
Downsizing parameter ensembles for simulations of rare floods
Anna E. Sikorska-Senoner1, Bettina Schaefli2,3, and Jan Seibert1,4

1University of Zurich, Department of Geography, Zürich, Switzerland
2University of Lausanne, Institute of Earth Surface Dynamics, Lausanne, Switzerland
3Now at: University of Bern, Institute of Geography, Bern, Switzerland
4Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Uppsala, Sweden

Correspondence: Anna E. Sikorska-Senoner (anna.senoner@geo.uzh.ch)

Abstract. For extreme flood estimation, simulation-based approaches represent an interesting alternative to purely statistical

approaches, particularly if hydrograph shapes are required. Such simulation-based methods are adapted within continuous

simulation frameworks that rely on statistical analyses of continuous streamflow time series derived from a hydrologic model

fed with long precipitation time series. These frameworks are, however, affected by high computational demands, particularly

if floods with return periods >1000 years are of interest or if modelling uncertainty due to different sources (meteorological5

input or hydrologic model) is to be quantified. Here, we propose three methods for reducing the computational requirements

for the hydrological simulations for extreme flood estimation, so that long streamflow time series can be analysed at a reduced

computational cost. These methods rely on simulation of annual maxima and on analyzing their simulated range to downsize

the hydrological parameter ensemble to a small number suitable for continuous simulation frameworks. The methods are

tested in a Swiss catchment with 10’000 years of synthetic streamflow data simulated thanks to a weather generator. Our10

results demonstrate the reliability of the proposed downsizing methods for robust simulations of rare floods with uncertainty.

The methods are readily transferable to other situations where ensemble simulations are needed.

1 Introduction

The quantification of extreme floods and associated return periods remains a key issue for flood hazard management (Kochanek

et al., 2014). Extreme value analysis was largely developed in this field for the estimation of flood return periods (Katz et al.,15

2002); corresponding methods have been recently extended to bivariate approaches that assign probabilities jointly to flood

peaks and flood volumes (Favre et al., 2004; De Michele et al., 2005; Brunner et al., 2016), and to trivariate approaches to

assign probabilities jointly to flood peaks, volume and duration (Zhang and Singh Vijay, 2007); for a review of this field, see

the work of Graler et al. (2013).

Most modern applications, however, not only require the estimation of extreme peak flow, associated flood volumes and20

duration, but also of hydrograph shapes, in particular in the context of reservoir design or for safety checks of hydraulic

infrastructure (Kochanek et al., 2014; Gaál et al., 2015; Zeimetz et al., 2018). The key is thus the construction of design

hydrographs with different shapes, peak flows and volumes, with a corresponding probability of occurrence. Such approaches

can be roughly classified into methods that identify the shape of these design hydrographs based on observed data (Mediero
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et al., 2010) or based on theoretical considerations (unit hydrographs) (Brunner et al., 2017) and regionalisation (Tung et al.,25

1997; Brunner et al., 2018a), or methods that rely on runoff simulations (Arnaud and Lavabre, 2002; Kuchment and Gelfan,

2011; Paquet et al., 2013).

Simulation-based methods for design or extreme flood estimation have a long history in hydrology (for a review see

Boughton and Droop, 2003), and started with the classical event-based simulation with selected design storms (Eagleson,

1972; Chow et al., 1988; American Society of Civil Engineers, 1996). Those event-based methods are based on the concept30

that the design storm and flood have the same return period. Moreover, as they usually do not simulate antecedent conditions

prior to the event and do not account explicitly for storm patterns (duration, spatial and temporal variability), they may yield

biased flood frequency distributions (Viglione and Blöschl, 2009; Grimaldi et al., 2012a). Although some modern extensions of

this event-based concept account for variable initial conditions prior to the event through sensitivity tests (Filipova et al., 2019),

most of the work using event-based simulations assume default initial conditions. Indeed, such event-based simulation is still35

in use, in particular in the context of probable maximum flood (PMF) estimation based on probable maximum precipitation

(PMP) (Beauchamp et al., 2013; Gangrade et al., 2019).

Modern extensions of this approach, however, use continuous hydrologic modelling for design flood estimation, either i)

to generate a range of initial conditions for use in combination with design or randomly drawn storms (Paquet et al., 2013;

Zeimetz et al., 2018) or ii) to generate long discharge time series from long observed precipitation records or from synthetic40

precipitation time series obtained with a weather generator (Calver and Lamb, 1995; Cameron et al., 2000; Blazkova and

Beven, 2004; Hoes and Nelen, 2005; Winter et al., 2019). The above approach ii) is computationally intensive, especially if

long time series are to be simulated using ensembles of hydrological parameter sets or if very high return times (>1000 years)

have to be robustly estimated. But in exchange, return period analysis is straight forward for simulated peak flows or volumes.

