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Abstract. For extreme flood estimation, simulation-based approaches represent an interesting alternative to purely statistical

approaches, particularly if hydrograph shapes are required. Such simulation-based methods are adapted within continuous

simulation frameworks that rely on statistical analyses of continuous streamflow time series derived from a hydrologic model

fed with long precipitation time series. These frameworks are, however, affected by high computational demands, particularly

if floods with return periods >1000 years are of interest or if modelling uncertainty due to different sources (meteorological5

input or hydrologic model) is to be quantified. Here, we propose three methods for reducing the computational requirements

for the hydrological simulations for extreme flood estimation, so that long streamflow time series can be analysed at a reduced

computational cost. These methods rely on simulation of annual maxima and on analyzing their simulated range to downsize

the hydrological parameter ensemble to a small number suitable for continuous simulation frameworks. The methods are

tested in a Swiss catchment with 10’000 years of synthetic streamflow data simulated with a weather generator. Our results10

demonstrate the reliability of the proposed downsizing methods for robust simulations of extreme floods with uncertainty. The

methods are readily transferable to other situations where ensemble simulations are needed.

1 Introduction

The quantification of extreme floods and associated return periods remains a key issue for flood hazard management (Kochanek

et al., 2014). Extreme value analysis was largely developed in this field for the estimation of flood return periods (Katz et al.,15

2002); corresponding methods have been recently extended to bivariate approaches that assign probabilities jointly to flood

peaks and flood volumes (Favre et al., 2004; De Michele et al., 2005; Brunner et al., 2016), and to trivariate approaches to

assign probabilities jointly to flood peaks, volume and duration (Zhang and Singh Vijay, 2007); for a review of this field, see

the work of Graler et al. (2013).

Most modern applications, however, not only require the estimation of extreme peak flow, associated flood volumes and20

duration, but also of hydrograph shapes, in particular in the context of reservoir design or for safety checks of hydraulic

infrastructure (Kochanek et al., 2014; Gaál et al., 2015; Zeimetz et al., 2018). The key is thus the construction of design

hydrographs with different shapes, peak flows and volumes, with a corresponding probability of occurrence. Such approaches

can be roughly classified into methods that identify the shape of these design hydrographs based on observed data (Mediero
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et al., 2010) or based on theoretical considerations (unit hydrographs) (Brunner et al., 2017) and regionalisation (Tung et al.,25

1997; Brunner et al., 2018a), or methods that rely on runoff simulations (Arnaud and Lavabre, 2002; Kuchment and Gelfan,

2011; Paquet et al., 2013).

Simulation-based methods for design or extreme flood estimation have a long history in hydrology (for a review see

Boughton and Droop, 2003), and started with the classical event-based simulation with selected design storms (Eagleson,

1972; Chow et al., 1988; American Society of Civil Engineers, 1996). Those event-based methods are based on the concept30

that the design storm and flood have the same return period. Moreover, as they usually do not simulate antecedent conditions

prior to the event and do not account explicitly for storm patterns (duration, spatial and temporal variability), they may yield

biased flood frequency distributions (Viglione and Blöschl, 2009; Grimaldi et al., 2012a). Although some modern extensions of

this event-based concept account for variable initial conditions prior to the event through sensitivity tests (Filipova et al., 2019),

most of the work using event-based simulations assume default initial conditions. Indeed, such event-based simulation is still35

in use, in particular in the context of probable maximum flood (PMF) estimation based on probable maximum precipitation

(PMP) (Beauchamp et al., 2013; Gangrade et al., 2019).

Modern extensions of this approach, however, use continuous hydrologic modelling for design flood estimation, either i) to

generate a range of initial conditions for use in combination with design storms (Paquet et al., 2013; Zeimetz et al., 2018) or

ii) to generate long discharge time series from long observed precipitation records or from synthetic precipitation time series40

obtained with a weather generator (Calver and Lamb, 1995; Cameron et al., 2000; Blazkova and Beven, 2004; Hoes and Nelen,

2005; Winter et al., 2019). The above approach ii) is computationally intensive, especially if long time series are to be simulated

using ensembles of hydrological parameter sets, but in exchange, return period analysis is straight forward for simulated peak

flows or volumes. Full hydrographs for risk analysis are then obtained either by selecting a range of simulated extreme events

or by extrapolating a synthetic design hydrograph (Pramanik et al., 2010; Serinaldi and Grimaldi, 2011).45

These fully continuous simulation schemes are particularly useful for studies where recorded discharge time series are too

short for extreme flood analysis (Lamb et al., 2016; Evin et al., 2018). Although such an approach is based entirely on a

continuous hydrologic simulation, it is noteworthy that such a fully continuous approach might still be considered as being

“semi-continuous” from a hydraulic perspective, since corresponding studies often lack the final hydraulic routing step along

the floodway (Grimaldi et al., 2013). For clarity, we therefore use the term “continuous hydrologic simulation scheme” to50

distinguish it from the above mentioned hydraulic approach (see also Appendix A). These continuous hydrologic simulation

frameworks are still rare for time series ≥ 100 years, particularly because of the high computational power needed for such

simulations (Grimaldi et al., 2013). An example is the work of Arnaud and Lavabre (2002), who use a continuous simulation

framework to generate an ensemble of possible extreme hydrographs, which are then used as individual scenarios for hazard

management. Another option is to summarize all simulated flood hydrographs into probability distributions for peak flow and55

flood volume (Gabriel-Martin et al., 2019).

For rare events with high return periods typically in use for hydrologic hazard management (e.g. up to 10’000 years), the

large number of simulations in fully continuous frameworks can easily become prohibitive, in particular if the framework

should also account for different sources of modelling uncertainty, such as input uncertainty (different weather generators) or
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the uncertainty of the hydrological model itself, which is often incorporated into the model parameter sets (using distribution60

of model parameters rather than a single best set) (Cameron et al., 1999). Other important uncertainty sources in hydrological

modeling are linked to the used calibration (discharge) data, input (rainfall) data, and model structure (Sikorska and Renard,

2017; Westerberg et al., 2020).

Studies dealing with modelling or data uncertainties in such continuous simulation frameworks are rare, as most previous

studies have focused on the uncertainty related to the hydrological model parameters only (e.g. Blazkova and Beven, 2002,65

2004; Cameron et al., 1999). In addition to the uncertainties from seven hydrological model parameters, Arnaud et al. (2017)

investigated how the uncertainty related to six rainfall generator parameters propagates through the simulation framework, us-

ing more than 1000 French basins with hydrologic observation series of 40 years (median over all basins) and several hundreds

of replicats. In their study they found that the uncertainty of the rainfall generator dominates the uncertainty in the simulated

extreme flood quantiles. With the exception of the work of Arnaud et al. (2017) using a simplified hydrologic model, studies70

that deal with meteorological and hydrological modeling uncertainty in fully continuous simulation frameworks are currently

missing. This is despite the fact that recent improvements in computational power with cluster and cloud computing theoreti-

cally open up the unlimited possibility of analyzing different combinations of meteorological scenarios and parameter sets of a

hydrological model within such ensemble-based simulation frameworks. Yet, computational constraints of hydrological mod-

els, especially at a high temporal resolution (sub-daily or hourly), and data storage, still remain bounding factors for simulation75

of long time series or for simulation of extreme floods with high return periods (up to 10’000 years).

Accordingly, for settings where full hydrologic-hydraulic models are used for continuous simulation, some pre-selection of

hydro-meteorological scenarios is often needed, particularly for computationally demanding complex hydrological or hydraulic

models. How this selection should be completed, i.e. based on which quantitative criteria, remains unclear. The meteorological

scenarios have the particularity that all scenarios generated with the same weather generator present different, but equally likely80

realisations of the assumed climate condition; in other words, they represent the natural variability of the climate. Reducing the

number of meteorological input scenarios is not possible without simulating them with a hydrological model first, as long as the

continuous simulation scheme is of interest, i.e., if full time series are to be analysed without the possibility of extracting single

events. This is due to the non-linear response of any hydrological model to meteorological input (scenario), which translates

into hydrological scenarios with different statistical properties, albeit resulting from an ensemble of input scenarios having the85

same statistical properties.

