea level is less sensitive to variations in the return periods than storm surge (cf. Figure 8). 

 

3.7 Conclusion on selecting of the best bivariate copula 

We selected the Clayton copula for the ports of Le Havre and Saint-Malo using three methods. In order to validate the Clayton 

copula, we analyzed samples from 19 sites of the French coast along the Atlantic and English Channel with the maximum 400 

likelihood method. We always obtained the greatest maximum likelihood with the Clayton copula or the AMH copula (see 

appendix C). The sample always has a lower tail dependence (see appendix B). We can therefore conclude that the Clayton 

copula is the most appropriate copula for our application. For this purpose, the Table 4 gives the parameters of the different 

sites. 

Sites Parameter 

Dunkerque 0.67 

Calais 0.56 

Boulogne-sur-mer 0.77 

Dieppe 0.80 

Le Havre 0.95 

Cherbourg 0.49 

Saint-Malo 0.48 

Roscoff 0.41 

Le Conquet 0.54 

Brest 0.55 

Concarneau 0.93 

Port-Tudy 0.92 

Saint-Nazaire 1.05 

Saint-Gildas 0.9 

La Rochelle 1.00 

Bayonne 0.43 

Socoa 0.43 

Port-Bloc 0.95 

Table 4 : Clayton parameters for the different sites. 405 

Even though in some sites the AMH copula provides a larger likelihood than the Clayton copula, it should not be chosen 

because it has a particular kind of behavior. It has a lower tail dependence if the copula parameter is 1 (or close to 1 in practice). 

If the parameter is not 1, the AMH copula does not have tail dependence and its interests disappears. Since the robustness 

depends on the copula parameter and on the site, it cannot be recommended for a general use. 

4 Results for trivariate copulas 410 

4.1 State of the art 

Corbella (2013) mentions multivariate copulas with the application of a trivariate copula linking wave height, storm surge and 

storm duration. Comparing different construction methods, he concludes that the Chakak and Koehler (1995) method that is 

based on bivariate conditional distribution is too complex and not robust enough. Neither is he in favor of the use of the 
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conditional mixtures approach for the same reasons. He therefore recommends the nested hierarchical construction with 415 

Archimedean copulas. Based on his guidelines, we have not tested conditional distributions that have been used by other 

authors like for example Aas and Berg (2009) or Gouldby et al. (2014). We have tested hierarchical construction using a fully 

nested hierarchical Archimedean copula. In this type of construction, we build a bivariate copula between two parameters, 

then we create a trivariate copula with the previous copula and the third parameter. Unlike Corbella (2013) we introduce two 

parameters 420 

4.2 Construction of the best trivariate copula for the port of Le Havre 

We first determine the most appropriate copula for two parameters: (T, S), (H, T) and then (H, S). We construct the bivariate 

distribution function using the selected copula for the two most correlated variables. We determine the most relevant copula 

between the function obtained with the two most correlated variables and the third variable. 

4.2.1 Bivariate copula for the three random variables 425 

To determine the best bivariate copula we assess the maximum likelihood between (FH, FS), (FT, FS) and (FH, FT) with the 

different copulas in Table 5. For all three combinations, the Clayton copula still has the largest maximum likelihood value. In 

addition, we find that for the combination (H, T) the log-likelihood is significantly higher. As expected, the parameters (H, T) 

are therefore the most correlated parameters. We can write : 

𝐹𝐻,𝑇 = [(𝐹𝐻)−2.37 + (𝐹𝑇)−2.37 − 1]
−1

2.37 (43) 

 430 

Copula Parameter Parameter Parameter 
Maximum 

likelihood 

Maximum 

likelihood 

Maximum 

likelihood 

 (H,S) (T,S) (H,T) (H,S) (T,S) (H,T) 

Gumbel 1.29 1.18 1.99 185 82 1059 

Survival Gumbel  1.39 1.25 2.37 372 205 1584 

Clayton 0.73 0.50 2.37 387 22 1565 

Gauss 0.42 0.31 0.77 296 149 1369 

Franck 0.67 1.83 7.27 271 139 1333 

Student 0.42 0.30 0.77 303 159 1404 

Plackett 3.58 2.49 15.64 277 138 1349 

Joe 1.26 1.14 2.06 76 26 651 

Galambos 0.83 0.61 1.25 175 75 1038 

Table 5 : Log-likelihood and copula parameter for the different bivariate copulas between the parameters H and S, T and S 

then H and T. 