Full hydrographs for risk analysis are then obtained either by selecting a range of simulated extreme events or by scaling up an45

estimated synthetic design hydrograph by quantiles of extreme peak and volume estimated using frequency analysis (Pramanik

et al., 2010; Serinaldi and Grimaldi, 2011).

These fully continuous simulation schemes are particularly useful for studies where recorded discharge time series are too

short for extreme flood analysis (Lamb et al., 2016; Evin et al., 2018). Although such an approach is based entirely on a

continuous hydrologic simulation, it is noteworthy that such a fully continuous approach might still be considered as being50

“semi-continuous” from a hydraulic perspective, since corresponding studies often lack the final hydraulic routing step along

the floodway (Grimaldi et al., 2013). For clarity, we therefore use the term “continuous hydrologic simulation scheme” to

distinguish it from the above mentioned hydraulic approach. These continuous hydrologic simulation frameworks are still rare

for time series≥ 100 years due to heavy computational requirements (Grimaldi et al., 2013). An example is the work of Arnaud

and Lavabre (2002), who use a continuous simulation framework to generate an ensemble of possible extreme hydrographs,55

which are then used as individual scenarios for hazard management. Another option is to summarize all simulated flood

hydrographs into probability distributions for peak flow and flood volume (Gabriel-Martin et al., 2019).

High computational power is particularly needed in order to provide estimations for high to extreme return periods (up to

1000 years and higher) required for safety-related studies or for hydrologic hazard management. For such rare events, the large
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number of simulations in fully continuous frameworks can easily become prohibitive, in particular if the framework should60

also account for different sources of modelling uncertainty, such as input uncertainty (different weather generators) or the

uncertainty of the hydrological model itself, which is often incorporated into the model parameter sets (using distribution of

model parameters rather than a single best set) (Cameron et al., 1999). Using multiple parameter sets for a hydrological model

is justified by the parameter equifinality (Beven and Freer, 2001; Sikorska and Seibert, 2018b). It has been also found that

the model parameter uncertainty comprises an important uncertainty sources in design floods that are based upon hydrologic65

simulations (Brunner and Sikorska-Senoner, 2019). Other important uncertainty sources in hydrological modeling are linked

to the calibration (discharge) data, input forcing (precipitation, temperature, evaporation) data, and model structure (Sikorska

and Renard, 2017; Westerberg et al., 2020).

Studies dealing with modelling or data uncertainties in such continuous simulation frameworks are rare, as most previous

studies have focused on the uncertainty related to the hydrological model parameters only (e.g. Blazkova and Beven, 2002,70

2004; Cameron et al., 1999). In addition to the uncertainties from seven hydrological model parameters, Arnaud et al. (2017)

investigated how the uncertainty related to six rainfall generator parameters propagates through the simulation framework, us-

ing more than 1000 French basins with hydrologic observation series of 40 years (median over all basins) and several hundreds

of replicats. In their study they found that the uncertainty of the rainfall generator dominates the uncertainty in the simulated

extreme flood quantiles. With the exception of the work of Arnaud et al. (2017) using a simplified hydrologic model, studies75

that deal with meteorological and hydrological modeling uncertainty in fully continuous simulation frameworks are currently

missing. This is despite the fact that recent improvements in computational power with cluster and cloud computing theoreti-

cally open up the unlimited possibility of analyzing different combinations of meteorological scenarios and parameter sets of a

hydrological model within such ensemble-based simulation frameworks. Yet, computational constraints of hydrological mod-

els, especially at a high temporal resolution (sub-daily or hourly), and data storage, still remain bounding factors for simulation80

of long time series or for simulation of extreme floods with high return periods (up to 10’000 years).

Accordingly, for settings where full hydrologic-hydraulic models are used for continuous simulation, some pre-selection of

hydro-meteorological scenarios is often needed, particularly for computationally demanding complex hydrological or hydraulic

models. How this selection should be completed, i.e. based on which quantitative criteria, remains unclear. The meteorological

scenarios have the particularity that all scenarios generated with the same weather generator present different, but equally likely85

realisations of the assumed climate condition; in other words, they represent the natural variability of the climate. Reducing the

number of meteorological input scenarios is not possible without simulating them with a hydrological model first, as long as the

continuous simulation scheme is of interest, i.e., if full time series are to be analysed without the possibility of extracting single

events. This is due to the non-linear response of any hydrological model to meteorological input (scenario), which translates

into hydrological scenarios with different statistical properties, albeit resulting from an ensemble of input scenarios having the90

same statistical properties.