We are therefore essentially left with finding ways to reduce at least the computational requirements associated with hy-

drological model parameter uncertainty, apart from reducing the length of time series, which for analysis of extremes, is

an unattractive option. Accordingly, in this work, we propose an assessment of different data-based methods to select a

reduced-size parameter ensemble for the use with a hydrological model within a continuous simulation, ensemble-based hydro-90

meteorological framework. Our specific research questions are as follows: (1) how can we downsize (reduce) parameter en-

sembles for simulation of extreme floods so that the variability and the range of the full ensemble is preserved as closely as

possible? (2) can such a reduced parameter ensemble be assumed to be reliable for the simulation of extreme floods, during

the reference period (used for parameter ensemble downsizing), as well as during an independent validation period? and (3)
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which metrics would be suitable to assess the performance of such a reduced parameter ensemble against the reference (full)95

ensemble? Specifically, three different methods of reducing a full hydrological modelling parameter ensemble to a handful of

parameter sets are proposed and tested for deriving the uncertainty ranges of simulated rare flood events (up to 10’000 years

return period). All three methods rely on simulation of annual maxima and are tested on continuous synthetic data (simulated

with a hydrological model); the aim is thus i) to provide long enough simulation periods for extreme flood analysis, ii) to

avoid the propagation of errors due to data/model calibration etc. and iii) to be able to focus entirely on the uncertainty of the100

hydrological response. The principal idea underlying these methods is that the downsizing of the parameter ensemble may be

performed with a reduced length of input time series that is much shorter than the full simulation time frame and that then can

be applied to the full time window for analysis of extremes.

2 Methods

2.1 Study framework and objectives105

The focus of this study is a fully continuous hydro-meteorological ensemble-based simulation framework for extreme flood

estimation. The underlying streamflow time series ensemble is built based on meteorological scenarios and multiple hydrolog-

ical model runs using a number of calibrated model parameter sets. A meteorological scenario represents a single realisation

from a stochastic weather generator with constant model parameters. These meteorological scenarios are equally likely model

realisations that differ in the precipitation and temperature patterns and together they represent the natural variability of the110

climate (and not the model uncertainty of a weather generator). These realisations are then used as inputs into a hydrological

model to simulate the hydrological response. To account for hydrological modelling uncertainty, a range of different parameter

sets is used for each meteorological scenario. These two sources of hydrologic variability then accumulate along the modeling

chain and can be represented as an ensemble of possible hydrological responses (Fig. 1).

Within such a defined framework we first want to understand how variable the hydrologic response simulation is, and second,115

develop methods to downsize the model parameter ensemble to a smaller subset that could be dealt with within such a modeling

chain for extreme flood simulations. This subset should represent the entire range of variability of the hydrological response

but with little computational effort and should also be transferable to independent time periods. Hereafter, we call this subset

the representative parameter ensemble.

Downsizing of the parameter ensemble is particularly needed if (i) the probability distribution of the parameter sets is120

unknown because parameter sets result from independent calibrations or regionalization approaches and only a limited number

of sets can be run with the hydrological model, or (ii) the distribution is known but due to time-consuming simulations it is not

possible to run the hydrological model for a full ensemble of multiple meteorological scenarios.

The question of how many parameter sets are needed to cover most of the simulation range is important. However, here

we set this value to a constant number and rather test different selection approaches. Hence, for the purpose of our work, we125

furthermore would like this representative parameter ensemble to be composed of only three sets, which should be represen-

tative of a lower (infimum), a middle (median) and a upper (supremum) interval of the full hydrological ensemble (Fig. 1),
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Figure 1. Framework overview. The infimum and supremum refer to the the largest interval bounding the ensemble simulation from below

and the smallest interval bounding it from above.

and which, together, should enable the construction of predictive intervals for extreme flood estimates that represent the full

variability range of all ensemble members. The infimum (from the Latin – smallest) and supremum (from the Latin – largest)

refer to the greatest lower bound and the least upper bound (Hazewinkel, 1994), i.e., the largest interval bounding the ensemble130

from below and the smallest interval bounding it from above. The choice of infimum and supremum is favourable over the

maximum and minimum as the latter would imply a complete parameter ensemble range whereas here we use the terms to

describe the range of a certain ensemble.

The key challenge for such a downsizing is the fact that we would like to select parameter sets (i.e. select in the param-

eter space) but based on how representative the corresponding simulations are in the model response space. Moreover, the135

downsized ensemble should be representative not only for simulated time periods but also be transferable to independent time

periods. The first question to answer is which model response space the selection should focus on. In the context of extreme

flood estimation, focusing on the frequency distribution of annual maxima (AM) is a natural choice; we thus propose to use

the representation of AMs in the Gumbel space as the reference model response space for parameter selection.

The next step is the development of selection methods to select parameter sets that plot into certain locations in the model140

response space (i.e. in the Gumbel space). Given the nonlinear relationship between model parameters and hydrological re-

sponses, this selection has to be obtained via an inverse modelling approach, i.e. we have to first simulate all parameter sets

and then decide which parameter sets fulfil certain selection criteria in the model response space.

For that purpose, we developed three methods, which are based on: a) ranking, b) quantiling, and c) clustering, described

in detail in Sect. 2.2. The main idea behind all three methods is that the parameter set selection is made based on the full145

hydrological simulation ensemble but using only a limited simulation period that is much shorter than the time window of full

meteorological scenarios used within the simulation framework.

Next, for the purpose of this study, let us define the following variables:

5

https://doi.org/10.5194/nhess-2020-79
Preprint. Discussion started: 26 March 2020
c© Author(s) 2020. CC BY 4.0 License.



– I is a number of parameter sets available with i = 1,2, ...., being a parameter set index;

– θi is the i-th parameter set of a hydrological model;150

– J is a number of annual maxima (years) per one hydrological simulation, y = 1,2, ..., is a year of simulation (index of

unsorted annual maxima), and j = 1,2, ...., is an index of sorted annual maxima;

– Xj is the j-th sorted annual maximum and Xy is the unsorted annual maximum from the year y.

– M is a number of meteorological scenarios considered with m = 1,2, ...., being a meteorological scenario index;

– Sm is the m-th meteorological scenario;155

– H(θi|Sm) is the hydrological simulation computed using the i-th parameter set of a hydrological model and the m-th

meteorological scenario;

– Xy,i,m is the annual maximum for the year y extracted from H(θi|Sm);

– θinf, θmed and θsup are the representative parameter sets of the hydrological model, i.e., infimum, median and supremum

that correspond to the intervals named in the same way.160

2.2 Developed methods for selecting the representative parameter sets

For the sake of simplicity, let us choose a single meteorological scenario Sm for now. Using Sm as an input into a hydrological

model combined with I parameter sets results in an ensemble of hydrological simulations, H(θ1,2,...|Sm). Now, the goal is

to select a limited number (here 3) of hydrological model parameter sets, i.e., θinf, θmed and θsup, from the available pool of

I sets (I � 3) based on the simulation of annual maxima (AM). These AMs are extracted from time series with continuous165

hydrological simulations, i.e., H(θ1,2,...|Sm) using a maximum approach that guarantees that the highest peak flow within

each calendar year for each hydrological simulation is selected (Fig. 2). This assumption is made to cover the situation when

different model realizations (i.e, for i = 1,2, ...) lead to different flood events being classified as the largest event within the

year. In this case, we ensure that the largest flood event simulated within each y-th year and each i-th parameter set is selected.

