Reply to Referee #1

A significant proportion of the current manuscript is composed of material that can be found
elsewhere, while the absence of any discussion on the latest modelling of the joint distribution
of the variables comprising an extreme sea state is a glaring omission. Moreover, in parts of
the manuscript individual sentences are listed rather than crafted into paragraphs, many
figures and tables are poorly explained and there is a lack of referencing throughout.

Sections 2.2 to 2.4 are moved to the appendix P22-24 L570 to L653. Several references on the
latest modelling of the joint distribution are added in the paper in introduction. We improve
the explanations of figures by writing a) Saint-Malo b) Le Havre P11 Figure 4 P12 Figure 5 P15
Figure7, Figure8 and P18 Figure 9. The columns of the tables are therefore grouped by site.
More detailed explanations of the results are added. We improve the explanation of Table2
P11. We add 14 references P20-21 L498, 500, 504, 513, 519, 523, 525, 527, 533, 537, 542, 544,
552, 561.

From a technical perspective, although the bivariate results are interesting the trivariate
analysis only considers two approaches both of which have been shown to be inferior to pair
copula construction for higher dimensional modelling.

As the bivariate copulas that are selected as the most promising in our application are
Archimedean copulas, simpler methods of construction are available. We find that it is useless
to use more complex techniques like Pair-Copula Constructions (PCC) with compatibility
problem and that have been less robust than fully nested method in some applications.

The introduction fails to place the work into the wider context of copula modelling in the field
of hydrology or multivariate modeling of extreme sea states carried out to date. The latter
discussion should concern work where the dependence between pairs of the wave height H,
wave period T and storm surge S or all three are considered (e.g. Gouldby et al. 2014). There
is a general lack of referencing throughout the paper.

Several references on the latest modelling of the joint distribution are added in the paper in
introduction.

A coherent and sufficiently detailed explanation of the limitation(s) of the Defra method is
also lacking. For instance, does the methods limitations stem from a poor fit of the Gaussian
copula from which the dependence factor is derived or the spatial extent covered by each
dependence factor a combination of both or other factors.

The limitations of the Defra method is commented is section 3.2. They are due to the use of the
simplified version of the Defra method but also to the choice of a Gauss copula without tail
dependence.

The word “accuracy” is used repeatedly throughout the paper, however the true shape of the
dependence is unknown. Consider replacing “accuracy” with “robustness” or similar. The
colloquial [e.g. “variables taken separately” (P1 L31) and “even though this is a complicated
exercise” (P2 L42)] and occasionally subjective [e.g. “relatively innovative” (P1 L32)] language
used in the manuscript needs remedying.



Colloquial language is removed and in particular the word “accuracy”.

The “Data Used” subsection feels out of place in the “Theoretical approach” section. Please
consider moving the “Data use” subsection to the start of the “Results for bivariate copulas”
section. Furthermore, Figure 1 should appear immediately after the first introduction of Le
Havre and Saint-Malo in the main body of the manuscript. Perhaps refer to the two sites as
two ports in northern France in the introduction so Figure 1 can be placed after the body of
text comprising section “2.1 Data Used” in the submitted manuscript.

The description of data is now in subsection 2.1 named “sets of data”. Figure 1 appears now
immediately after the first introduction of Le Havre and Saint-Malo in the main body of the
manuscript.

The Tables in the results section are often more difficult to interpret than they need to be. To
aid interpretation the columns could first be grouped by site i.e., the first half of the columns
represent Saint-Malo and the second half corresponding to Le Havre. Sections 2.2 to 2.4
contain material that can be sourced from a multitude of other books/papers. Consider
removing or moving to the appendix.

The columns of the tables are grouped by site. Sections 2.2 to 2.4 are moved to the appendix.

Aas and Berg (2009) show that pair copula construction is less restrictive in terms of the class
of copulas that can be mixed and parameter constraints than nested Archimedean
construction and are thus more suitable for higher dimensional modeling. The quality of the
paper would be elevated substantially if a form of pair copula construction were also fitted in
section 4.

We mention now Aas and Berg (2009) who propose copula construction with conditional sets
: the Pair-Copula Constructions (PCC). As the bivariate copulas that are selected as the most
promising in our application are Archimedean copulas, simpler methods of construction are
available. We find that it is useless to use more complex techniques with compatibility problem
and that have been less robust than fully nested method in some applications.

The results for trivariate copulas (Section 4) requires more detailed explanation as to the
significance of the results. For example, currently Section “4.4 Contours of equal joint
exceedance probability with a trivariate copula” is completely devoid of any meaningful
discussion of the results.

We mention in present Section 3.3 that we recognize the characteristics of a strong correlation
for (H, T) in contours of equal joint exceedance. The three main conclusions of the section are
as follows:

— By aggregating the most correlated variables first, the robustness improves.

— As expected, with one parameter Archimedean copula is less robust than fully nested
hierarchical copula with two parameters.

— Table 7 shows finally that the choice of the copula is much more important than the choice
of the trivariate method of construction.



Often technical concepts or methods e.g., iso-values (P2 L46) or the Chakak and Koehler
procedure (P2 L42) are introduced without any or very little introduction.

We explain that the Chakak and Koehler (1995) method is based on bivariate conditional
distributions.

We write P2 L42 :

“In the literature the Chakak and Koehler (1995) method is commonly used and in particular
by Joe (1997) and Salvadori et al. (2007). This method is based on bivariate conditional
distributions and requires the use of three bivariate copulas. The method has a compatibility
problem. There is no guarantee that the method gives the same result when the order of
variables is changed. Aas and Berg (2009) propose copula construction with conditional sets :
the pair copula construction (PCC). As the bivariate copulas that are selected as the most
promising in our application are Archimedean copulas, simpler methods of construction are
available.”

P1 L7-8 : “The Defra method that is currently used . ..” Please detail where this method is
currently used.

We write P1 L7-L8 : The simplified Defra method that is currently used in particular for
European coastal structures makes it possible to directly connect the joint exceedance
probabilities to the product of the univariate probabilities by means of a single factor.

P1 L9-10: “These schematic correlations do not, however, represent all the complexity of the
reality and may lead to damaging errors in coastal structure design.” Vague.

We write P1 L9-L10 : These schematic correlations do not however represent all the complexity
of the reality because of the use of this single factor.”

P1 L18: Replace “fittest” with “best fitting”.
We write P1 L19 : best fitting.

P1L25-26: “We must therefore address the lack of accuracy of the dependencies between the
different variables characterizing the sea state (Sergent et al., 2014; Hawkes, 2005) such as
wave height H, wave period T and storm surge S.” Please make clear that the “lack of accuracy”
refers to the modeling procedure.

We write P1 L27 : “We must therefore address the lack of robustness in the modelling
procedure of the dependencies between the different variables characterizing the sea state
(Sergent et al., 2014; Hawkes, 2005) such as wave height H, wave period T and storm surge
5. 77

P126-27: “The design of coastal structures is based in particular on the return periods of wave
overtopping or of armour damage.”. Reference required.

We write P1 129 : “The design of coastal structures is based in particular on the return periods
of wave overtopping or of armour damage (Ciria et al., 2007).”

P1 L35: “Its use in environmental science especially concerns hydrology.” Reference required.



We write P1 L38, 39 : “Its use in environmental science especially concerns hydrology with the
works for example of De Michele and Salvadori (2003), Favre et al. (2004), Grimaldi and
Serinaldi (2006), Genest and Favre (2007), Zhang and Singh (2007), Aghakouchak et al. (2010),
Lee et al. (2013), Chang et al. (2016).

P1 L39: “The bivariate return period can be generalized to the multivariate case.” Additional
explanation or reference required.

We write P1 L44 : “The bivariate return period can be generalised to the multivariate case
(Charpentier, 2014)”.

P1 L40: “Copulas generally only allow two parameters.” Inaccurate.

We write P1 L46 : “Copulas aggregate only two random variables”.

P2 L46 & P2 L49: “isovalues” or “iso-values”. Inconsistent spelling.

We write P2 L66 L69 : “Isovalue lines”.

P3 L84: “Defra method [2005] : : :”. Reference not listed in References Section.

We write : “The use of the simplified Defra method in Ciria et al. (2007)”. We can find the
reference P22 L507 Ciria et al.

P2 L66— P5 L150: | suggest most of this text is move to an appendix.
We move this text to an appendix. : P22 L568 — P24 L653.

Table 2: The Student copula does not appear in Table 3 but is mentioned in the text below.
P10 L293: “If the sample does not have a tail dependence, then the use of Gaussian copula or
Student copula or other copula with the same tail dependence characteristics is
recommended.” The Student copula possesses tail dependence.

The Student copula is removed P8 L244.

P11 L309 “Until now the simplified Defra method has been quite popular among coastal
engineers”. Rephrase, too colloquial, also a reference is required.

Section 3.2 is rewritten. The reference Rock Manual (Ciria et al., 2007) is added.

Figure 2: Caption needs more detail. For instance, which site(s) is being considered and which
of the methods corresponds to the black line and blue crosses?

We add in the caption P10 L284 : for the Havre. The blue crosses correspond to the Defra
method as Figure and black line to Fcal = Fmes : the exact value.