 

4.2.2 Determination of the best trivariate copula  

We determine the maximum likelihood between FH,T and FS with the different copulas in Table 6. 435 

Copula Parameter Maximum likelihood 

Gumbel 1.25 120 

Survival Gumbel  1.29 263 

Clayton 0.56 289 

Gauss 0.36 195 

Franck 2.08 156 

Student 0.35 215 

Plackett 2.84 165 

Joe 1.72 35 

Galambos 0.50 111 

Table 6 :  Log-likelihood and copula parameter for different bivariate copulas between 𝐹𝐻,𝑇  and 𝐹𝑠. 
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We obtain the largest log-likelihood for Clayton copula, with a parameter of 0.56, which gives: 

𝐹𝐻,𝑇,𝑠 = [(𝐹𝐻,𝑇)
−0.56

+ (𝐹𝑠)−0.56 − 1]

−1
0.56

 (44) 

In conclusion, we have thus aggregated the most correlated H and T parameters with the best performing Clayton copula. We 

also used Clayton copula to aggregate 𝐹𝐻,𝑇  and 𝐹𝑠. The aggregation requires two different parameters. 440 

4.3 Contours of equal joint exceedance probability with a trivariate copula 

We represent in Figure 9 trivariate joint exceedance probability for return periods of 10, 100 and 1.000 years. The trivariate 

copula used is therefore constructed from a Clayton copula parameter 2.37 connecting H and T and a copula parameter 0.56 

connecting FHT and FS. 

In order to better visualize the incidence of return periods on trivariate joint exceedance probability, cross-sections along (H, 445 

T), (H, S) and (T, S) are shown for T = T1, H = H1 and S = S1 in Figures 9a, 9b and 9c respectively. 

 
 

a) b) 

 

 

 
 

c) d) 

Figure 9 : Contours of equal joint exceedance probability with a trivariate copula. 
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In Figure 9a, a constant wave period is fixed corresponding to an annual return period. We show the joint exceedance 

probability of wave height and storm surge for three return periods of 10, 100 and 1.000 years. 

In Figure 9b, a constant wave height is fixed corresponding to an annual return period. We show the joint exceedance 450 

probability of the storm surge and the wave period for three return periods of 10, 100 and 1.000 years. 

In Figure 9c, a constant storm surge is fixed corresponding to an annual return period. We show the joint exceedance 

probability of the wave height and the wave period for three return periods of 10, 100 and 1.000 years. 

In the three latter figures we recognize the usual pattern and the characteristics of a strong correlation for (H, T). In Figure 9c 

we recognize the classic pattern of contours for very dependent variables. 455 

In Figure 9d, a relationship between H and T is obtained with a trivariate copula with (H,S) satisfying a joint exceedance 

probability of 1.000 years and with T which maximizes the trivariate joint probability density function. This relationship 

enables us to obtain the wave period from the wave height and the storm surge. 

4.4 Error rate and goodness of fit for trivariate copulas 

In order to show the utility of the constructed trivariate copula, we determine the error rate of the different copulas in the Le 460 

Havre area using the formula of the error given by equation (1) and the definition of the error rate given by exp(e) – 1 (see 

Table 7). 

Copula Clayton Gumbel 

𝑪𝟐(𝑪𝟏(𝑭𝑯, 𝑭𝒔), 𝑭𝑻) 6.9 %  

𝑪𝟐(𝑪𝟏(𝑭𝑻, 𝑭𝒔), 𝑭𝑯) 4.7 %  

𝑪𝟐(𝑪𝟏(𝑭𝑯, 𝑭𝑻), 𝑭𝒔) 3.8 % 22.2 % 

𝑪(𝑭𝑯, 𝑭𝒔, 𝑭𝑻) 8.8 % 169.0 % 

Table 7 : Error rate of the different trivariate copulas for the port of Le Havre. 