This means however that AMs selected for the same year y but with a different parameter set may originate from different170

flood events and even from a different dominant flood process, e.g. heavy rainfall or intensive snowmelt (Merz and Blöschl,

2003). This could be the case when one parameter set better represents processes driven by the rainfall excess while others by

the snowmelt dynamics. For simplicity, we do not distinguish events by their different flood genesis and pool all AMs together.

Using the above notations, the selection of representative parameter sets can be summarized as:

1. Simulation of continuous streamflow times series: the hydrological model is run with all available I parameter sets over175

the simulation period. This gives I different hydrological realizations (simulation ensemble members) covering the same

time span.
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Figure 2. Overview of the modeling chain and the selection methods of the representative parameter sets; top panel: delivery of hydrological

simulation ensembles and ensemble ranges; bottom panel: three methods (A-C) proposed for selecting the representative parameter sets

based on annual maxima (AM) marked with red circles.

2. Selection of annual maxima (AMs): for each i-th hydrological realisation annual maxima are selected as the highest peak

flow within each y-th simulation year. This results in a J set of AMs per each i hydrological simulation. The selection

of AMs is repeated for all I hydrological simulations.180

3. Selection of three representative parameter sets based on the simulation of AMs and following on from the three methods

detailed below.
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2.2.1 Ranking

(a) AMs computed from I hydrological simulations (i.e., using I model parameter sets) are sorted by their magnitude from

the highest to the lowest within each y-th simulation year independently (Fig. 2A).185

(b) For each y-th simulation year, AMs which correspond to the 5th, 50th and 95th rank for that year are selected.

(c) Parameter sets that correspond to the selected AM ranks are then attributed as 5th, 50th and 95th parameter sets per each

y-th year independently.

(d) The parameter sets selected in step (d) are compared over all J simulation years and the sets which are chosen most

often as the 5th, 50th and 95th ranks are retained as the parameter sets θR5, θR50 and θR95 representative for the entire190

simulation period and for the entire hydrological simulation ensemble.

2.2.2 Quantiling

(a) For each i-th parameter set, AMs computed with this parameter set are sorted by their magnitude over the entire simu-

lation period (J years) and plotted in the Gumbel space (Generalized Extreme Value distribution Type-I), thus creating

the ensemble of sorted AMs simulated with different parameter sets.195

(b) The 5%, 50% and 95% quantiles of these ensembles are computed asQ5,Q50 andQ95 over the entire simulation period

(Fig. 2B).

(c) Next, for each i-th ensemble member, a metric RMSE is computed such that for each j-th point of the i-th ensemble

member measures distances in Gumbel space from Q5, Q50 and Q95. This metric is somehow similar to the mean

square error and is computed as:200

RMSE,Q5,i =
1
J

J∑

j=1

(Q5,j −Hj(θi|Sm))2 (1)

RMSE,Q50,i =
1
J

J∑

j=1

(Q50,j −Hj(θi|Sm))2 (2)

RMSE,Q95,i =
1
J

J∑

j=1

(Q95,j −Hj(θi)|Sm)2 (3)205

(d) Finally, the ensemble members which in the Gumbel space lie closest to Q5, Q50 and Q95, i.e., received the smallest

values for RMSE,Q5, RMSE,Q50 and RMSE,Q95, respectively, are chosen as the ensemble members representative for the

entire hydrological ensemble, and the parameter sets corresponding to these members, i.e., θQ5, θQ50 and θQ95, are

retained as representative.
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2.2.3 Clustering210

(a) Similar to the quantiling method, for each i-th parameter set AMs computed with this parameter set are sorted by their

magnitude over the entire simulation period and plotted in the Gumbel space, creating I ensemble members of sorted

AMs simulated with different parameter sets.

(b) These members are next clustered in the Gumbel space into three representative groups (clusters) based on all J simula-

tion years using the k-means clustering with Hartigan–Wong algorithm (Hartigan and Wong, 1979), as implemented in215

the function kmeans from the package “stats” (R Core Team, 2019), see Fig. 2C.

(c) Next, these clusters are sorted by their magnitude and for the lower cluster a 5th percentile, for the upper – 95th percentile,

and for the middle – 50th percentile are computed, i.e., P 5, P 50 and P 95. Note that we use here percentiles instead of

cluster means to make this method comparable with the other two methods and to better cover the variability of the

parameter sample.220

(d) For each i-th ensemble member, the metric RMSE is computed in relation to three estimated cluster percentiles P 5, P 50

and P 95 as:

RMSE,P5,i =
1
J

J∑

j=1

(P 5,j −Hj(θi|Sm))2 (4)

RMSE,P50,i =
1
J

J∑

j=1

(P 50,j −Hj(θi|Sm))2 (5)225

RMSE,P95,i =
1
J

J∑

j=1

(P 95,j −Hj(θi|Sm))2 (6)

(e) For each of these three clusters, the ensemble member that lies closest to the cluster percentile, i.e., received the smallest

value of RMSE, is selected as the representative member for that cluster and the parameter sets which correspond to these

members, θP5, θP50 and θP95, are retained as representative.230

For plotting, we used the Gringorten’s method (Gringorten, 1963) to compute the plotting positions of AMs in the Gumbel

plots:

kj =
j− 0.44
J + 0.12

(7)

where kj is a plotting position for the j-th (sorted) AM in the Gumbel space.
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Table 1. Comparison of three methods for selecting representative parameter sets based on annual maxima (AM).

Criteria Ranking Quantiling Clustering

Selection window year all simulation years all simulation years

Annual maxima (AM) unsorted over years sorted over years sorted over years

Sorting space simulated annual maxima Gumbel space, quantiling Gumbel space, clustering

Sorting extent AMs over simulations AMs over years AMs over years

Selection criteria ranks RMSE RMSE

Interpretation of pred. intervals no yes yes

Parameter grouping no no yes

2.3 Estimation of the predictive intervals for extreme flood simulations235

While the three methods described in Sect. 2.2 vary in the way the representative parameter sets are selected (see Sect. 2.4

for a summary), each of these selection methods results in three (different) representative hydrological simulation ensemble

members and can be thought of as representing the lower (infimum), upper (median) and middle (supremum) interval of the full

simulation range. The parameter sets corresponding to these are then noted as θinf, θmed, θsup. The simulations corresponding

to these three parameter sets together create the so-called predictive interval, which can be used for extreme flood simulation240

studies.

2.4 Comparison of three selection methods

The major difference between these three methods is that the ranking method is evaluated based on individual simulation years

using simple ranking of flow maxima independently of their frequency, i.e., it works on unsorted annual maxima. Note that in

this way, for each y simulation year, a different rank order of the I parameter sets may be achieved. In an extreme case, where245

for each year y different parameter sets are chosen, a choice of the representative sets over all simulation years may become

problematic due to difficulties in identifying the parameter sets most frequently selected over all simulation years.

In contrast to the ranking method, both other methods, i.e., quantiling and clustering, are performed on sorted AMs over all

simulation years, i.e., in the flow frequency space. This enables statistical statements to be made about the selected parameter

sets and about the predictive intervals constructed with the help of these parameter sets. Furthermore, selected parameter sets250

can be assumed to be representative over the entire simulation period (see Table 1 for a detailed overview of three methods).

2.5 Assessment of the behavior of the approach

Testing the methods for a time period different than the one that was used for the parameter ensemble downsizing is crucial for

assessing how well the reduced ensembles cover the reference simulation ensemble. Thus, we propose to assess the behavior of

the developed approach by repeating the selection of the three representative parameter sets with the three proposed methods255
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with multiple (M ) meteorological scenarios. Using multiple meteorological scenarios enables, first, accounting for the natural

variability of the hydrological response due to climate variability, and second, gives us the possibility to evaluate the bias of

the approach. Particularly, with the help of multiple meteorological scenarios we explore how the choice of the representative

parameter sets θinf, θmed, θsup depends on the meteorological scenario.