We are therefore essentially left with finding ways to reduce at least the computational requirements associated with hy-

drological model parameter uncertainty, apart from reducing the length of time series, which for analysis of extremes, is

an unattractive option. Accordingly, in this work, we propose an assessment of different data-based methods to select a
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reduced-size ensemble of hydrological model parameters for the use within a continuous simulation, ensemble-based hydro-95

meteorological framework. Our specific research questions are as follows: (1) how can we downsize (reduce) the hydrologic

model parameter ensembles for simulation of rare floods so that the variability and the range of the full ensemble is preserved as

closely as possible? (2) can such a reduced hydrologic model parameter ensemble be assumed to be reliable for the simulation

of rare floods, during the reference period (used for parameter ensemble downsizing), as well as during an independent valida-

tion period? and (3) which metrics would be suitable to assess the performance of such a reduced hydrologic model parameter100

ensemble against the reference (full) ensemble? Specifically, three different methods of reducing a full hydrological modelling

parameter ensemble to a handful of parameter sets are proposed and tested for deriving the uncertainty ranges of simulated

rare flood events (up to 10’000 years return period). All three methods rely on simulation of annual maxima and are tested on

continuous synthetic data (simulated with a hydrological model) of 10’000 years. Using synthetic instead of observed data is

here important as only recently Brunner et al. (2018b) have shown that the record length is one of the most important sources105

of uncertainty in design floods. Hence, using a simulation setting with synthetic data as a start for our analysis enables us i)

to provide long enough simulation periods for rare flood analysis with return periods ≥100 years, and ii) to be able to focus

entirely on the uncertainty of the hydrological response, while other uncertainty sources of a hydrologic model (due to model

calibration) are not explicitly considered. Note that way the hydrologic model is calibrated lies outside of this paper scope. The

principal idea underlying these selection methods is that the downsizing of the ensemble of hydrologic model parameters may110

be performed with a reduced length of input time series that is much shorter than the full simulation time frame and that then

can be applied to the full time window for analysis of rare floods (up to return periods of 1000 years or more).

2 Methods

2.1 Study framework and objectives

The focus of this study is a fully continuous hydro-meteorological ensemble-based simulation framework for estimation of rare115

floods. The underlying streamflow time series ensemble is built based on meteorological scenarios and multiple hydrological

model runs using a number of calibrated model parameter sets. A meteorological scenario represents a single realisation

from a stochastic weather generator with constant model parameters. These meteorological scenarios are equally likely model

realisations that differ in the precipitation and temperature patterns and together they represent the natural variability of the

climate (and not the model uncertainty of a weather generator). These realisations are then used as inputs into a hydrological120

model to simulate the hydrological response. To account for hydrological modelling uncertainty, a range of different hydrologic

model parameter sets is used for each meteorological scenario. These two sources of hydrologic variability then accumulate

along the modeling chain and can be represented as an ensemble of possible hydrological responses (Fig. 1).

Within such a defined framework we first want to understand how variable the hydrologic response simulation is, and second,

develop methods to downsize the hydrologic model parameter ensemble to a smaller subset that could be dealt with within such125

a modeling chain for rare flood simulations. This subset should represent the entire range of variability of the hydrological
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Figure 1. Framework overview. The infimum and supremum refer to the the largest interval bounding the ensemble simulation from below

and the smallest interval bounding it from above.

response but with little computational effort and should also be transferable to independent time periods. Hereafter, we call this

subset the representative parameter ensemble.

Downsizing of the ensemble of hydrologic model parameters is particularly needed if (i) the probability distribution of

the parameter sets is unknown because parameter sets result from independent calibrations or regionalization approaches and130

only a limited number of sets can be run with the hydrological model, or (ii) the distribution is known (i.e. estimated from

data) but due to time-consuming simulations it is not possible to run the hydrological model for a full ensemble of multiple

meteorological scenarios.

The question of how many parameter sets are needed to cover most of the simulation range is important. However, here

we set this value to a constant number and rather test different selection approaches. Hence, for the purpose of our work, we135

furthermore would like this representative parameter ensemble to be composed of only three sets, which should be represen-

tative of a lower (infimum), a middle (median) and a upper (supremum) interval of the full hydrological ensemble (Fig. 1).

These intervals, together, should enable the construction of predictive intervals for rare flood estimates that represent the full

variability range of all ensemble members. The infimum (from the Latin – smallest) and supremum (from the Latin – largest)

refer to the greatest lower bound and the least upper bound (Hazewinkel, 1994), i.e., the largest interval bounding the ensemble140

from below, here 5%, and the smallest interval bounding it from above, here 95%. Thus, the representative band should corre-

spond to 90% predictive bands of a target variable. The choice of infimum and supremum is favourable over the maximum and

minimum as the latter would imply a complete hydrologic model parameter ensemble range whereas here we use the terms to

describe the range of a certain ensemble.