Table 3: Typo. “041” in the final row of the table.
We write P11 Table 2 : 41.
Table 3: Caption needs improvement. ‘Parameter” column labels needs defining.

We write P11 Table 2 copula parameter as column label.



Figures 3,4, 5, 6 & 7: Sub-figures need (a) and (b) to explicitly denote correspondence between
the plots and the sites.

We write (a) and (b) to explicitly denote correspondance between the plot and the sites.

P12 L350: “The value of the log likelihood of the Gumbel survival copula is large.”. Large with
respect to what?

We write P12 L323 : ’The value of the log-likelihood of the Gumbel survival copula is as large
as the log-likelihood of the Clayton copula”.

P13 L364: “We note Emin the minimum of the error e : : :”. Add “mean” before error.
We write P13 L339 : “We note Emin the minimum of the mean error”.

Table 4: The Emin numbers in the Table do not match the minimum of the mean errors shown
in Figure 4. Please check results and, if they should not match the minimums shown in Figure
4 please explain why.

We modify Figure 5 P12 and Table 3 P13. The numbers in Figure 5 and Table 3 match now.

Table 5: Information in Table 5 is recycled from Tables 3 and 4, thus it presents no new
information. Remove.

The table is removed.

P14 1L381: “::: we show the observed and calculated joint frequencies for the Le Havre sample
:::”. Need to add reference to Figure 5(a) here.

We write : “we show in Figure 6 the observed and calculated joint frequencies”.

P16 L414-415: | believe Figure 6 only contains the results for one rather than both sites. Figure
6: Adjust Figure to detail the location to which the results refer.

It is exact. We modify and write before Figure 7 P14 L 382 Le Havre (3040 values). We add Le
Havre in the caption of Figure 7 P15 L384.

P19 L474-479: Data sources are normally described when the case study site is first
introduced.

We move this text to P9 L256-266 and add P9 Figure 2 — Set of wave data in Le Havre (1979-
2002).

P19 L480-481: “The copula parameters were calibrated from samples where wave height
values less than one meter were excluded, thus reducing the sample size to about 3.000
values”. Are the copulas fitted to all pairs/triplets of observations where the wave height
exceeded 1 meter? If not, please alter text to clarify.

It is exact. We add P9 L265 : “The copulas are fitted to all pairs/triplets of observations where
the wave height exceeds one meter.” We add P9 Figure 2 — Set of wave data in Le Havre (1979-
2002) in order to show the set of data that is excluded.



Figures 8-11: Amalgamate these four Figures into a single Figure.
We almagate these four figures into a single Figure : p14 Figure 6.
P20 L490-495 Remove as text already explained in the captions.

We suppress the comment of each figure and write one comment P18 : “Contours of equal
joint exceedance probability with a trivariate copula”.

Aas, K., and Berg, D.: Models for construction of multivariate dependence — a comparison
study, The European Journal of Finance, 15, 7-8, 639-659, 2009.

We add this reference p20 L578.

Gouldby, B., Méndez, F.J., Guanche, Y., Rueda, A. and Minguez, R., 2014. A methodology for
deriving extreme nearshore sea conditions for structural design and flood risk analysis. Coastal
Engineering, 88, pp.15-26

We add this reference p21 L525.



Reply to Referee #2

First, the so-called Defra method should not be presented as “state of the art”, in particular
for the simplified version proposed by Kergadallan with the dependence factor. If this is
“current practice”, it should be specified “where” and “by who”.

The Defra method is now presented as a current practice. The section 3.2 explains in which
context the Defra method is a current practice. P9 L268 is the section 3.2 that describes the
current practice. We write : “The use of the simplified Defra method in Ciria et al. (2007) is
common among European coastal engineers for the study of wave overtopping or armor
damages in coastal structures.”.

A crucial point is the sampling, and hence the event definition. The choice of the values at high
tide certainly has its justification if the final purpose is wave overtopping or coastal flooding.
However, this is not the only one. It does not consider extreme sea states or surges occurring
around low tide, even though it may be valuable information.

In section 2.1, we acknowledge that the choice of the values at high tide is not the only choice.

For instance, Kergadallan (2015) recommends selecting the maximum Hs value within a time
window centred on the time of high water.

We had omitted to mention that we used the same data as Kergadallan and his own method
as we selected the maximum Hs value within a time window centred on the time of high water.
That is now mentioned in the paper. We write P3 L101 : “Kergadallan (2015) recommends
selecting the maximum H value within a time window centered on the time of high water.
Using the same data, this recommendation is followed.”.

Furthermore, it yields quite a large sample (706 events per year) and low to moderate values
may be overweighed in the sample. A threshold on Hs may be applied to reduce sample size.

We nevertheless consider that a threshold on Hs is inappropriate in regards of the distribution
function (this threshold is applied for copula but not for the distribution function).

Last, the sample should be made of independent and identically distributed (i.i.d.) tuples. Is
the independence assumption valid when two tuples per day are selected?

We acknowledge that the independence assumption is not completely valid when two tuples
per day are selected but this is a common assumption. Full compliance with independence
would lead to ignore some relevant pairs of wave height and surge values.

Is there only one wave population, or in other words is the extreme behaviour of waves similar
for storms from the west or from the north-east? The topic of event definition in such a
context (waves / level in coastal areas) is discussed by Hawkes (2002) and Mazas (2017, 2019),
among others.



Since we have two wave populations, we have indeed used a threshold and excluded wave
height values less than one meter (see P9 Figure 2). The references of discussions by Hawkes
(2002) and Mazas (2017, 2019) are added.

As regards tail dependence, the authors rightly present both the lower and upper
taildependences, and the fact that copulas with the same structure of dependence as the
sample of observations. But surprisingly, they focus on the lower tail dependence only for the
choice of the copula. Because they find a (weak) lower tail dependence, they choose copulas
that will fit best: : : the least interesting part of the sample! Why not assessing the upper tail
dependence, and possibly include extreme value copulas (a special case of Archimax copulas)
such as Gumbel-Hougaard, Galambos or Hisler- Reiss copulas? See for instance Mazas and
Hamm (2017) for an application of these copulas for Hs / surge modelling.

We focus on the lower tail dependence of the survival copula. That is now better explained in
section 3.3. We choose the survival copula instead of the standard copula because it simplifies
the equations (22), (26), (30), (34).

Another concern is the return period, a topic intimately lonked to sampling / event definition.
First, the return period of “source phenomena” such as Hs / sea level is a very different thing
than the return period of “response phenomena”, as discussed among many others by Hawkes
et al. (2002) or Mazas (2019). Therefore, when writing in the introduction (I. 26-27) that “the
design of coastal structures is based in particular on the return periods of wave overtopping
or of armour damage”, the authors should acknowledge that they do not address the return
period of such phenomena in the paper.

We acknowledge that we do not address the return period of wave overtopping and of armour
damage. We write P1 L30: “Since the applications on wave overtopping and armour damage
depend on the parameters of the coastal structure, we will not deal with the return periods of
these quantities.”.

Second, there are several definitions of return period (that is a yearly probability of
exceedance) in the bivariate case, let alone the trivariate one: see in particular Serinaldi (2015)
and Haselsteiner et al. (2017) who detail the different types of environmental contours with
respect to the definition of the return period (i.e. the definition of the bivariate probability to
consider). In this paper, the authors consider the joint exceedance probability and the
associated contours, which is of course quite a relevant choice; however, it should be recalled
that this is not the only one possible.

We also recall that the definition of the return period is not unique. We write P2 L76 :” As
mentioned by Serinaldi (2015), this option is not unique and will lead to a specific return period
that he denotes TAND.”.

I. 43, “incompatibility problem”: maybe a very short explanation of what it means would help

The mixture model is similar to Chakak and Koehler (1995) method that is explained P2 L50. Its
compatibility problem is explained P2 L51.



l. 56: to be accurate, the random variables are “Hs (resp. T, S) at high tide” (see discussion on
sampling and event definition).

We add some details on sampling and event definition (see above).
I. 63-65: a short description of the mixture model would be welcome

P2 L50 we write “This method is based on bivariate conditional distributions and requires the
use of three bivariate copulas. The method has a compatibility problem. There is no guarantee
that the method gives the same result when the order of variables is changed. “

Section 2.3: explain in which context the Defra method is “current practice”

The Defra method is now presented as a current practice. The section 3.2 explains in which
context the Defra method is a current practice. P9 L268 is the section 3.2 that describes the
current practice. We write : “The use of the simplified Defra method in Ciria et al. (2007) is
common among European coastal engineers for the study of wave overtopping or armor
damages in coastal structures.”.

L92: please specify that FD=25 corresponds to “weak dependence”. |. 312-313: the value of
FD=20 is lower than the minimal value of FD=25 recommended by Kergadallan

We recall that FD=25 is a weak dependence and the FD=20 is lower than the value that is
recommended by Kergadallan.

See P9 L274 “In France, the order of magnitude for the FD coefficient is about 20. Kergadallan
(2013) recommends however a minimum value of 25.”.

See P22 L596 “This table recommends, for example, for the North Sea, Channel and Atlantic
coast the use of a minimum dependence factor FD of 25 that is a weak dependence.”.