2.5.1 Leave-one-out cross-validation260

To evaluate the three selection methods, we perform a leave-one-out cross-validation simulation study, in which a meteoro-

logical scenario Sr is removed from the analysis and the selection of the representative parameter sets is executed based on

all other remaining meteorological scenarios, i.e., using all m = 1,2, ...,M and m 6= r. The evaluation of selection methods is

then executed against the one meteorological scenario initially removed from the set. In detail, the following steps are executed

for each of the three methods independently:265

(a) Pick-up and remove one meteorological scenario Sr from S1,2,..,M scenarios available;

(b) Analyze all other meteorological scenarios {SM−r}= {S1,2,..,M}\{Sx} each containing I ensemble members result-

ing from I parameter sets, {H(θi|Sm−r)}, for i = 1,2, ..., I , m = 1,2, ...,M and m 6= r, and based on the selected three

representative parameter sets θinf,m−r, θmed,m−r, θsup,m−r as described in sect. 2.2;

(c) Estimate the predictive intervals of theseSM−r meteorological scenarios as the band spread between H(θinf,m−r|Sm−r)270

and H(θsup,m−r|Sm−r), the interval defined in step (b);

(d) Evaluate the meteorological scenario Sr removed at step (a) against the predictive intervals of SM−r meteorological

scenarios to assess how well the defined identified intervals represent the ensemble members of this Sr meteorological

scenario.

The simulation is repeated M times to use each meteorological scenario once.275

2.5.2 Multi-scenario evaluation

To further evaluate the three methods, we perform a simulation study using multiple (M ) meteorological scenarios. In this

study, the three selection methods are executed on one x meteorological scenario randomly (without replacement) selected

from the M available scenarios and evaluated against all remaining scenarios. In detail, the following steps are executed for

each of the three methods independently:280

(a) Pick-up one meteorological scenario Sp out of the S1,2,..,M scenarios available;

(b) Analyze the I simulated hydrological ensemble members of this scenario H(θi|Sp), i = 1,2, ..., I , resulting from I

parameter sets θi forSp and select three representative parameter sets corresponding to θinf,p, θmed,p, θsup,p, as described

in sect. 2.2;
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(c) For all other remaining meteorological scenarios {SM−p}= {S1,2,..,M} \ {Sp}, take all hydrological ensemble mem-285

bers {H(θi|Sm)}, for m = 1,2, ...,M and m 6= p, that correspond to θinf,p, θmed,p, θsup,p. This results in M − 1 model

simulations for each of θinf,p, θmed,p, θsup,p one per meteorological scenario;

(d) Compute the 5th percentile for {H(θinf,p|Sm)}, the 50th for {H(θmed,p|Sm)}, and the 95th for {H(θsup,p|Sm)}. The

computed 5th and 95th percentiles are assumed to together describe the predictive intervals;

(e) Evaluate the predictive intervals against all SM−p meteorological scenarios for assessing how well the identified predic-290

tion intervals represent the ensemble members of these SM−p scenarios.

The steps (a-e) are repeated M times to use each meteorological scenario once. We call this evaluation a multi-scenario

evaluation because the evaluation is performed using multiple meteorological scenarios at once (SM−p) in contrast to the

leave-one-out cross-validation (Sect. 2.5.1), where the evaluation is performed against only one meteorological scenario (Sr).

2.6 Evaluation criteria295

2.6.1 Visual assessment

The simplest way of assessing the behavior of these three methods is a visual inspection of curves plotted in the Gumbel space,

which can tell us how well the selected members reproduce the simulation ensemble and particularly whether the assignment

of the representative parameter sets is correct or not. For this purpose, we propose to plot all simulated hydrological ensemble

members together with the selected representative members in the Gumbel space for each considered meteorological scenario300

m individually and to visually assess the assignment of the three selected parameter sets, θinf,m, θmed,m, θsup,m, and the

corresponding intervals, i.e., H(θinf,m|Sm), H(θmed,m|Sm) and H(θsup,m|Sm). The order of the intervals’ assignment is

assumed to be correct if it holds in the Gumbel space that:

H(θinf,m|Sm)≤H(θmed,m|Sm)≤H(θsup,m|Sm). (8)

We further define a ratio of incorrectly attributed scenarios, with mixed-up intervals, i.e. for which Eq. 8 does not hold, as a305

measure of the bias as:

Rbias =
M∑

m=1

Rm

M
(9)

where Rm is computed for the m-th scenario as:

Rm =





0 if H(θinf,m|Sm) < H(θmed,m|Sm) < H(θsup,m|Sm)

1 else.
(10)

2.6.2 Quantitative assessment310

To quantitatively compare the three selection methods, we propose to compute the three following metrics:
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(I) The ratio of simulation points in the Gumbel space, i.e. annual maxima, lying outside the predictive intervals computed

for each m-th scenario as:

Rspo,m =
I∑

i=1

J∑

j=1

Rspo,m,i,j

I · J (11)

where Rspo,m,i is the ratio for each i-th parameter set of the meteorological scenario m and is computed for each315

simulation point j (in the Gumbel space) as:

Rspo,m,i,j =





0 if Hj(θinf,m|Sm)≤Hj(θi|Sm)≤Hj(θsup,m|Sm)

1 else.
(12)

(II) In the leave-one-out cross-validation, the ratio of hydrological simulation ensemble members lying outside the predictive

intervals is computed for each m-th scenario as:

Rhso,m =
I∑

i=1

Rhso,m,i

I
(13)320

where Rhso,m,i is the ratio computed for each i-th ensemble member as:

Rhso,m,i =





0 if H(θinf,m|Sm)≤H(θi|Sm)≤H(θsup,m|Sm)

1 else.
(14)

(III) In the multi-scenario evaluation, the ratio of meteorological scenarios lying outside the predictive intervals is computed

for each scenario p as:

Rmso,p =
M∑

m

Rmso,m

M − 1
m=1,2,...,M & m 6= p (15)325

where Rmso,m is computed as:

Rmso,m =





0 if H(θinf,m|Sm)≤H(θi|Sm)≤H(θsup,m|Sm)∀i = 1,2, .., I

1 else.
(16)

With respect to Rspo, the question arises of how to define the ratio of simulation points being outside the predictive inter-

vals if multiple hydrological simulations (leave-one-out cross-validation) or multiple meteorological scenarios (multi-scenario

evaluation) are considered. Here we propose to use different percentiles, i.e., the 5th, 50th, and 95th percentiles, to characterize330

the ratio of the simulation points lying outside the computed predictive intervals for each of the methods.

In a similar way, for Rhso and Rmso an additional condition must be defined, i.e., how many out of J hydrological simulation

points for Rhso, or how many out of I hydrological simulation ensemble members for Rmso must lie outside the defined
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predictive intervals, so that the hydrological simulation H(θi|Sm), or the meteorological scenario Sm, is considered as lying

outside these intervals.335

For this purpose we define the rejection threshold rthr (dimensionless) that has to be reached, so that the meteorological

scenario or hydrological simulation is assumed as lying outside the predictive intervals. In this work, we consider the following

values for rthr = {0.50,0.25,0.10,0.05}.
These three metrics are computed for all three methods and for all M meteorological scenarios, and the median values over

these M scenarios are taken as a measure for comparing the three methods.340

3 Experimental set-up

3.1 Study catchment

For testing the methods developed here, a small natural catchment is preferable. For this purpose, the Dünnern at Olten catch-

ment with an area of 196 km2 is selected, located in the Jura region in Switzerland (Fig. A2 in Appendix B). The Dünnern

stream is a tributary of the Aare River and belongs to the basin of the Rhine River. The mean elevation of the Dünnern at Olten345

catchment is 711 m. a.s.l. with an elevation span from 400 to 760 m. a.s.l.. The flow regime is defined as nival pluvial jurassien

(Weingartner and Aschwanden, 1992; Schürch et al., 2010) with high flows in winter and spring and low flows in autumn.