 

The results obtained by the trivariate copula constructed by two bivariate copulas and two parameters are generally good. 465 

However, by aggregating the most correlated variables first, the robustness improves.  

As expected, with one parameter Archimedean copula is less robust than fully nested hierarchical copula with two parameters.  

It can also be seen that by associating the most correlated variables (H, T), the Clayton copula gives better results than the 

Gumbel copula. For a single parameter the trivariate copula constructed with the Clayton copula is significantly more accurate 

than the Gumbel copula.  470 

Table 7 shows finally that the choice of the copula is much more important than the choice of the trivariate method of 

construction. This result validates our choice of a simple method of construction that can even lead to the most robust results 

according to Corbella (2013). 

 KHI-2 KS 

𝐂𝟐(𝐂𝟏(𝐅𝐇, 𝐅𝐓), 𝐅𝐒), ϴ1 = 2.37, ϴ2 =  0.56 4.91 0.039 

C(𝐅𝐇, 𝐅𝐓, 𝐅𝐒), ϴ = 0.56 5.97 0.098 

C(C(𝐅𝑯, 𝐅𝐓), 𝐅𝐒), ϴ = 0.56 5.97 0.098 

Table 8 : Goodness of fit of the different trivariate copulas for the port of Le Havre. 

 475 

The best results are obtained with two parameters. With one parameter Archimedean copula and fully nested hierarchical 

copula are exactly the same copula as shown in Table 8. 

The results highlight the contribution of trivariate copulas constructed as a fully nested hierarchical copula with the help of 

two Clayton bivariate copulas and two parameters by first aggregating the two most correlated parameters. 

 480 

5 Conclusion 

Wave structure designers must accurately estimate return periods of parameters such as storm surge, wave height and wave 

period, and more specifically, their joint probabilities of exceedance. In present practice, this joint probability of exceedance 
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is related to the product of univariate probabilities by means of a simple factor. This method can cause damaging design errors. 

After highlighting the limit of the current simplified Defra method, the theory of copula is introduced. Copulas make it possible 485 

to couple the marginal laws in order to obtain a multivariate law. 

Analysis of the tail dependence of the sample is used to make an initial selection of the copulas. This is because if the sample 

has lower tail dependence (upper tail dependence, respectively), the copula with the same tail dependence or an inverse tail 

dependence is chosen by taking the survival copula. The correlation between the storm surge and wave height is modelled 

using the Clayton copula and the survival Gumbel copula. 490 

In order to take into account the three variables (wave height, wave period, and storm surge), we show that a fully nested 

hierarchical trivariate copula with two parameters is the best construction technique. This function satisfies the mathematical 

properties of the copulas. The error rate of  3.8 % is lower than the trivariate copula obtained by generalizing the Clayton 

copula with a single parameter (error rate of 8.8 %). We confirm that the best results are obtained by first aggregating the most 

correlated variables that are here wave height and wave period. Nevertheless, the choice of method of aggregation is much 495 

less important than the choice of the copula. 
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Appendices 

Appendix A: Outlines of copula theory 

A.1 Bivariate cumulative distribution function 570 

We denote by 𝐹𝑋 the cumulative distribution function (CDF) of a random variable defined by : 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓𝑋

𝑥

−∞

(𝑦)𝑑𝑦 

 

(A.1) 

where P is the probability.  

We also introduce the survival function (SF) denoted by �̅�𝑋 and defined by : 

�̅�𝑋(𝑥) = 𝑃(𝑋 > 𝑥) = ∫ 𝑓𝑋

∞

𝑥

(𝑦)𝑑𝑦 = 1 − 𝐹𝑋(𝑥) (A.2) 

The survival function is related to the probability density function 𝑓𝑋 by : 

 575 

𝑓𝑋(𝑥) =  − 
𝑑�̅�𝑋 (𝑥)

𝑑𝑥
 (A.3) 

 

Our objective is to obtain the bivariate cumulative distribution function 𝐹𝑋𝑌(𝑥, 𝑦) = 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) or the bivariate survival 

function �̅�𝑋𝑌(𝑥, 𝑦) = 𝑃(𝑋 > 𝑥, 𝑌 > 𝑦). For more information, the reader may refer to (Dodge, 1999; Revuz, 1997; Ouvrard, 

1998; Manoukian, 1986). 