Section 3.1: change the title of the section

The title of section 3.1 now 3.2 is changed as “Current pratice : Defra method”

Figure 6 really needs some improvement, | have not understood it

The caption of Figure 7 is completed in order to improve the understanding of the figure.
References

Five proposed references are added to the text.
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Trivariate copula to design coastal structures
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Abstract. Some coastal structures must be redesigned ifuthe due to rising sea levels caused by globamiey. The
design of structures subjected to the actions ekewaequires an accurate estimate of the longreeniod of such parameters
as wave height, wave period, storm surge and nmmeeifcally their joint exceedance probabiliti@$he simplified Defra
methodthat is currently usedh particular for European coastal structumeakes it possible to directly connect the joint
exceedance probabilities to the product of theanmte probabilities by means of a single factéire§e schematic correlations
do not, however, represent all the complexity efribalitybecause of the use of this single factor. Thay lead to damaging
errors in coastal structure design. The aim of pgaper is therefore to remedy the lack of robustrefsthese current
approaches. To this end, we use copula theoryanéthpula function that aggregates joint distribufianction to its univariate
margins. We select a bivariate copula that is athfat our application by the likelihood method waticopula parameter that
is obtained by the error method. In order to indégextreme events, we also resort to the notidailaddependencéVe select
the copulas with the same tail dependence as blathe event of an opposite tail dependence strectue resort to the
survival copula. The tail dependence parameter makssible to estimate the optimal copula patam&he mostobust
copulas for our practical case with applicationS&int-Malo and Le Havrgn NorthernFrance) are the Clayton normal copula
and the Gumbel survival copula. The originalitytiofs paper is the creation of a new andusttrivariate copulavith an
analysis of the sensitivity to the method of candion and to the choice of the copuiirstly, we select thbest fitting of the
bivariate copula with its parameter for the two momrelated univariate margins. Secondly, we baildivariate function.
For this purpose, we aggregate the bivariate fanatiith the remaining univariate margin with itsgaeter. We show that
this trivariate function satisfies the mathematipedperties of the copula. Wanally represent joint trivariate exceedance
probabilities for a return period of 10, 100 an@Q@@ears\We finally conclude that the choice of the bivaziabpula is more

important for the accuracy of the trivariate copthian its own construction

1 Introduction

The design of coastal structures requires the pligity of variables and their degree of correlatio be taken into account.
We must therefore address the lackrafustness in the modelling procedwafethe dependencies between the different
variables characterizing the sea state (Sergeadt, 2014; Hawkes, 2005) such as wave helghtvave periodl and storm
surgeS. The design of coastal structures is based iricpdat on the return periods of wave overtoppingfoarmour damage
(Ciria et al., 2007). Since the applications on wave overtopping armour damage depend on the parameters obdstal
structure, we will not deal with the return periadshese quantitieT.he aim of this paper isoweverto improve the methods
of estimating them in order to avoid costly andpim@priate decisions (Lét al., 2008). To this end, we provide accurate
estimates of the correlations between the varidthl@sandSand obtain reliable return periods. Currently gference manuals
such as the Rock Manu@iria et al., 2007) it is recommended that a factor be applied toptleeluct of univariate survival
functions in order taletermine the joint period. Copulass mathematicabols for modelling the dependence structure of
several random variables. The theory of copulasdea®loped by the mathematician Sklar (1959). Tdmuka is a written
form of the joint distribution function that prowad all the information on the dependency structlihe recent interest in

copulas started in financial risk management asdrance. Its use in environmental science espgaalicerns hydrology
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with the works for example of De Michele and Salwa@2003), Favreet al. (2004), Grimaldi and Serinaldi (2006), Genest
and Favre (2007), Zhang and Singh (2007), Aghakakietal. (2010), Leest al. (2013), Changt al. (2016).

In coastal engineeringn order to estimate the probability of failureaufastal or offshore structures caused in partidar
the critical appearance of the combinations of p&ters during a storm, Salvaderial. (2007) use a copula in order to link
the intensity of storm surge to its duration. Usthg copula theory, Hawkes (2005) obtains, for eamall the pairs of
variables wave height and surg&for a given return period. The bivariate returnigegtcan be generalized to the multivariate
case(Charpentier, 2014).

In this paper we propose the use of copulas toitdkeaccount the dependence between three vasibblE andS. Copulas
generallyaggregate only two random variabl&@he purpose of this article is the creation of w mevariate copula and the
evaluation of itgobustness. Nelsen (1985) mentions that the caniiruof a trivariate copula requires a specifiemtion.

In the literature the Chakak and Koehler (1995) metkodmmonly use@ndin particular by Joe (1997) and Salvadziral.
(2007). This method is based on bivariate condiiialistributions and requires the use of threer@@ copulas. The method
has a compatibility problem. There is no guarattiaethe method gives the same result when the ofdariables is changed.
Aas and Berg (2009) propose copula constructioh eonditional sets : the pair copula constructid@C). As the bivariate
copulas that are selected as the most promisingrimpplication are Archimedean copulas, simplethods of construction
are available.

Gouldby et al. (2014) propose a methodology foivileg extreme nearshore sea conditions for stratesign with waves,
winds and sea levels as offshore variables ussma@inditional distributions.

Corbella and Strech (2018gvertheless study trivariate copula based on stoagnitude, storm duration and wave height.
They show that the fully nested method of creatifggarchical copulas provides the best resultsteir case study. This
method appears moreover to be simpler than the akhaikd Koehler (1995) procedure and the conditiomature with its
complicated integral to solve. According to Coraelhd Stretch (2013), the conditional mixture isagptually similar to that
of Chakak and Koehler (1995). Based on these ceimtia concerning results and complexity, we proposese a fully nested
hierarchical trivariate copulas and to test thesiity of the results to the method of constraantiand to the choice of the
copula. Showing that Archimedean copulas give #st tesults, we can indeed adopt a fully nestechtdkical copula.

In a first part, we define the theory by presentipartly in appendix, the marginal distributione tecommended method of
the Rock Manual, the normal copula, the bivariateuta, the tail dependence, the survival copula ttivariate copula and
isovalue lines for different return periods. Weaibta bivariate copula and the copula parametéhdynethod of maximum
likelihood and the method of the error. We show tha trivariate function that is obtained satisfiee mathematical properties
of a copula.

In a second part, we present the isovalue lineagptications at the ports of Le Havre and SainteMBlorthern France) with
bivariate copulas corresponding to different refpeniods. We show that the Clayton and Gumbel aspate the most robust
copulas for our practical applications of coastajireering.

Finally, in a third part, we apply trivariate copslin Le Havre.

2 Theoretical approach

The notations and the main notions of copula fdwivariate distribution function are recalled in apdix A. In order to
determine the return period of events that leadadwe overtopping or armour damages, we choosegtswwival functions.
As mentioned by Serinaldi (2015), this option i$ aoique and will lead to a specific return pertbdt he denoteEanp. We
presentiere the sets of data on the sithe, selectiorof the best bivariate copuénd the construction of trivariate copulas.
2.1Sets of data

The approach is applied in two ports in Northerarfee, Saint-Malo and Le Havre that are present&igure 1.
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Figure 1 : The Saint—-Malo and Le Havre sites.

To characterize oceanic forcing, we introduce theselom variables, wave height wave periodl and storm surg€&. The
wave height is the significant wave height thatosedH in order to simply the notation.

By convention, the random variables are writtendpital letters and the realizations of these randariables are written in
lowercasel, t, s).

The probability density functions (PDfg), fr andfs are the result of calibrations of statistic exputiad laws of data recorded
at high tide and collected by the Candhis wave meiwork for waves and by tide gauge measurementsded in the ports
for storm surge.

As the study focuses on the integration of tidalgein the macrotidal environment in the calculatid the probability of
joint occurrence of waves and water levels,ithed datare those of waves and surges taken at highTiidesample is made
of 706 events per year using the same definitian #s Rock ManualThe independence assumption is not completeld vali
when two tuples per day are selected but that epg@noximation commonly used. Another approximatmthe assumption
of the presence of a unique wave population. T¢gsimption is also not completely valid when we aersthe wave direction
of extreme events. The topic has already been siscuby Hawkes (2002) and Mazas (2017, 2019), amtregs. The
treatment of wave direction can also be considasagfourth random variable of the oceanic fortinghas not been included
in this work.

For low and moderate values the density functioestee empirical density functions. For the stratgand extreme values,
the density functions result from an adjustmerthefexponential law.

Kergadallan (2015) recommends selecting the maxidwalue within a time window centered on the timehigfh water.

Using the same data, this recommendation is follbwe

2.2 Selection of the best bivariate copula by two mettits

2.2.1The error method

We illustrate the method for the random variablesevheight and storm surg& This method consists in determining the
mean erroe between the calculated joint cumulative distribntfunctionF,,; (h, s, 6) with the copulaC and its parametet

and the observed joint cumulative distribution fimt F,,. (h, s).

Z e s &

with n the number of pairs of valués,, s;).
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For each copula, we first determine the param@tiwat minimizes the erra. We then select the copula with the lowest
minimum error.