With no direct human influence within the entire catchment known, it can be assumed close to natural (BAFU, 2017). This

catchment is part of a large-scale extreme flood modelling effort in Switzerland for the entire Aare catchment (Viviroli et al.,

2020).350

3.2 HBV model for hydrological simulations and calibration data

To simulate the hydrological catchment responses to meteorological scenarios, the HBV model is used. The HBV model is

a semi-distributed bucket-type model and it consists of four main routines: (1) precipitation excess, snow accumulation and

snowmelt, (2) soil moisture, (3) groundwater and streamflow responses and (4) runoff routing using a triangular weighting

function. Due to the presence of the snow component, the HBV model is applicable to mountainous catchments (e.g., Jost355

et al., 2012; Addor et al., 2014; Breinl, 2016; Griessinger et al., 2016; Sikorska and Seibert, 2018; Brunner and Sikorska-

Senoner, 2019).

In this study, the version HBV light (Seibert, 1997; Seibert and Vis, 2012) with 15 calibrated parameters is used; see Table A1

in Appendix C for details on model parameters and their calibration ranges. Model inputs are time series of precipitation and

air temperature, and long-term averages of seasonally varying estimates of potential evaporation, all being area-average values360

for the entire catchment. These inputs are next redistributed along pre-defined elevation bands using two different constant

altitude-dependent correction factors for precipitation and temperature. The model output is streamflow at the catchment outlet

at time steps identical to input data (hourly in this study).
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For the study catchment, meteorological inputs (hourly precipitation totals, hourly air temperature means, average hourly

evaporation sums) for the HBV model are derived from observed records from meterological stations and are averaged to the365

mean catchment values using the Thiessen polygon method. The recorded continuous hourly streamflow data at the catchment

outlet (Olten station) covers the period 1990-2014.

3.3 Identification of multiple HBV parameter sets

To calibrate the HBV model described in Sect. 3.2, we used a multi-objective function Fobj with three scores: the Kling-Gupta

efficiency (RKGE) and the efficiency for peak flows (RPEAK), which are both sensitive to peak flows, and a measure based on370

the Mean Absolute Relative Error (RMARE) that is sensitive to low flows. Fobj is obtained through weighing these metrics as

follows:

Fobj = 0.3RKGE + 0.5RPEAK + 0.2RMARE (17)

For details on RKGE, see the work of Gupta et al. (2009); for details on RPEAK and RMARE, see the work of Vis et al. (2015).

The weights in Fobj are chosen following our previous experience in modelling Swiss catchments (Sikorska et al., 2018;375

Westerberg et al., 2020). This objective function Fobj is next used together with the Genetic Algorithm approach (Appendix C)

to calibrate the HBV model with hourly data. The available observational datasets are split into a calibration (1990-2005 years)

and a validation (2006-2014 years) period. To set up the initial conditions, one year of model simulations are discarded from

the calibration simulation and the remaining used for model performance computation. For the validation period, the initial

conditions are taken from the calibration simulation.380

The calibration is repeated 100 times resulting in 100 independent optimal parameter sets (see Appendix C). The median

model efficiency measured with Fobj over all 100 runs is 0.7 in the calibration and in the validation periods, which can be

assumed to be a good model performance on an hourly scale.

3.4 Generation of synthetic meteorological scenarios using a weather generator

Meteorological scenarios of synthetic precipitation and temperature data for the Dünnern at Olten catchment are generated385

with the weather generator model GWEX developed by Evin et al. (2018) and referred to in their paper as GWEX_Disag. This

stochastic model is a multi-site precipitation and temperature model that reproduces the statistical behavior of weather events

on different temporal and spatial scales. The major property of GWEX is that it uses marginal heavy-tailed distributions for

generating extreme precipitation and temperature conditions. Moreover, it has been developed to generate long term (≈ 1000

years) meteorological scenarios. GWEX_Disag generates precipitation amounts at a 3-day scale and then disaggregates them390

to a daily scale using a method of fragments (for details on the precipitation model, see the work of Evin et al. (2018), and for

details on the temperature model, see the work of Evin et al. (2019)).

The meteorological scenarios used in this study are a subset from the long-term meteorological scenarios developed for the

entire Aare River basin using recorded data from 105 precipitation stations and from 26 temperature stations in Switzerland

(Evin et al., 2018, 2019). For this larger scale research project, GWEX_Disag was set up using daily precipitation and tem-395
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perature data from the period 1930-2015 and hourly records of precipitation and temperature from 1990-2015 for the Aare

River basin. The daily values generated with GWEX_Disag were then disaggregated to hourly values using the meteorological

analogues method, which for each day in the simulated dataset finds an analogue day in observed data, i.e., with a known

hourly time structure. Next, catchment means were computed using the Thiessen polygon method.

For the present study, 100 different meteorological scenarios (precipitation and temperature) covering the same time frame400

of 100 years at an hourly time step are available for the Dünnern at Olten catchment. The simulated data is assumed to be

representative for current climate conditions, i.e., no variation due to climate or land use change, or river modification is

considered. Thus, differences between scenarios are exclusively due to the natural variability of the meterological time series.

3.5 Generation of synthetic hydrological simulation ensembles

Finally, for our analysis, 100 meteorological scenarios with continuous data of 100 years of precipitation and temperature, and405

100 calibrated parameter sets of the HBV model are available. These 100 meteorological scenarios are used as input into the

HBV model to generate streamflow time series with 100 different HBV parameter sets. To set up the initial conditions of the

model, a one year warming up period is always used prior to the simulation period.

From each of these continuous hydrological simulations, 100 Annual Maxima (AM, one per each calendar year) are selected

(see Fig. 3). This results in the following analysis set up:410

– I = 100 and i = 1,2, ....,100;

– J = 100, y = 1,2, ....,100 and j = 1,2, ....,100;

– M = 100 and m = 1,2, ....,100.

with 100×100×100 combinations of the annual maximum × parameter set × meteorological scenario.

These series of AMs are next used to test the developed methods of selecting the representative parameter sets from the415

ensemble of 100 available sets.

4 Results

4.1 Representative parameter sets

The representative parameter sets selected with each of the three methods are summarized over all 100 meteorological scenarios

in the form of violin plots (Fig. 4). We present parameter sets by their unique indices that are kept the same for all three methods420

in the entire analysis. Note that this indexing of the model parameter sets is used for illustration purposes only and does not

contain any quantitative information on the model performance. The focus is here on parameter set indices rather than on

their actual values since the proposed method selects entire parameter vectors and not individual parameter values. Although

the choice of the representative parameter sets depends on the meteorological scenario and on the selection method, certain

patterns can be detected in the selected parameter sets for all three methods. Namely, some sets are more often chosen than425
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Figure 4. Violin plots showing indices of the parameter sets most often selected as the representative parameter sets over 100 meteorological

scenarios chosen with three methods. Indexing of the model parameter sets is created as i =1, 2, ..., 100 and is kept the same for all three

methods and is presented here for illustration purposes only.

others as a representative set for different meteorological scenarios. This grouping is particularly visible for the supremum set

in all three methods but is strongest for the clustering method; for the infimum set, the grouping effect is the most pronounced

for the clustering and the quantiling method, and for the median set in the ranking method.

The five most frequently chosen parameter sets for each method are summarized in Table 2. Although different parameter

sets are usually selected by different methods, in a few cases the same set is chosen with more than one selection method430
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Table 2. The three representative parameter sets θinf, θmed and θsup most frequently selected with three methods. i stands for the set index and

ct. for the number of counts. The expressions
∑

ct. 1st-3rd and
∑

ct. 1st-5th stand for the sum of counts for the first three and for the first

five most frequently selected sets. Bold font indicates parameter set indices which are selected as representative with at least two methods

among the five sets most frequently chosen.

Method Ranking Quantiling Clustering

Repr. set θinf θmed θsup θinf θmed θsup θinf θmed θsup

Par. set i ct. i ct. i ct. i ct. i ct. i ct. i ct. i ct. i ct.