We must model the correlation between, for example, wave heights H and storm surges S by proposing a relation defining the 580 

joint cumulative distribution function from the univariate cumulative distribution functions. We thus seek to obtain a function 

C which links the bivariate cumulative distribution frequency 𝐹𝑋𝑌(𝑥, 𝑦) to the univariate cumulative distribution frequencies 

𝐹𝑋(𝑥) and 𝐹𝑌(𝑦) by integrating a correlation parameter. 

 

𝐹𝑋𝑌(𝑥, 𝑦) = 𝐶[𝐹𝑋(𝑥), 𝐹𝑌(𝑦)] (A.4) 
 585 
 

A.2 Current practice in coastal engineering 

The simplified Defra method that is presented for example in Ciria et al. (2007) makes it possible to directly connect the joint 

probability density function 𝑓𝑋𝑌 to the product of the univariate probability density functions 𝑓𝑋 and 𝑓𝑌 through a dependence 

factor denoted FD : 590 

 

𝑓𝑋𝑌 = FD𝑓𝑋𝑓𝑌 (A.5) 

The dependence factor FD depends on the correlation coefficient ρ obtained from the Gaussian copula (see definition in section 

A.3.2). The variables X and Y for the bivariate analysis are generally wave height H and storm surge S. The dependence factor 

is site specific and results from the analysis of the local correlation between wave heights and storm surges. 

The correspondence table between the correlation coefficient ρ and the dependence factor FD is given by Kergadallan (2013). 595 

This table recommends, for example, for the North Sea, Channel and Atlantic coast the use of a minimum dependence factor 

FD of 25 that is a weak dependence. 

A.3 Copulas 

The copula is a statistical tool to characterize the dependence between several random variables where linear correlations are 

generally not able to represent them accurately (Charpentier, 2014). According to the latter, copulas have become an important 600 

tool for modelling a multivariate law that “couples” univariate cumulative distribution functions, hence the Latin name 

“copula” name chosen by Sklar (1959). 

If C is the copula associated with a random variable vector (X, Y) then the copula C couples the univariate cumulative 

distribution functions 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦) using (A.4). 
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Survival functions can also be coupled in the sense that there exists a survival copula 𝐶̅ such that : 605 

 

�̅�𝑋𝑌(𝑥, 𝑦) = 𝐶̅[�̅�𝑋(𝑥), �̅�𝑌(𝑦)] (A.6) 

 

The survival copula 𝐶̅ is defined from the copula C: 

 

𝐶̅(�̅�𝑋(𝑥), �̅�𝑌(𝑦)) =  − 𝐹𝑋(𝑥) −  𝐹𝑌(𝑦) + 1 + 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) (A.7) 

 610 

In the following description, the univariate cumulative distribution functions 𝐹𝑋(𝑥)  and 𝐹𝑌(𝑦)  will be noted 𝑢1  and 

𝑢2 respectively. A copula is a function C : [0,1]2 → [0,1] which satisfies the following three conditions : 

 

𝑖) 𝐶(𝑢1, 0) = 𝐶(0, 𝑢2) = 0 ∀𝑢1, 𝑢2 ∈ [0,1]

𝑖𝑖) 𝐶(𝑢1, 1) = 𝑢1 and 𝐶(1, 𝑢2 ) = 𝑢2 ∀𝑢1, 𝑢2 ∈ [0,1]

𝑖𝑖𝑖) 𝐶(𝑣1, 𝑣2) + 𝐶(𝑢1, 𝑢2) − 𝐶(𝑢1, 𝑣2) − 𝐶(𝑣1, 𝑢2) ≥ 0 ∀0 ≤ 𝑢𝑖 ≤ 𝑣𝑖 ≤ 1

 

  

(A.8) 

 

In the continuation of the paragraph on the description of the copula the functions of distribution 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦) will be 

noted 𝑢1and 𝑢2. 615 

Sklar (1959) states that there exists a copula C such that for each x and y 𝐹𝑋𝑌(𝑥, 𝑦) = 𝐶[𝐹𝑋(𝑥), 𝐹𝑌(𝑦)]. If  the functions 𝐹𝑋 and 

𝐹𝑌 are continuous then C is unique. There exist four families: Archimedeans, Elliptics, Marshall-Olkin and Archimax. 