2.2.2The maximum likelihood method

Let us callX the sample of measures,(xz, ..., X)) with bivariate x= (h;, s), i = 1, ..,n. The likelihood functiorL is defined

by equation (2) :

1%,0) = [ [ fear(hir5,0) @

wheref,,; is the probability density function of the bivadacumulative distribution functioR.;. ¢ is the parameter of the
copula.

The maximum likelihood method consists in findihg parametef, which maximizes the probability of obtaining smple
(Tassi, 2004). Since likelihood is a product of slgnwe take its log-likelihood in order to facéte calculations. We can thus

work with the sum and derive it with respectto
9 IR
SInL(X,6) = %IHZ fratChir5i,0) ©)
=

The best copula is the copula with the largestiliked.
2.3 Construction of a trivariate copula
For more than two variableS,is not generally a copula (impossibility theorehGenest (1995)). According to Nelsen (2006),
it is difficult to construct n-order copulas frorilncopulas. We present two methods for the contstruof trivariate copulas.
In the first method, a trivariate copula generaitee bivariate copula with three random variables one parameter. In the
second method, a trivariate copula associates ivaviate copulas with their two respective paramsete
2.3.1Definition of a copula in dimensiond > 2
A copula in dimension is a distribution function on [0,4vhose marginal laws are uniform on [0,1].
A copula is a function C: [0,4}> [0,1], which satisfies the following three coriolits :

i) Cluy,..,ui—1,0,Ujpq,..,ug) =0 Vu; €[0,1]

ii) c,...1,u,1,..,1) =y vu; € [0,1] 4)

iii) Cisd— growing
A function h : [0,1]—> R is calledd-growing if for any hyper-rectanglap] of R4, V,,([a,b]) = 0, where

Va([a, b]) = ALR(E) = AZ2AZS" .. . AZZALMR(E) )

aq—ad-1
For each tAgiA(t) = A(ty, .., timg, by tisa, oo os t) = h(ty, wos timg, gy bigry o ).

2.3.2Trivariate copula with one parameter : a multi-levd Archimedean trivariate

Since we are looking for the correlation betwearehvariables, the first idea is to generalizebtivariate copuld (u,, u,)
to obtainC (u,, u,, uz). We must check that(u,, u,, u;) is a copula, which is difficult. However Archimeatecopulas like
Gumbel and Clayton can be extended to an ordetegréfean 2 using the property of Archimedean cap(gae appendix A).

For a Clayton copula of order this gives :
-1 1 1
Cuy, ytty) = [ug @+uy; 84+-+u, 89— (n—-1)]° (6)
For Clayton copula of order 3, it gives :
1 -1 1
C(ul,uz,u3) = [ul 0 + uz 0 + u3 0 — 2]_6 (7)

For Gumbel copula of ordex it gives :
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7
C(uq, ..., uy) = €xp (—[(—Ln )% + (=Lnuy)? + -+ (~Ln un)e]%> = exp| — [Z(—Ln ul-)e] (8)

For Gumbel copula of order 3, it gives :
1
€,z 5) = exp (‘K-Ln u)® + (—Lnu;)® + (~Ln u3>9]§> )

By taking a single copula parameter for the thraables, we do not differentiate the two-to-tweretations of the variables
even though some variables may be more correlateddthers.
2.3.3Trivariate copula with two parameters : a fully neged hierarchical copula
To better take into account the correlations ofakdes two by two, one option is to build trivagdtinctions from bivariate
copulas as a fully nested hierarchical copula:

C(uy, Uz, uz) = C1(Co(uy, uz), us) (10)
Corbella (2013) tests a fully nested hierarchicgduda but he uses a unique bivariate copula and doedistinguish the two
bivariate copulag; andC,. C; is a bivariate copula with, as copula parameteft, is a bivariate copula with, as copula
parameter. We must check that this functip®) is a copula and satisfies the properties of eqnafi®). We first aggregate
the two most correlated variables with the coglylaand its copula parameter. We then add the thivdamn variable with the
copulacC; and its copula parameter. We will show later th& brder provides the most robust copula.
2.3.4Validity of copula properties for 2.3.3
We do not know any general methods to build higteorcopulas from low order copulas (Durrleman, 20Tknerally
C(uq, uy, ug) = C1(C,(uq, uy), u3) is not a copula. To prove th@fu,, u,, us) is a copula, we must check thg,, u,, us)
satisfies the three properties of equatidywith d = 3, which is difficult. However Charpentier (2Q1gbints out tha€ is a
copula if it satisfies i) or ii).
i) C; andC, are both Clayton or Gumbel copulas with parameétgffer €, andf, for C, positive and growing.
i) ¢, andC, are both Archimedean copulas of respective genegatog, with ¢,0¢;* being the inverse of a Laplace
transform.
For Gumbel and Clayton copulés andC, that are Archimedean copulas we check the comdftipthat there is a function
f for which the inverse Laplace transfofin® satisfies :

T [f] = §,007 (11)

with ¢4, ¢, generators of the copul&s andC.. T, [f](s) = f0+°° e Stf(t)dt is the Laplace transform &f

For C, andC, Clayton copulas we have as the generatadl, @nd as the inverse generatoCof.

-05_ _r
$2() = S ¢7 (O = 1+6,0 % (12)
2
This gives :
62
14+6,t)0: -1
propi () = LA 7 1] 13)
6,
We can find that :
> 0 s
etz + 1,40 -1
T,[,0071](s) = — % (14)
s0,
With I'(a, x) the incomplete Gamma function set by for a complihk real part(a) > 0 :
+00
I'(a,x) = f t*le~tdt (15)

We concludehat there is a functiohsuch thath,odpr! = T,2[f] :



>~ 0 s
2] 2
e 1F(—91 +1, 61) 1

(16)
s0,
For ¢, andC, Gumbel copulas we have as generatdr,adind as the inverse generatoiCof
6 . 41 o (17)
$2(t) = (=Int)”2 ;1 (1) = e
This gives :
1712 62
$20071(0) = [-m ( e)] _ o (18)
We can find that :
) 0,\ 82161
T, 2047'1(s) = T, (tfh) =r(g)s o (19)
1
With ' Gamma function, defined by :
170
+o0o
I'(a) = f y¢le Y dy (20)
0
We conclude that there is a functibsuch thatp,op;t = T, 1[f] :
0,\ 82161
fo= F(—z)s o 21)
6,

175 2.4Determination of the contour of equal joint exceedace probability
The determination of the contour of equal joint eedance probability consists in obtaining all tlagiables (, T,
associated with different return periods; [LO-year event), 1bo (100-year event) anchdoo (1000-year event).
2.4.1 Bivariate probability without tide
We deal with a set of pairs of valuds §) that satisfy :
CIFu, K1 = fio fi00 O fio00 (22)
180 ( is the selected bivariate survival copufg, F; are survival functions associated with the varigblée valueio, fi00 Or f1000
are the frequencies corresponding to the ten-yeadred-year and thousand-year periods.
2.4.2Bivariate probability with tide
The bivariate probability with tide requires thevdlpment of the copula connecting wave heightstodn surge. We can
then define the joint survival function of the waweight and the storm surge. The chosen calculatiethod favors high tide.
185 The sea levels considered are therefore the suthe @stronomical high tide (generated by the etitra of the moon and the
sun without weather disturbance) and the stormesurgised at the time of these astronomical hidgstiThis method is of
course valid only for macrotidal seas. The equatii) established by Simon (1994) gives the probabiligt the sea level
at high tideN exceeds a given value:

Mmax
P(n) =P[N >n] = f fu @D Fs(n— z)dz (23)

Mmin
190 zis the height of the high tide, between the mimmand maximum value¥,,,;, andM,,,, respectively at high tide.
fu(z)dz is the probability that the high tide is betwerandz + dz
F¢(s) is the probability of observing a storm sufjrger than s, thug(s) = PG> 9).

The bivariate survival function for wave heidtiand sea leve\ is therefore written as follows :
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Fun(hum) = f " o @ Fs(hyn — 2)dz (24)

Mmin

This can be written by introducing the survival atzC :

Mmax _ _
Fan L) = [ fy ICE R, Fon = )z (25)
Mmin
The set of pairsh( n) corresponding to the different return periods, tdn-year, hundred-year and thousand-year periods,
satisfies :
Mmax _ _
| fu @02, Fon = 222 = fros oo 07 fron (26)
Mmin

It is thus possible to represent the contour obégint exceedance probability associated withwhgables wave height
and sea level .
2.4.3Trivariate probability without tide
Here we have chosen the method of constructiorntfariate copula with two parameters known ayfoested hierarchical
copula. We have :
Fyr(h,t) = Cy(Fy(h), Fr () (27)
Furs(h, t,5) = Co(Fur(h,t), Fs(s)) (28)

with C; andC, the selected bivariate survival copula. From eiquat27) and(28) we therefore obtain the equatitiD):

FHTS(hr t,s) = EZ(EI(FH(h)'FT(t))' Fs(s)) (29)

The triplets of valuedh(t, s) corresponding to the different return periods, (I0-year event), 1bo (100-year event) and
T1000 (1000-year event) satisfy :

C,(Ci(Fy(h), Fr(£)), Fs(8)) = fio, f100 OF fi000 (30)
It is thus possible to represent the contours abkpint exceedance probability associated withvariables wave height,
wave period and sea level.
2.4.4Trivariate joint exceedance probability with tide

The trivariate survival function for wave height wave periodl and sea leve\l is written as follows:

Furn(utm) = [ fy @FrsCht,n = 2)dz (31)

Mmin
This can be written by introducing the selectedistat copulaC, :

Mmax
Frumn (b t,m) = f Fu(@) Cy(Fn (b £), Fs(n — 2))dz (32)

Mmin
This expression can be written by introducing thevisal copulaC; connecting, andF;.