1st 97 21 1 11 20 25 47 78 2 22 19 32 47 62 2 13 34 48

2nd 16 15 2 7 19 13 66 10 93 11 86 15 97 35 46 11 22 33

3rd 6 12 14 7 57 9 67 4 46 9 69 11 66 2 62 11 98 7

4rd 54 10 3 6 7 7 82 2 18 7 22 10 73 1 53 10 86 6

5th 14 8 8 5 55 6 97 2 53 7 57 8 – – 51 9 50 3∑
ct. 1st-3rd 48 25 47 92 42 58 99 35 88∑
ct. 1st-5th 66 36 60 96 56 76 100 54 97

(highlighted in Table 2). Among the first five most frequently chosen sets, the same parameter set is selected as the median

set once for all three methods and twice for at least two methods. For the supremum set, among the first five most frequently

chosen sets, the same set is selected four times at least for two methods but never for all three methods. For the infimum set,

only one set is chosen for two methods among the first five most frequently chosen sets. Interestingly, for the supremum set in

the clustering method, only four parameter sets among all 100 available are chosen over all 100 scenarios.435

4.2 Infimum, median and supremum intervals

Using the selected representative sets, representative intervals for extreme flood predictions are constructed for each of the 100

meteorological scenarios and each of the three selection methods. Examples of these intervals for two meteorological scenarios

are presented in Figs. 5–6. Note that apart from selecting representative intervals, the clustering method leads to grouping all

ensemble members into three selected clusters.440

According to a first visual assessment, these three methods lead to slightly different constructed frequency intervals partic-

ularly in the upper tail of the distribution, i.e., for the most rare (highest) flows, which are of highest interest. Moreover, the

ranking method leads to less symmetrically spread intervals, with the median and infimum intervals lying close to each other.

The other two methods lead to more symmetrically spread intervals.

For the quantitative assessment, the ratio of scenarios incorrectly attributed, i.e. with intervals being mixed-up, (Rbias)445

varies between the three methods and is the lowest for the ranking method (Rbias =0.54). For the clustering method, the three

intervals are always correctly attributed for all 100 meteorological scenarios tested (Rbias =0.0). For the quantiling method,

this ratio is equal to Rbias =0.02 and thus also very low. Hence, we can conclude that both clustering and quantiling methods
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Figure 5. Example of the representative parameter sets’ selection with three methods in the Dünnern at Olten catchment (meteorological

scenario m =14). The top panel presents intermediate steps of selecting the representative sets and the bottom panel the finally constructed

intervals, i.e., infimum, median and supremum. The dashed lines (top panel) indicate the computed representative intervals (i.e., steps (a-c) in

ranking and clustering, and (a-b) in quantiling) and the solid lines (bottom panel) indicate the hydrological simulation members corresponding

to the parameter sets selected as representative (step (d) in ranking and quantiling, and (e) in clustering). The Gumbel variates of -1, 0 and

3 correspond to events with 1-year, 2-year and 21-year return periods, whereas the Gumbel variate of 5 corresponds to the event with the

149-year return period (the event with the 100-year return period would correspond to the Gumbel variate of 4.6).

provide correctly attributed intervals with a bias ≤ 2%. For the ranking method, the correctness of the interval attribution is

poor, and in more than 50% of the meteorological scenarios, the simulations corresponding to the selected parameter sets lead450

to mixed-up frequency intervals.

4.3 Evaluation of the three selection methods

The behavior of the three selection methods is further evaluated with the 100 meteorological scenarios using the leave-

one-out cross-validation test (Sect. 2.5.1) and the multi-scenario evaluation method (Sect. 2.5.2) and corresponding metrics

(Sect. 2.6.2). Examples for two meteorological scenarios are presented in Figs. 7–8 for the leave-one-out cross-validation test455

and in Figs. 9–10 for the multi-scenario evaluation. From the visual assessment, it is difficult to judge the methods, as they

seem to perform similarly well. However, the range of the predictive intervals obtained with 99 meteorological scenarios (one
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Figure 6. Example of the representative parameter sets’ selection with three methods in the Dünnern at Olten catchment (meteorological

scenario m =93); description as in Fig. 5.

left out) is considerably narrower for ranking and quantiling on one hand and much wider for clustering on the other hand (top

row in Figs. 7–8). Accordingly, the correspondence between the prediction interval and the full simulation range of the left-out

scenario differs between the methods (bottom row in Figs. 7–8).460

This is reflected in the quantitative assessment of the methods’ behavior, summarized in Table 3. Namely, the leave-one-out

cross-validation reveals that the quantiling method receives the highest values for both evaluation criteria, i.e., the median ratio

of simulation points lying outside the predictive intervals (Rspo) and the median ratio of hydrological simulation ensemble

members lying outside the predictive intervals (Rhso). Thus, this method performed the poorest among all three methods tested

here. Yet, with Rspo ≤ 0.14 for the 50th percentile and Rhso ≤ 0.05 for the threshold rthr ≥ 0.50, even this method can be465

qualified as behaving well based on the leave-one-out cross-validation. For the ranking and the clustering methods, similar

values for these two metrics are achieved, with slightly lower values for the ranking method.

In summary, it can be said that all criteria values are relatively low for all three methods, and thus the computed criteria

values can only be used to order the methods by their behavior, while none of the methods is rejected.

In contrast to the above findings, the multi-scenario evaluation reveals different results with Rspo being the lowest for cluster-470

ing, and the largest for the ranking method. Similarly, the median ratio of meteorological scenarios lying outside the predictive
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Figure 7. Example of leave-one-out cross-validation for the three selection methods (meteorological scenario m =14). Top panel – illustra-

tion of the prediction interval resulting from selecting representative parameter sets for 99 meteorological scenarios (in blue) and compared

to the full simulated range with all 100 parameter sets for all 99 scenarios (for each of the three methods). Bottom panel – comparison of the

99-scenarios prediction interval from the top row against the simulated range with all 100 parameter sets for the scenario left out during the

prediction interval construction (m =14).

intervals (Rmso) is the lowest for clustering and the highest for the ranking method for all considered threshold values (rthr in

Table 3).

Also, here all computed criteria values are relatively low with Rspo ≤ 0.05 for the 50th percentile and Rmso = 0 for the thresh-

old rthr ≥ 0.50 for the poorest behaving method (ranking). Hence, again here all three method can be qualified as behaving well475

based on the multi-scenario evaluation, and only the order of their behavior can be established.

5 Discussion

5.1 Behavior of three selection methods

The results from our experimental study demonstrate that generally all three methods are capable of selecting representative

parameter sets that yield reliable predictive intervals in the frequency domain, i.e. all three methods are fit-for-purpose for480

extreme flood simulation, with the ranking method performing, however, clearly less well than the others (larger bias, as
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Figure 8. Example of leave-one-out cross-validation for the three selection methods (meteorological scenario m =93); description as in

Fig. 7.

Table 3. Metrics of the behavior of the approach for three methods of selecting representative parameter sets and the predictive intervals in

the leave-one-out cross-validation and in the multiple-scenario evaluation. The values represent the median values over all 100 scenario runs.

Leave-one-out cross-validation Multi-scenario evaluation

Metric / selection method Ranking Quantiling Clustering Ranking Quantiling Clustering

Rspo [-]

5th percentile 0 0.03 0 0.01 0 0

50th percentile 0.02 0.13 0.065 0.048 0.02 0

95th percentile 0.36 0.49 0.38 0.17 0.13 0.065

Rhso (Rmso
∗) [-]

rthr ≥ 0.50 0.02 0.05 0.02 0 0 0

rthr ≥ 0.25 0.13 0.28 0.17 0.025 0.01 0

rthr ≥ 0.10 0.26 0.57 0.41 0.20 0.091 0.03

rthr ≥ 0.05 0.38 0.76 0.55 0.51 0.26 0.071

∗)in the multi-scenario evaluation
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Figure 9. Example of multi-scenario evaluation for the three selection methods (meteorological scenario m =14). Top panel – illustration

of the prediction interval resulting from selecting representative parameter sets for a single meteorological scenario (m = 14, in blue) and

compared to the full simulated range for this scenario (for each of the three methods). Bottom panel – comparison of the predictive interval

resulting from the selected parameter set from the top row but applied to all remaining 99-scenarios against the full simulated range for these

99 scenarios.

visible in Sect. 4.2). As the developed methods rely on selecting three representative sets as infimum, median and supremum,

they respect the maximum variability between individual ensemble members for a given meteorological scenario.