A.3.1 Archimedean copulas 

Archimedean copulas are defined as follows :  𝜙 is a decreasing function convex on [0,1][0,+ ∞[, as 𝜙 (1) = 0 and 𝜙 (0) = 

∞. We call a strict Archimedean copula of generator 𝜙  the copula defined by equation (9) : 620 

 

𝐶(𝑢1, 𝑢2) = 𝜙−1[ϕ(𝑢1) +  𝜙(𝑢2)], 𝑢1, 𝑢2 ∈ [0,1] (A.9) 

Archimedean copulas have interesting properties, in particular the possibility of aggregating more than two variables by 

equation (10) :  

 

𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) = 𝜙−1[𝜙(𝑢1) +  𝜙(𝑢2) + . . . + 𝜙(𝑢𝑛)], 𝑢1, 𝑢2, … , 𝑢𝑛 ∈ [0,1] (A.10) 

Archimedean copulas are given in table A1.  625 

Name Copula Generator Inverse generator 

Clayton (θ > 0) 
[𝑢1

−𝜃 +  𝑢2
−𝜃 − 1]−1/𝜃 

 

𝑡−𝜃 − 1

𝜃
 

(1 + 𝜃t)−1/𝜃 
 

Franck (θ ≠ 0) 
1

𝜃
𝑙𝑛 (

𝑢1𝑢2

[1 − 𝜃(1 − 𝑢1)(1 − 𝑢2)]
) −ln (

exp(−𝜃𝑡) − 1

exp(−𝜃) − 1
) 

𝑙𝑛(1 + exp(−𝑡) (exp(−𝜃) − 1))

 𝜃
 

Gumbel (θ ≥ 1) 𝑒𝑥𝑝[−(𝑢1
𝜃 + 𝑢2

𝜃)1/𝜃] (−ln(𝑡))𝜃  exp (−𝑡1/𝜃) 

Independence 𝑢1𝑢2 −ln(t) exp (−𝑡) 

Joe (θ ≥ 1) 
1 − [(1 − 𝑢1)𝜃 + (1 − 𝑢2)𝜃  

−(1 − 𝑢1)𝜃 (1 − 𝑢2)𝜃)
1
𝜃] 

−ln(1 − (1 − 𝑡 )𝜃) 1 − (1 − exp(−𝑡) )1/𝜃 

Ali-Mikhail-Haq 

(-1 ≤ θ ≤ 1) 

𝑢1𝑢2

[1 − 𝜃(1 − 𝑢1)(1 − 𝑢2)]
 ln (

1 − 𝜃(1 − 𝑡)

𝑡
) 

1 − 𝜃

exp(𝑡) −  𝜃
 

Table A1: Archimedean copulas 

 A.3.2 Elliptic copulas 

 Elliptic copulas are Gaussian and Student’s copulas: 

 The Gaussian copula is written as follows : 

 630 
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C(𝑢1, 𝑢2) =
1

2𝜋√1 − 𝜃2
∫ ∫

1

2𝜋(1 − 𝜃2)0.5
exp (

𝑥2 − 2𝜃𝑥𝑦 + 𝑦2

2(1 − 𝜃2)
)

𝜙−1(𝑢2)

−∞

𝜙−1(𝑢1)

−∞

dxdy, 𝜃 ∈  [−1, +1]  (A.11) 

 

𝜙 is a distribution function of 𝑋𝑖, with X = (𝑋1, 𝑋2, … , 𝑋𝑛) a Gaussian random vector (X~𝑁𝜈 (0, ∑)), where ∑ is a covariance 

matrix. 