Fum(h,t,n) = f " 4@ Gy (Co(Fa (), Fr(0)), Fs(n — 2))dz (33)

Mmin
The triplets of valuedh( t, n) corresponding to the different return periods, (I0-year event), 1bo (100-year event) and
T1000 (1000-year event) satisfy :

f mafo (2) 52 (51 (FH(h)' FT(t)): Fs(n —2))dz = fio, f100 OT fi000 (34)

Mmin
It is thus possible to represent the contours afkjpint exceedance probability associated withvériables wave height,
wave period and sea level with tide.
2.5Tail dependence of the sample
It is necessary to treat the extreme events tleatlzaracterized by a very low occurrence. Thedliffy of taking them into
account is of a statistical nature: the scarcitpligervations. In order to take the extreme eviattsaccount, we introduce

the concept of tail dependence. For a bivariatelegjit measures the probability of simultaneousesre realizations (Clauss,

7



2009). It describes the dependences of distributds for the simultaneous occurrence of extrerakies. It is a highly
relevant tool for the study of extreme values. Wtiriguish lower and upper tail dependences. Theyharacterized by their
lower and upper tail dependence coefficients thatdeduced from the following conditional probai#k, whose value is
225 given by equations (35) and (36) that, in tum,given by (Clauss, 2009) :
P(U; Suy, Uy Sup)  C(ug,up)
P(U, <u,) U,

P(Ul < u1|U2 < uz) = (35)

P(Ul > ul, Uz > uz) _ 1 + C(ul,uz) _ul _uz
P(Ul > ul) B 1 _uz

P(Ul > u1|U2 > uz) = (36)

Since we fix the lower tail dependence coefficignand upper tail dependence coefficielat by equation$37)and(38) :
A =limys o P(U; < wy|U; S up) (37)

Ay = limys, P(Up > wy|Up > uy) (38)
We deduce the definitions of tail dependence coiefiis.

230 Definition: The lower tail dependence coefficient is defingd b
C(u,u)

A, = lim,s (39)
The copuleC has a lower tail dependenceljf exists withA; € ]0,1].
If 2, =0 then it does not have a lower tail dependence.
Definition : The upper tail dependence coefficient is defingd b
1+ C(u,u) —2u

1—-u
The copuleC has an upper tail dependencgjfexists withi; € 10,1].
235 If 1y = 0then it does not have an upper tail dependence
The tail dependences of the different copulas aterthined in (Nelsen, 2006) and (Roncalli, 2008pfitheir tail

dependence coefficients. They are expressed ireTabl

Copula AL Ay
Fréchet 0 0
Marshall-Olkin Min(a,p) 0
Plackett 0 0
Clayton 2—% 0
Franck 0 0
Gumbel 0 2. 2—%
Joe 2. 2—% 0
Ali-Mikhail-Haq 0 0
Gauss 0 0

Table 1 : Tail dependence coefficients.
We find that some copulas do not have lower andeupail dependence coefficients. They cannot dati extreme
240 dependence. Some copulas have a lower tail depeadeters have an upper tail dependence.
The tail dependence of the sample is firstly chdcker this we graphically represent the evolutb@(u, u)/u and determine
its limit whenu tends to 0. We can therefore decide whether timpkeahas or has not a lower or upper tail deperelenc
In choosing the copula, it is essential to satikytail dependence of the sample.
If the sample does not have a tail dependence,ttieense of Gaussian copula or other copula wittsttime tail dependence

245 characteristics is recommended.



If the sample has a lower tail dependence, thetiaecopula with a lower tail dependence or theisat copula of a copula
with an upper tail dependence is recommended.

If the sample has an upper tail dependence, thefusseopula with an upper tail dependence or tingigal copula of a copula
with a lower tail dependence is recommended.

250 We can also deduce the parameter of the copulatfiertail dependence coefficient given by the sampl

3 Results for bivariate copulas

We select the most appropriate copulas at bothé¢hdavre and Saint-Malo (Northern France) siteagisivo methods. We
analyze the tail dependence of the two samplesréfeesent the contour of equal joint exceedancbatitty with the
selected copulas for three return periods in om@essess the relevance of the copulas.
255 3.1 Statistical law for adjusting wave height, waveeriod and storm surge
The representation of the contours requires knoydeaf the statistical laws of adjustment of thdedént parameters. We
therefore present these laws. For the two sit€aoft Malo and Le Havre we have used data filesgiwvide the values for
wave height, wave period and storm surge at hig dver a time period of about twenty years. Theféir Le Havre site
includes, for example, around 15.000 values. Theevdata are extracted from the Anemoc digital degabSea levels at high
260 tide are extracted from tide gauge measurementsastionomical tide is obtained from the Shom Pafiware.
Adjustments of the statistical laws are made adngrtb the POT method on the basis of the expoakiativ.

25

)
o

-
a

VWave period (s)

Wave height (m)

Figure 2 : Set of wave data in Le Havre (1979 — 2002).
The copula parameters were calibrated from samyhese wave height values less than one meter wetaded (see Figure
265 2), thus reducing the sample size to about 3.00@egaThe copulas are fitted to all pairs/tripletobservations where the

wave height exceeds one meter.

3.2 Current pratice : Defra method

The use of the simplified Defra method in Cigteal. (2007) is common among European coastal engirieethe study of
270 wave overtopping or armor damages in coastal sirest It refers to the Defra method presented Xamgple by Hawkes

(2005) that is based on the Gauss copula. The i$ietpDefra method refers to univariate survivahdtionsF, andFs of

wave height and storm surge. The reason is thataloangineers usually work with exceedance prdibabather than with

non exceedance probability. In this simplified noeththe bivariate survival function is related tovariate survival functions

by expressior{41). In France, the order of magnitude for the FD cadfit is about 20Kergadallan (2013) recommends

275 however a minimum value of 25.

FHS = FD FHFS (41)
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The equation (41) is used to determine the talll® 4f Rock Manual (Ciriaet al., 2007).Figure 3 shows the differences
between observed bivariate survival functions aaldutated bivariate survival functions using thegiified Defra method.
The points of calculations bluelie far from the first bisectoin black in the figureThis showshat the use of the Defra
simplified method is inappropriate. This is due thoto the use of the simplified Defra method oliation (41) but the
complete Defra method with Gauss copula would aptesent also perfectly the extreme events bedaasss copula has

not tail dependence as we will see later.

1e-05

1e-03

Calculated joint survival function

1e-01

-+

Defra
1e-03 1e-05

Observed joint survival function
Figure 3 : Comparison of calculated (with Defra method) abdesved joint frequency for Le Havre.

In order to improve the results we now introduce ¢bpula theory.

3.3 Analysis of the tail dependence

The sample is analyzed in order to determine itsiégpendence. This will affect the choice of capuBince the sample has a
tail dependence, it should be known whether itehkmsver tail dependence or an upper tail dependéndeed, the result will
condition the choice of the copula depending ontthwrethe sample has the same tail dependence aspléa or not. To
simplify the notation, we will use the survival ad@C of equationg22), (26), (30), (34as copulaC. We determine its limit
for u tending to 0.

This choice of the survival copufaenables to simplify the equations (22), (26), (384). If we kept the standard notations,
we would deal with the upper tail dependence apdctiosen copulas (for example Clayton and sun@wahbel) would be
said survival Clayton and Gumbel.

In the two methods, we are interested in the exérewents with large wave heights and water levels.

10
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Figure 4 : C(%u) for a) Saint-Malo and b) Le Havre samples.

For the Saint-Malo samplg(,ii’—u) tends to around 0.2 when u tends to 0.

For the Le Havre sampkce(,t—u) tends to around 0.4 when u tends to 0.

These two samples have a lower tail dependencehwhdtifies the use of the Clayton copula. We datee the Clayton
copula parameter from the lower tail dependencdficamnt of the sample. With the Clayton copula, ean determine the
value of its copula parameter in Saint-Malo andHavre with equation (42). This copula parametef.#3 and 0.76

respectively.

o= 2 42
T Ini (42)

Note : as the Gumbel copula has an upper tail dbgrere, the use of its survival copula is recommendkis analysis of the

sample makes it possible to understand why the @usuhbvival copula gives a minimum of error mucbse to the minimum
error of the Clayton copula. We can therefore ex@ambel survival copula results to be close torgsults obtained by
Clayton copula.