In the validation tests, the behaviour scores of the three methods, however, were attributed differently depending on the

evaluation criteria. To further compare the methods, we provide below a detailed discussion of the major differences and485

present a synthesis of how the methods rank on average (averaged across all scenarios) for the quantitative evaluation criteria

as well as for visual inspection (bias) and for additional ease of use criteria (Table 4).

From the visual assessment, it clearly appears that the ranking method is the most biased method (with more than half of

all meteorological scenarios having mixed-up intervals), while the other two methods can be considered as being unbiased

with correctly attributed intervals for 98% (quantiling) or more (clustering) of all meteorological scenarios considered here490

(Sect. 4.2). As expected, these findings are further confirmed by the results from the multi-scenario evaluation that yield the

best behaviour for the clustering method and the worst for the ranking method (Sect. 4.3).
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Figure 10. Example of multi-scenario evaluation for the three selection methods (meteorological scenario m =93); description as in Fig. 9.

Table 4. Synthesis of scoring ranks attributed to the three methods for selecting representative parameter sets (based on quantitative metrics).

The ranks are attributed descending from the best (1) to the worst (3) behaviour. The median scoring rank (last line) corresponds to the

median over all criteria.

Score criteria Ranking Quantiling Clustering

Unbiasedness (not mixed-up intervals) 3 2 1

Leave-one-out cross-validation 1 3 2

Multi-scenario evaluation 3 2 1

Independence from meteorological scenario 3 1 1

Independence from simulation years 3 1 1

Ease in application 1 3 3

Interpretation of prediction intervals 3 1 1

Median scoring rank 3 2 1

Interestingly, the leave-one-out cross-validation study, in contrast to the the multi-scenario evaluation, attributes the lowest

criteria value to the ranking method, i.e. ranks it as the best method (Table 4). This requires a careful interpretation and

understanding of how the predictive intervals are constructed in both evaluation studies. In the leave-one-out cross-validation495
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study, the representative parameter sets are selected and the predictive intervals are constructed based on 99 meteorological

scenarios and then evaluated against the full simulation range corresponding to the left out scenario. In other words, this test

evaluates how well the selection methods applied to all but one scenario can predict the full simulation range of the left out

scenario. In the multi-scenario evaluation, the representative parameter sets are selected based on a single scenario, and the

predictive intervals are then assessed by applying these three selected sets (selected based upon a single scenario) to the other500

99 meteorological scenarios. This test quantifies how well the methods applied to a single scenario are transferable to all other

scenarios.

Hence, by comparing findings from these two evaluation studies, it appears that the ranking method has the lowest trans-

ferability, i.e. performs poorly if using a single scenario for selecting the representative sets (multi-scenario evaluation). In

exchange, the ranking method outperforms the two other methods when a high number of meteorological scenarios is used505

for selecting the representative parameter sets (leave-one-out cross-validation). This means that the ranking method strongly

depends on the meteorological scenario choice, while the other two methods result in representative parameter sets that are

transferable to other meteorological scenarios.

This outcome can be understood if we consider how the selection methods are constructed: The ranking method, in fact,

depends strongly on the selected simulation period (and hence on the meteorological scenario) because the selection of the510

representative parameter sets is performed on unsorted annual maxima for each simulated year independently. The other two

methods are performed over the entire simulation period, which makes them less strongly dependent on individual simulation

years. However, the ranking method can be considered as the (computationally) easiest in application due to its selection criteria

relying purely on ranking within individual simulation years. The other two methods need to be performed in the Gumbel space

over the entire simulation period and, in the case of the clustering method, require some additional computational effort (which515

remains low, however, compared to the hydrologic simulation). The use of the Gumbel space in selecting the representative

parameter sets helps, however, to interpret the constructed prediction intervals and to directly assign return periods to them.

Overall, it appears that the clustering method behaves the best (with a median scoring rank of 1) due to its unbiasedness and

due to a good performance achieved for all evaluation criteria, for both the leave-one-out cross-validation and the multi-scenario

evaluation (Table 4).520

5.2 Limitations and perspectives

This study proposes a framework for representative hydrological parameter selection to be used within fully continuous

ensemble-based simulation frameworks that are based on meteorological inputs generated with a weather generator. Based

on our experimental case study, we demonstrate that the proposed three methods are reliable for downsizing the available full

parameter sample down to a number of three representative sets. Possible applications of our methods include all fully contin-525

uous simulation schemes for extreme flood analysis where computational or methodological limitations prevent the simulation

of full hydrological parameter distributions.

The analysis is based on a specific modeling setup with 100 calibrated parameter sets of the selected hydrological model

(HBV), 100 meteorological scenarios derived from a weather generator, each of 100 continuous simulation years. This number
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of 100 was chosen as a compromise between minimizing the intensive model calibrations and the simulations at an hourly time530

step, and maximizing the information content of the parameter sample and the climate variability. We have chosen the same

number of 100 for meteorological scenarios, parameter sets and simulation years to not favourable any of these components in

the methods’ comparison.

We should emphasize that the presented methods are independent of the selected parameter calibration approach or from the

selected hydrological response model and are thus readily transferable to any similar simulation setting, in particular also to535

settings where the full parameter samples to be downsized come from model regionalization (i.e. in applications to ungauged or

poorly gauged catchments). Moreover, although the methods are tested with a bucket type hydrologic model, the most valuable

application of the proposed methods would be to computationally more demanding hydrological models that can profit even

more from a reduced computational demand.

Furthermore, the proposed approach is tested here using synthetic hydrologic data, i.e., using streamflow simulations of the540

hydrological model in response to meteorological scenarios. This use of synthetic data makes the approach results independent

from the catchment properties and limits the effect of the hydrological model error and errors in calibration data on the methods’

comparison results.

We can, however, not directly assess here how much variability in the full hydrological ensemble is due to the climate

variability and how much is due to the uncertainty resulting from the hydrological model parameters, because these two545

components are not linearly additive. This can easily be seen by comparing the ranges of predictive intervals constructed

using one scenario and 99 scenarios in the multi-scenario evaluation for two example scenarios in Figs 9-10. In addition, any

ensemble simulation also encompasses other uncertainty sources of the modeling chain, such as resulting from the weather

generator or from the structure of the selected hydrological model, from the prediction of very rare flood events, etc. (Lamb

and Kay, 2004; Schumann et al., 2010; Kundzewicz et al., 2017).550

Hence, downsizing the hydrological model parameter sample can only aim at understanding and characterizing the hydrolog-

ical part of the full hydrological ensemble resulting from a combination of multiple parameter sets and multiple meteorological

scenarios. These methods are however not applicable for characterizing the climate variability (nor for downsizing the number

of meteorological scenarios needed).

Moreover, in developing the selection methods, we did not distinguish between different flood-types such as heavy rainfall-555

excess or intensive snowmelt events (Merz and Blöschl, 2003; Sikorska et al., 2015). Also, as we focused only on large annual

floods (annual maxima), we did not represent the flood seasonality in our analysis. Yet, some recent works emphasise the need

to include such information on the flood type (Brunner et al., 2017) or on flood seasonality (Brunner et al., 2018b) into bivariate

analysis of floods, or to represent a mixture of both flood type and flood seasonality in flood frequency analysis (Fischer et al.,

2016; Fischer, 2018). Thus, the proposed selection methods could potentially be extended to account for different flood types560

during representative parameter selection, using e.g. automatic methods of flood type attribution from long discharge series

(Sikorska-Senoner and Seibert, 2020).