Student's copula is written as follows : 

 635 

C(𝑢1, 𝑢2) = ∫ ∫
1

2𝜋(1 − 𝜃2)0.5

𝑡𝑣
−1(𝑢2)

−∞

𝑡𝑣
−1(𝑢1)

−∞

[1 +
𝑠2 − 2𝜃𝑠𝑡 + 𝑡2

2(1 − 𝜃2)
]

−(𝜐+2)
2

𝑑𝑠𝑑𝑡, 𝜃 ∈  [−1, +1] (A.12) 

𝑡𝜈 is a distribution function of the univariate Student distribution law with ν degrees of freedom.  

 

They are symmetrical copulas. They are widely used in finance. They are implicit and therefore do not have an explicit 

analytical form. 

A.3.3 Marshall-Olkin’s copula 640 

Marshall-Olkin's copula is written as follows : 

 

𝐶(𝑢1, 𝑢2) = min(𝑢1
𝑎𝑢2, 𝑢1𝑢2

𝑏), (𝑎, 𝑏)  ∈  [0,1] (A.13) 
 

A.3.4 Archimax copulas 

Archimax copulas include a large number of copulas, including Archimedean copulas. 645 

A bivariate function is an Archimax copula if and only if it is of the form : 

 

 𝐶𝜙,𝐴(𝑢1, 𝑢2) = 𝜙−1 [(𝜙(𝑢1) + 𝜙(𝑢2))A (
𝜙(𝑢1)

𝜙(𝑢1) + 𝜙(𝑢2)
)] , ∀ 𝑢1, 𝑢2 ∈ [0,1]2 (A.14) 

 

A : [0,1]  [0.5,1] such as max(t,1-t) ≤ A(t) ≤ 1 for each t  0 ≤ t ≤1. 

𝜙 : ]0,1[  [0,+∞[ is a convex, decreasing function that satisfies 𝜙(1) = 0. 650 

We will adopt the following notation 𝜙(0) =  limu−>0𝜙 (t) 𝑒𝑡 𝜙−1(s) =  0, for s ≥  𝜙 (0). 

For more information, refer to reference books such as Joe (1997) and Nelsen (1999). The reader may also refer to Clayton 

(1978). 

 

 655 
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Appendix B : Tail dependence of the site 

Dunkerque 

 

Calais

 

Boulogne 

 

Dieppe 

 

Le Havre 

 

Cherbourg 

 

Saint-Malo 

 

Roscoff 

 

Le Conquet 

 

Brest 

 

Concarneau

 

Port Tudy 
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Saint-Nazaire 

 

Saint-Gildas 

 

La Rochelle 

 

Bayonne 

 

Socoa 

 

Port Bloc 

 

 670 

Table B1: Tail dependence of 18 French sites 
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Appendix C : Likelihood for 18 French sites 695 

Sites Gumbel Clayton Gauss Franck Student Plackett Joe AMH Glambos 

Dunkerque 111 387 244 214 264 226 38 368 125 

Calais 90 242 177 172 179 172 23 233 85 

Boulogne 174 393 287 273 300 279 64 387 164 

Dieppe 166 383 274 257 286 261 61 379 157 

Le Havre 352 901 594 551 632 572 117 897 329 

Cherbourg 140 383 267 224 277 229 44 317 135 

Saint Malo 33 134 79 65 83 67 5 102 32 

Roscoff 92 273 178 159 188 164 26 229 81 

Le Conquet 160 389 28 265 293 268 54 365 150 

Brest 178 439 322 295 327 299 59 417 168 

Concarneau 66 115 97 96 98 94 31 117 64 

Port Tudy 391 899 653 627 665 635 139 909 369 

St Nazaire 438 1001 728 713 745 710 159 1009 522 

Saint Gildas 282 726 492 471 509 479 87 737 265 

La Rochelle 107 303 197 186 199 184 30 303 100 

Bayonne 75 275 153 111 179 116 19 162 67 

Soccoa 62 230 122 105 155 110 15 163 51 

Port Bloc 31 69 47 50 52 53 12 69 28.8 

 

Table C1: Likelihood for 18 French sites 

 