3.4 Selection of the best bivariateeopula for Le Havre and Saint-Malo samples

3.4.1 Thelog-likelihood method

Copula Copula Copula I\_/Iax_imum I\_/Iax_imum
Parameter Parameter likelihood likelihood
Sites Saint-Malo Le Havre Saint-Malo Le Havre
Gumbel 1.09 1.29 52 185
Survival Gumbel 1.18 1.39 243 372
Clayton 0.38 0.74 291 387
Gauss 0.22 0.42 149 297
Franck 1.25 2.67 124 271
Student 0.22 0.42 157 303
Plackett 1.88 3.58 127 277
Joe 1.03 1.21 4 76
AMH 0.71 0.96 196 375
Galambos 0.31 0.54 41 175

Table 2: Copula parameter and maximum likelihood for théedént copulas in Saint-Malo and Le Havre.

11



For the set of copulas we determine their maximikelihood with their parameter. We will select tbepula that has the
same tail dependence as the sample with the ldikeldtood.
For the Saint-Malo sample, we choose the Claytgulen which has the same tail dependence as thplsawith a log-
315 likelihood of 291 in table. For the Le Havre sample, we also choose the Glagapula, which has the same tail dependence
as the sample, with a log-likelihood of 387.
The Clayton copula parameters obtained by thelégiendence coefficients come close to those olotdinéhe log-likelihood
method for the Le Havre sample (3.040 values) bedsaint-Malo sample (5.888 values).
For Saint-Malo, we obtain as 0.38 the parametéreClayton copula using the method of maximumlilile®d and 0.43 with
320 the tail dependence coefficient.
For Le Havre, we obtain 0.74 as the parametereflayton copula using the method of maximum Itedid and 0.76 with
the tail dependence coefficient.
The value of the log-likelihood of the Gumbel sumlicopula is as large as the log-likelihood of @layton copula. In
addition, the Gumbel survival copula has the saailedependence as the Clayton. It is thereforeu@tatde as the Clayton
325 copula.
The Gauss and especially the AMH copula have aivelg large likelihood. However, they do not hasecorrect tail
dependence. They cannot therefore correctly reptéise tail dependence. We will come back lateh&oAMH copula which
has a special property.
3.4.2The error method for the Clayton, Gumbel and survival Gumbel Copula
330 In order to select the most relevant copula, weesgnt the mean erra between the calculated survival function
F_q1(h, s, 8) with the copulaC and its parameter and the measuigd (h, s).

a) Saint-Malo b) Le Havre
w w
= 1Glayton \ — |Clayton
umbel Gumbel
. Isdirvival Gumbel = rvival Gumbel
(e ] (e
_ _ oD
e o S o
> >
| [
8 8
2 g n 2 O |
S S-
(e ] o
O ) T T T T T T T O‘ | T T T T T T T
0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2
Copula parameter Copula parameter

Figure 5 : Evolution of the error according to the Claytonn@ael and survival Gumbel copula parametex)iBaint-Malo

andb) Le Havre.

Figure5 for the ports of Saint-Malo and Le Havre shows the error that is obtained with the Gumbel suavzopula is very

335 close to that obtained with the Clayton copula. Theve of the error obtained by the Gumbel coputaisal however has a
very acute minimum. Obtaining the parameter of tbisula will therefore be very sensitive to theweadbf its minimum error.
It will therefore be necessary to determine it viergcisely.

Note: Gumbel and Clayton copula parameter suppoetsiifferent and are [1,o¢ [ and ] 0, +wo [ respectively.
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Saint Malo and Le Havre.

We note Emin the minimum of the mean error e andriate = exp (Emin) - 1. Table 3 below showsrémuilts obtained for

Copula Emin Emin Error rate Error rate Parameter Parameter
Sites Sain-Malo Le Havre Sain-Malo Le Havre Sain-Malo Le Havre
Gumbel 0.45 0.37 57 % 44 % 1.0 1.1C
Survival Gumbel 0.1¢ 0.1Z2 20% 13% 1.0z 1.07
Clayton 0.0t 0.0: 5% 3% 0.4(C 0.7¢

Table 3: Emin, error rate and copula parameter for the GlayGumbel and Gumbel survival copula in the poftse Havre
and Saint Malo.

Table3 is used to verify that Clayton copula is the nrostust copula. It also appears that Gumbel sunggplla is also an
appropriate option.

We have therefore shown by two methods that thgt@tacopula is the most relevant for the Saint-Matd Le Havre sites.
The parameters of the copula obtained by the emaghod are close to those obtained by the methashafmum likelihood
for the Clayton copula.

3.5Comparison of observed and calculated joint frequeties

In order to assess thebustnessf the copulas, we shoiw Figure 6the observed and calculated joint frequenciesHerte
Havre sample (3.040 pairs of values). The copyeesents reality more closely as the points apprtfae bisectoy = x.

The simplified Defra method currently in use does not give a gemilesentation of the reality of the joint frequiescfor
wave height and storm surge. The points obtaineithisysimplified Defra method are very far from thisector.

The Clayton copula provides a good representaticdheoreality of joint frequencies for wave heigintd storm surge. The
points obtained by the Clayton copula come clogbedisector.

In contrast, the Gumbel copula does not give a geptesentation of the reality of the joint freqcies for wave height and
storm surge. The points obtained by the Gumbel leopove away from the bisector. The explanatiothesefore in the
analysis of the sample carried ousirction 3.3we showed that the sample had a lower tail deperdehereas the Gumbel
copula has an upper tail dependence.

The Gumbel survival copula provides a good reprasiem of the reality of joint frequencies for waveight and storm surge.
The points obtained by the Gumbel survival copolme close to the bisector. The explanation lighénfact of introducing
the survival copula. The tail dependence of the Beinsurvival copula is opposite to the tail depemdeof the Gumbel
copula. We therefore reestablish a right tail deleace which gives correct results.

The results obtained by the AMH are surprisinglyrect. Kumar (2010) shows that the AMH copula does have tail
dependence except if the copula parameter is @équial In our case, the copula parameter is closk fthe copula seems
therefore to behave like a copula with a lowerdaibendence.

We show the utility of the Clayton copula in comipan with the Gumbel copula and the Defra methed i currently in
use.

The results highlight the importance in copula e of the tail dependence analysis of the saniptee sample has a tail
dependence it is necessary to select a copulathéthsame tail dependence. The Clayton copula thsittie same tail
dependence as the sample gives a calculated jeimdncy close to the observed joint frequency.v€mely the Gumbel
copula does not correctly represent the obseniatffequency: it moves away from the bisectortfee extreme points. This
is because the sample has a tail dependence apfmtiat of the Gumbel copula. In order to restivegproper tail dependence,
we resort to the survival copula. The latter conlese the bisector but is slightly less robust tthenClayton copula. It should
be noted that calibration is performed on the erdample. By truncating the sample for joint fregpyevalues below 0.01,

we would have obtained a much larger parametehiGumbel copula with results that are closer ¢asarements.
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Figure 6 : Comparison of the observed joint survival anddéleulated joint survival function for Le Havre tia) Defra
method, (b) Clayton (0.42), (c) Gumbel (1.29), &diyvival Gumbel (1.01), (e) AMH (0.96) and (f) Def€layton-Gumbel.
3.6 Contours of equal joint exceedance probability withbivariate copula

3.6.1Contours without tide for the Clayton, Gumbel, andSurvival Gumbel copulas and the Defra method

Figure7 shows the joint exceedance probabillty §) for the Le Havre (3.040 valuesamples respectively with Clayton,

Gumbel, Gumbel survival copulas and the Defra naktho
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Figure 7 : Contours of equal joint exceedance probabilitthwlayton (0.74), Defra (20), Gumbel (1.29) andvsal
Gumbel (1.39) for return periods of 10, 100 andQl@€ars for Le Havre.
Figures 7a, 7b and 7c present the comparison gt@lavith respectively Defra, Gumbel and Survivain®el. Contours of
equal joint exceedance probabilities obtained tgytin are very far from those obtained by Gumbdlthe Defra method.
On the contrary, the joint exceedance curves obdairsing the Gumbel survival copula are very simidahose obtained with
Clayton. Results are therefore very sensitive éodhoice of copula. A poor choice may lead to usidearg and may have
economic consequences.
3.6.2 Contours with tide for Clayton copula
Figure8 shows the contours of equal joint exceedance pilityarespectively for the port of Saint-Malo (D0 tidal values)

and the Le Havre sample (22.000 tidal values) wighClayton copula.
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Figure 8 : a) Joint exceedance probability obtained with @aytopula (0.38) with tide for return periods of 100 and
1000 years for Saint Malo and b) with Clayton cap{l.74) with tide for return periods of 10, 10@d®00 years for Le
Havre.
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With tide the effect of storm surge on the seallewemall. The tidal range, which has an amplitatgch larger than the
395 storm surge especially for the port of Saint Mahitjgates the variations due to the storm surggalnicular, for the port of

Saint-Malo, it can be seen that sea level is lessitive to variations in the return periods thmmra surge (cf. Figure 8).