Finally, we downsize the parameter sample to three sets which represents the predictive intervals of the full ensemble of

hydrological responses fairly well, given different meteorological scenarios. This number of three sets is motivated by the fact
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that it can be readily processed within a fully continuous ensemble-based framework using numerous climate settings. This565

is common practice in flood frequency analysis, and the three sets emulate the common practice of communicating median

values along with prediction limits (Cameron et al., 2000; Blazkova and Beven, 2002; Lamb and Kay, 2004; Grimaldi et al.,

2012b). Optionally, one could further downsize the parameter sample to two sets (i.e., infimum and supremum) which would

represent the intervals only. Downsizing to more than three parameter sets (e.g. five) could have an advantage of containing

more information on uncertainty intervals, e.g. in the case they are asymmetric, and should be explored in further study.570

6 Conclusions

In this study, we propose and test three methods for selecting the representative parameter sets of a hydrological model to

be used within fully continuous ensemble-based simulation frameworks. The three selection methods are based on ranking,

quantiling and clustering of simulation of annual maxima within a limited time window (100 years) that is much shorter

than the full simulation period of thousands of years underlying the simulation framework. Based on a synthetic case study,575

we demonstrate that these methods are reliable for downsizing a parameter sample composed of 100 parameter sets to three

representative sets that represent most of the full simulation range in the Gumbel space. Among the tested methods, the

clustering method that selects parameter sets based on cluster analysis in the Gumbel space, appears to outperform the others

due to its unbiasedness, and due to its transferability between meteorological scenarios. The ranking method, which is the

only tested method that completes the parameter selection on non-sorted annual maxima, can clearly not be recommended for580

typical settings since it i) tends to result in mixed-up prediction intervals in the Gumbel space and ii) depends too strongly

on the simulation period used for parameter selection and thus lacks transferability to other periods or other meteorological

scenarios. Possible applications of these methods include all fully continuous simulations schemes for extreme flood analysis,

and particularly those for which computational constraints arise.

Data availability. The observed discharge data for calibrating the hydrological model can be ordered from the FOEN (https://www.bafu.admin.ch,585

last access: 12 February 2020), the observed meteorological data from MeteoSwiss (http://www.meteoswiss.ch, last access: 12 February

2020), and the topographic data from Swisstopo (http://www.swisstopo.ch, last access: 12 February 2020).

Appendix A: Semi-continuous versus fully continuous simulation approach

This appendix briefly discusses the conceptual difference between the semi-continuous and the fully continuous approach from

two perspectives, i.e., from the hydrologic and the hydraulic perspective (Fig. A1). From a hydrologic perspective, an approach590

is continuous if hydrographs are selected from the continuous time series of discharge simulated with a hydrologic model,

and is semi-continuous if the hydrologic model is used only to simulate initial conditions prior to the flood event. From the

hydraulic perspective, two types of semi-continuous approaches can be distinguished that are marked here as semi-continuous

I, in which a continuous hydrologic model is used to simulate initial conditions prior to the storm event (e.g. Paquet et al.,
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2013; Zeimetz et al., 2018), and semi-continuous II, in which a continuous hydrologic model is used to simulate continuous595

discharge time series (e.g. Calver and Lamb, 1995; Cameron et al., 2000; Blazkova and Beven, 2004; Hoes and Nelen, 2005;

Winter et al., 2019). In both of these semi-continuous approaches, simulated or design hydrographs are further routed through

the hydraulic model. In contrast to these semi-continuous approaches, in the fully continuous simulation approach, as seen

from the hydraulic perspective, full discharge time series are routed through the hydraulic model (Grimaldi et al., 2013).

Appendix B: Study catchment: Dünnern at Olten600

The locality map of the study catchment is presented in Fig. A2.

Appendix C: Details on the HBV model parameters and model calibration

For searching the best parameter sets within the defined parameter ranges (Table A1), a Genetic Algorithm and Powell opti-

mization (GAP) approach (Seibert, 2000) is used. This approach is executed in two major steps. Firstly, the GA optimization is

performed that relies on an evolutionary mechanism of selection and recombination of a user defined number of parameter sets605

(i.e., parameter population) randomly selected within the defined parameter ranges. The principle idea of this searching relies

on regenerating the parameter sets from the subgroup of parameter sets selected using the defined objective function Fobj as a

criteria to choose the parameters that give the highest value of Fobj at the previous step of the model calibration. The search

for the best parameter set is terminated at a user defined maximum number of model interactions and results in a selected

optimal parameter set. Secondly, the optimal parameter set obtained at the previous step is used as a starting point for a local610

optimization search using the Powell’s quadratically convergent method (Press et al., 2002). The parameter set finally achieved

from the local optimization is retained as the best set. In this study, the total number of model interactions is set to 2500 for

the GA and 500 for the local Powell’s optimization. The GAP optimization is repeated 100 times resulting in 100 optimized

parameter sets (Figure A3).
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29

https://doi.org/10.5194/nhess-2020-79
Preprint. Discussion started: 26 March 2020
c© Author(s) 2020. CC BY 4.0 License.



0 25 50 75 10012.5

Kilometers

±

F R A N C E

I T A L Y

A U S T R I A

G E R M A N Y

Legend

Rivers

Lakes

Dünnern at Olten

Swiss boundary

Aare

Rhine

Aare

Aare

Rh
in
e

Rhine

Rh
in
e
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●

PERC

Value

0.23 0.3 0.37 0.43 0.5 0.57

●

UZL

Value

11 28 45 62 79 96

●

K0

Value

0.0025 0.041 0.08 0.1

●

K1

Value

0.02 0.031 0.041

●

K2

Value

0.0028 0.0037 0.0046

●

MAXBAS

Value

4.2 6.9 9.7 12 15 18

●

CET

Value

0.037 0.15 0.21 0.27 0.33

●

TT

Value

1.1 1.3 1.6 1.9 2.2 2.5

●

CFMAX

Value

0.24 1.1 2 2.8 3.7 4.5

●

SFCF

Value

0.4 0.48 0.57 0.65 0.73 0.81

●

CFR

Value

0.0038 0.042 0.081 0.1

●

CWH

Value

0.0013 0.079 0.16 0.2

●

FC

Value

160 240 310 390 460 540

●

LP

Value

0.02 0.18 0.35 0.51 0.67 0.84

●

BETA

Value

2.9 4.3 5.7 7.1 8.6 10

Figure A3. Violin plots summarizing 100 optimized parameter sets of the HBV model for the Dünnern at Olten catchment. Units as in

Table A1.
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Table A1. Parameter ranges for the calibration of the HBV model

Parameter Unit Min Max Description

PERC mm h−1 0 1 Percolation parameter

UZL mm 0 100 Groundwater runoff threshold parameter

K0 h−1 1e-04 0.2 Recession coefficient

K1 h−1 1e-05 0.1 Recession coefficient

K2 h−1 1e-08 0.05 Recession coefficient∗)

MAXBAS h 1 100 Length of triangular weighting function

CET ◦C−1 0 0.5 Correction factor for potential evaporation

TT ◦C -2.5 2.5 Threshold temperature

CFMAX mm h−1 ◦C−1 1e-03 5 Degree-hour factor

SFCF - 0.4 1.6 Snowfall correction factor

CFR - 0 0.1 Refreezing correction factor

CWH - 0 0.2 Water holding capacity

FC mm 50 550 Maximum moisture storage in soil box

LP - 0.1 1 Threshold for reduction of evaporation

BETA - 1 10 Shape coefficient

∗)For recession coefficients the following condition must be fulfilled: K0 > K1 > K2
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