3.7 Conclusion on selecting of the best bivariat@pula

We selected the Clayton copula for the ports offaere and Saint-Malo using three methods. In otal@alidate the Clayton
400 copula, we analyzed samples from 19 sites of tledfr coast along the Atlantic and English Channtl the maximum

likelihood method. We always obtained the greategximum likelihood with the Clayton copula or th&/A copula (see

appendix C). The sample always has a lower taieddpnce (see appendiy. We can therefore conclude that the Clayton

copula is the most appropriate copula for our @agibn. For this purpose, the Table 4 gives thampaters of the different

sites.

Sites Parameter
Dunkerque 0.67
Calais 0.56
Boulogne-sur-mer 0.77
Dieppe 0.80
Le Havre 0.95
Cherbourg 0.49
Saint-Malo 0.48
Roscoff 0.41
Le Conquet 0.54
Brest 0.55
Concarneau 0.93
Port-Tudy 0.92
Saint-Nazaire 1.05
Saint-Gildas 0.9
La Rochelle 1.00
Bayonne 0.43
Socoa 0.43
Port-Bloc 0.95

405 Table 4: Clayton parameters for the different sites.

Even though in some sites the AMH copula providdarger likelihood than the Clayton copula, it slibnot be chosen
because it has a particular kind of behavior. stédbower tail dependence if the copula paramste(or close to 1 in practice).
If the parameter is not 1, the AMH copula does mmte tail dependence and its interests disapp®8arse the robustness

depends on the copula parameter and on the siniitot be recommended for a general use.

410 4 Results for trivariate copulas

4.1 State of the art
Corbella (2013) mentions multivariate copulas wiitha application of a trivariate copula linking waweight, storm surge and
storm duration. Comparing different constructiontmods, he concludes that the Chakak and Koehl@5{1®ethod that is

based on bivariate conditional distribution is tmmmplex and not robust enough. Neither is he iroifaf the use of the
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415 conditional mixtures approach for the same reasblestherefore recommends the nested hierarchigadtagction with
Archimedean copulaBased on his guidelines, we have not tested tiondl distributions that have been used by other
authors like for example Aas and Berg (2009) or@oyet al. (2014).We have tested hierarchical construction usindla fu
nested hierarchical Archimedean copula. In thigtgp construction, we build a bivariate copula kegw two parameters,
then we create a trivariate copula with the previoopula and the third parameter. Unlike Corb&@l8) we introduce two

420 parameters
4.2 Construction of the best trivariate copula forthe port of Le Havre
We first determine the most appropriate copulavfar parameters:T( S), (H, T) and thenHKl, S). We construct the bivariate
distribution function using the selected copulatfee two most correlated variables. We determieentiost relevant copula
between the function obtained with the two mostelated variables and the third variable.

425 4.2.1 Bivariate copula for the three random variabés
To determine the best bivariate copula we assesmtximum likelihood betweerk§, Fs), (Fr, Fs) and En, Fr) with the
different copulas in Table 5. For all three comhimas, the Clayton copula still has the largest imasn likelihood value. In
addition, we find that for the combinatioH,(T) the log-likelihood is significantly higher. As pected, the parametets, (T)
are therefore the most correlated parameters. Wevdte :

Fur = [(F) ™77 + (Rp) ™27 — 11237 “3)
430

Copula Parameter| Parameter Parameter Il\_/lax_imum I\_/Iax_imum I\_/Iax_imum
ikelihood likelihood likelihood

(H,S) (T,S) (H,T) (H,S) (T,S) (H,T)
Gumbel 1.29 1.18 1.99 185 82 1059
Survival Gumbel 1.39 1.25 2.37 372 205 1584
Clayton 0.73 0.50 2.37 387 22 1565
Gauss 0.42 0.31 0.77 296 149 1369
Franck 0.67 1.83 7.27 271 139 1333
Student 0.42 0.30 0.77 303 159 1404
Plackett 3.58 2.49 15.64 277 138 1349
Joe 1.26 1.14 2.06 76 26 651
Galambos 0.83 0.61 1.25 175 75 1038

Table 5: Log-likelihood and copula parameter for the différbivariate copulas between the parameteendS, T andS

thenH andT.

4.2.2Determination of the best trivariate copula

435 We determine the maximum likelihood betwédenr andFswith the different copulas imable 6.

Copula Parameter Maximum likelihood
Gumbel 1.25 120
Survival Gumbel 1.29 263
Clayton 0.56 289
Gauss 0.36 195
Franck 2.08 156
Student 0.35 215
Plackett 2.84 165

Joe 1.72 35

Galambos 0.50 111

Table 6 : Log-likelihood and copula parameter for differeivasiate copulas betwedry, 7 and Fs.
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445

We obtain the largest log-likelihood for Claytorpata, with a parameter of 0.56, which gives:
-1
Furs = [(FH,T)_Q56 + (F)7%% - 1]m (44)
In conclusion, we have thus aggregated the mostlebedH andT parameters with the best performing Clayton capiva
also used Clayton copula to aggreg@ger andF;. The aggregation requires two different parameters
4.3 Contours of equal joint exceedance probability witha trivariate copula
We representni Figure Strivariate joint exceedance probability for retymeriods of 10, 100 and 1.000 years. The trivariate

copula used is therefore constructed from a Clagtipula parameter 2.37 connectidgand T and a copula parameter 0.56
connecting-yr andFs.

In order to better visualize the incidence of retperiods on trivariate joint exceedance probahititoss-sections along(
T, H,9 and T, 9 are shown foll = T, H= Hi andS= S in Figures9a, 9b and 9cespectively.
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Figure 9 : Contours of equal joint exceedance probabiliiy\a trivariate copula.
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In Figure9a a constant wave period is fixed correspondingitoannual return period. We show the joint exceeglan
probability of wave height and storm surge for éreturn periods of 10, 100 and 1.000 years.

In Figure9b, a constant wave height is fixed correspondingroannual return period. We show the joint exceeglan
probability of the storm surge and the wave pefavdhree return periods of 10, 100 and 1.000 years

In Figure 9¢, a constant storm surge is fixed corresponding@rtcannual return period. We show the joint exceeglan
probability of the wave height and the wave pefmdthree return periods of 10, 100 and 1.000 years

In the three latter figures we recognize the upa#lern and the characteristics of a strong cdiogldor (H, T). In Figure 9c
we recognize the classic pattern of contours foy dependent variables.

In Figure9d, a relationship betweed andT is obtained with a trivariate copula withl,§) satisfying a joint exceedance
probability of 1.000 years and wifh which maximizes the trivariate joint probabilitemsity function. This relationship
enables us to obtain the wave period from the viweight and the storm surge.

4.4 Error rate and goodness of fit for trivariate ®@pulas

In order to show the utility of the constructedriiate copula, we determine the error rate ofdifferent copulas in the Le
Havre area using the formula of the error giverefuation (1) and the definition of the error raieeg by exp(e) — Isee
Table 7).

Copula Clayton Gumbel
Co(Cy(Fy,Fy), Fp) 6.9 %
C,(Cy(Fp,Fy), Fy) 4.7 %
Co(C1(Fy,Fr), Fy) 3.8 % 222 %
C(Fy,Fg Fr) 8.8 % 169.0 %

Table 7: Error rate of the different trivariate copulas foe port of Le Havre

The results obtained by the trivariate copula aqoiestd by two bivariate copulas and two parameteesgenerally good.
However, by aggregating the most correlated vaggbist, the robustness improves.

As expected, with one parameter Archimedean cdpudss robust than fully nested hierarchical caputh two parameters.

It can also be seen that by associating the mostlated variablesH, T), the Clayton copula gives better results than the
Gumbel copula. For a single parameter the trivaigapula constructed with the Clayton copula isificantly more accurate
than the Gumbel copula.

Table 7 shows finally that the choice of the copislanuch more important than the choice of theatiste method of
construction. This result validates our choice sfraple method of construction that can even leatthé most robust results
according to Corbella (2013).

KHI-2 KS
C2(C; (Fy, Fp), Fs), ©1= 2.37,02= 0.56 4.91 0.039
C(Fy, Fr, Fs), © = 0.56 5.97 0.098
C(C(Fy, Fy), Fs), © = 0.56 5.97 0.098

Table 8: Goodness of fit of the different trivariate coputasthe port of Le Havre

The best results are obtained with two parameWith one parameter Archimedean copula and fullyteteierarchical
copula are exactly the same copula as shown ireTabl
The results highlight the contribution of trivagatopulas constructed as a fully nested hierarchaaula with the help of

two Clayton bivariate copulas and two parameterBrbyyaggregating the two most correlated paransete

5 Conclusion
Wave structure designers must accurately estingdiberr periods of parameters such as storm surges tvaight and wave

period, and more specifically, their joint probéhak of exceedance. In present practice, thig joinbability of exceedance
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is related to the product of univariate probaleiitby means of a simple factor. This method casecdamaging design errors.
After highlighting the limit of the current simpikfd Defra method, the theory of copula is introdlicopulas make it possible
to couple the marginal laws in order to obtain dtivariate law.

Analysis of the tail dependence of the sample é&lus make an initial selection of the copulassTifibecause if the sample
has lower tail dependence (upper tail dependerspectively), the copula with the same tail depander an inverse talil
dependence is chosen by taking the survival cofdula.correlation between the storm surge and waighhis modelled
using the Clayton copula and the survival Gumbelta.

In order to take into account the three variableave height, wave period, and storm surge), we sthawa fully nested
hierarchical trivariate copula with two parametasrthe best construction technique. This functiatis§es the mathematical
properties of the copulas. The error rate of 3.&%wer than the trivariate copula obtained byegalizing the Clayton
copula with a single parameter (error rate of 8)8\Me confirm that the best results are obtainetirsiyaggregating the most
correlated variables that are here wave heightvaance period. Nevertheless, the choice of methoaggfregation is much

less important than the choice of the copula.
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Appendices
Appendix A: Outlines of copula theory
A.1 Bivariate cumulative distribution function

We denote by the cumulative distribution function (CDF) of andom variable defined by :

Fe(x) = P(X < x) = f fx O)dy

(A1)
whereP is the probability.
We also introduce the survival function (SF) deddtg Fy and defined by :
R =P >0 = | fx0)dy =1 @) (A2)
X
The survival function is related to the probabilitgnsity functioryy by :
dFy (x)
= — A3
fre@) i (A3)

Our objective is to obtain the bivariate cumulatstribution functionFy, (x,y) = P(X < x,Y < y) or the bivariate survival
function Fyy (x,¥) = P(X > x,Y > y). For more information, the reader may refer tod@®® 1999; Revuz, 1997; Ouvrard,
1998; Manoukian, 1986).

We must model the correlation between, for exampéeie height$d and storm surgeSby proposing a relation defining the
joint cumulative distribution function from the wariate cumulative distribution functions. We thlaeek to obtain a function
C which links the bivariate cumulative distributilequencyFyy (x, y) to the univariate cumulative distribution frequiesc

Fx(x) andF, (y) by integrating a correlation parameter.

Fyy(x,y) = C[Fx(x), Fy ()] (A.4)

A.2 Current practice in coastal engineering

Thesimplified Defra methodhat is presented for example in Cietaal. (2007)makes it possible to directly connect the joint
probability density functioify, to the product of the univariate probability dépsunctionsfy andf, through a dependence
factor denoted FD :

fxv = FDfxfy (A.5)
The dependence factor FD depends on the correletiefficientp obtained from the Gaussian copula (see definiti@ection

A.3.2). The variableX andY for the bivariate analysis are generally wave higiyjand storm surg8 The dependence factor
is site specific and results from the analysisheflbcal correlation between wave heights and sturges.

The correspondence table between the correlatiefiicientp and the dependence factor FD is given by Kergadg2013).
This table recommends, for example, for the Nodh,$hannel and Atlantic coast the use of a minirdapendence factor
FD of 25that is a weak dependence.

A.3 Copulas

The copula is a statistical tool to characterizzedependence between several random variables Vulese correlations are
generally not able to represent them accuratelha (@mtier, 2014). According to the latter, copiilage become an important
tool for modelling a multivariate law that “couplegnivariate cumulative distribution functions, leenthe Latin name
“copula” name chosen by Sklar (1959).

If C is the copula associated with a random variablove(X, Y) then the copuld couples the univariate cumulative

distribution functiong’y (x) andF, (y) using(A.4).
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Survival functions can also be coupled in the séinaethere exists a survival copdlauch that :

Fyy (e, y) = ClFx (), F (0] (A.6)

The survival copuld is defined from the copul@:

C(Fx(x), iy () = — Fx(x) = Fy(y) + 1+ C(Fx(x), Fy(») (A7)

In the following description, the univariate cumtive distribution functionsFy(x) and F,(y) will be notedu, and

u, respectively. A copula is a function ¢0,1]? - [0,1] which satisfies the following three conditions :

i) C(uy,0) =C(0,uy) =0 Vuy, u, €[0,1]
i) C(u, 1) =u,and C(1,u, ) = u, Yuy,u, € [0,1] (A.8)
iii) C(vy,vy) + Clug,uy) — C(uy,v,) —C(v,u) 20 VO<u; <v, <1
In the continuation of the paragraph on the detoripof the copula the functions of distributiBp(x) andFy (y) will be
notedu, andu,.
Sklar (1959) states that there exists a copuach that for eackandy Fyy (x,y) = C[Fx(x), Fy (y)]. If the functionsy and
Fy are continuous the@ is unique. There exist four families: Archimededaliptics, Marshall-Olkin and Archimax.
A.3.1 Archimedean copulas
Archimedean copulas are defined as followp is a decreasing function convex on [GD,+ o[, as¢ (1) = 0 andp (0) =

oo. We call a strict Archimedean copula of generégtothe copula defined by equati¢®) :

Clup,up) = ¢~ () + p(uz)] ug, up € [0,1] (A.9)
Archimedean copulas have interesting propertiegairticular the possibility of aggregating morenthao variables by

equation(10):

C(ug,uy, o, uy) = ¢ Hp(uy) + ¢(uy) + ...+ dp(u,)], ug, uy, ..., u, € [0,1] (A.10)
Archimedean copulas are given in table Al.
Name Copula Generator Inverse generator
-6 -6 _ 11-1/6 -6 _ -1/0
Clayton ¢ > 0) [uy” + u; 1] t - 1 (1+6v
1 Uiy ) exp(—6t) — 1 In(1 + exp(—t) (exp(—6) — 1))
Franck § #0) gn ([1 00 —u) (1 —uy)] In ( exp(—0) — 1 7
Gumbel ¢ >1) exp[—f + u$)'/9] (—In(t)° exp (—t/9)
Independence U U, —In(t) exp (—t)
1-[(1—u)l + (1 —uy,)?
Joe ¢ >1) L ;) ( , i) —In(1- (1 —1¢t)%) 1— (1 —exp(—t))/e
—(A—w)” (A =u)")]
Ali-Mikhail-Hag Uy U, In (1 - 61— t)) 1-6
(-1<0<1) [1-6(1—u)d—up)] t exp(t) — 6

TableAl: Archimedean copulas
A.3.2 Elliptic copulas
Elliptic copulas are Gaussian and Student’s capula

The Gaussian copula is written as follows :
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1 ¢ uy) o (uz) 1 x% — 20xy + y?
Cu, _ dxdy,8 € [-1,+1 A.ll
(2, 2) 21V1 — 62 f_w f 2n(1—62)°% exP( 2(1-62) ) i =Ll A

¢ is a distribution function aof;, with X = (X;, X,, ..., X,,) @ Gaussian random vectd~N, (0, Y.)), where) is a covariance
matrix.
Student's copula is written as follows :

—(v+2)

tyt(u1) rtyta) 1 s2 — 20st + t2]” 2
_ A12
Cln ) = f_m f m(-0905 |t 20 -0 dsdr,d € =1+ M

—00

t, is a distribution function of the univariate Stutldistribution law withv degrees of freedom.

They are symmetrical copulas. They are widely usefinance. They are implicit and therefore do hawe an explicit
analytical form.
A.3.3 Marshall-Olkin’s copula

Marshall-Olkin's copula is written as follows :

C (uy, up) = min(u; “uy, uyu,?), (a,b) € [0,1] (A.13)
A.3.4 Archimax copulas
Archimax copulas include a large number of coputeduding Archimedean copulas.

A bivariate function is an Archimax copula if andlpif it is of the form :

b (uy)

S )| Y v S0 a14)

Copa(ug,up) = ¢~ | (p(wy) + ¢(uz))A(

A :[0,1] = [0.5,1] such as max(t, 19 A(t) < 1 for eaclt 0<t<1.

¢ :10,1[ > [0,+0[ is a convex, decreasing function that satisfiés) = 0.

We will adopt the following notatiog(0) = lim,_-,¢ (t) et $~1(s) = 0,fors = ¢ (0).

For more information, refer to reference books sagtloe (1997) and Nelsen (1999). The reader nsayrefer to Clayton
(1978).
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Appendix B : Tail dependence of the site
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Table B1:Tail dependence of 18 French sites
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695 Appendix C : Likelihood for 18 French sites

Sites Gumbel| Clayton Gauss Franck| Student| Plackett Joe AMH | Glambos
Dunkerque 111 387 244 214 264 226 38 368 125
Calais 90 242 177 172 179 172 23 233 85
Boulogne 174 393 287 273 300 279 64 387 164
Dieppe 166 383 274 257 286 261 61 379 157
Le Havre 352 901 594 551 632 572 117 897 329
Cherbourg 140 383 267 224 277 229 44 317 135
Saint Malo 33 134 79 65 83 67 5 102 32
Roscoff 92 273 178 159 188 164 26 229 81
Le Conquet 160 389 28 265 293 268 54 365 150
Brest 178 439 322 295 327 299 59 417 168
Concarneau 66 115 97 96 98 94 31 117 64
Port Tudy 391 899 653 627 665 635 139 909 369
St Nazaire 438 1001 728 713 745 710 159| 1009 522
Saint Gildas 282 726 492 471 509 479 87 737 265
La Rochelle 107 303 197 186 199 184 30 303 100
Bayonne 75 275 153 111 179 116 19 162 67
Soccoa 62 230 122 105 155 110 15 163 51
Port Bloc 31 69 47 50 52 53 12 69 28.8

Table C1.Likelihood for 18 French sites
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