The key challenge for such a downsizing is the fact that we would like to select hydrologic model parameter sets (i.e.145

select in the parameter space) but based on how representative the corresponding simulations are in the model response space.

Moreover, the downsized ensemble should be representative not only for simulated time periods but also be transferable to
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independent time periods. The first question to answer is which model response space the selection should focus on. In the

context of rare flood estimation, focusing on the frequency distribution of annual maxima (AM) is a natural choice; we thus

propose to use the representation of AMs sorted by their magnitudes (i.e. frequency space) as the reference model response150

space for parameter selection.

The next step is the development of selection methods to select hydrologic model parameter sets that plot into certain

locations in the model response space. Given the nonlinear relationship between model parameters and hydrological responses,

this selection has to be obtained via a post-modelling approach, i.e. we have to first simulate all parameter sets and then decide

which parameter sets fulfil certain selection criteria in the model response space.155

For that purpose, we developed three methods, which are based on: a) ranking, b) quantiling, and c) clustering, described in

detail in Sect. 2.2. The main idea behind all three methods is that the hydrologic parameter set selection is made based on the

full ensemble with all hydrological model simulations but using only a limited simulation period that is much shorter than the

time window of full meteorological scenarios used within the simulation framework, for which rare floods are to be estimated.

Next, for the purpose of this study, let us define the following variables:160

– I is a number of hydrologic model parameter sets available with i= 1,2, ...., being a parameter set index;

– θi is the i-th parameter set of a hydrological model;

– J is a number of annual maxima (years) per one hydrological simulation, y = 1,2, ..., is a year of simulation (index of

unsorted annual maxima), and j = 1,2, ...., is an index of sorted annual maxima;

– Xj is the j-th sorted annual maximum and Xy is the unsorted annual maximum from the year y.165

– M is a number of meteorological scenarios considered with m= 1,2, ...., being a meteorological scenario index;

– Sm is the m-th meteorological scenario;

– H(θi|Sm) is the hydrological simulation computed using the i-th parameter set of a hydrological model and the m-th

meteorological scenario;

– Xy,i,m is the annual maximum for the year y extracted from H(θi|Sm);170

– θinf, θmed and θsup are the representative parameter sets of the hydrological model, i.e., infimum, median and supremum

that correspond to the intervals named in the same way.

2.2 Developed methods for selecting the representative parameter sets

For the sake of simplicity, let us choose a single meteorological scenario Sm for now. Using Sm as an input into a hydrological

model combined with I parameter sets results in an ensemble of hydrological simulations, H(θ1,2,...|Sm). Now, the goal is175

to select a limited number (here 3) of hydrological model parameter sets, i.e., θinf, θmed and θsup, from the available pool of

I sets (I � 3) based on the simulation of annual maxima (AM). These AMs are extracted from time series with continuous
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hydrological simulations, i.e., H(θ1,2,...|Sm) using a maximum approach that guarantees that the highest peak flow within

each calendar year for each hydrological simulation is selected (Fig. 2). This assumption is made to cover the situation when

different model realizations (i.e, for i= 1,2, ...) lead to different flood events being classified as the largest event within the180

year. In this case, we ensure that the largest flood event simulated within each y-th year and each i-th parameter set is selected.

This means however that AMs selected for the same year y but with a different hydrologic model parameter set may originate

from different flood events and even from a different dominant flood process, e.g. heavy rainfall or intensive snowmelt (Merz

and Blöschl, 2003; Sikorska et al., 2015). This could be the case when one hydrologic model parameter set better represents

processes driven by the rainfall excess while others by the snowmelt dynamics. For simplicity, we do not distinguish events by185

their different flood genesis and pool all AMs together.

Using the above notations, the selection of representative parameter sets can be summarized as:

1. Simulation of continuous streamflow times series: the hydrological model is run with all available I parameter sets of

a hydrologic model over the simulation period. This gives I different hydrological realizations (simulation ensemble

members) covering the same time span.190

2. Selection of annual maxima (AMs): for each i-th hydrological realisation annual maxima are selected as the highest peak

flow within each y-th simulation year. This results in a J set of AMs per each i hydrological simulation. The selection

of AMs is repeated for all I hydrological simulations.

3. Selection of three representative parameter sets based on the simulation of AMs and following on from the three methods

detailed below.195

2.2.1 Ranking

(a) AMs computed from I hydrological simulations (i.e., using I hydrologic model parameter sets) are sorted by their

magnitude from the highest to the lowest within each y-th simulation year independently (Fig. 2A).

(b) For each y-th simulation year, AMs which correspond to the 5th, 50th and 95th rank for that year are selected.

(c) Parameter sets that correspond to the selected AM ranks are then attributed as 5th, 50th and 95th parameter sets per each200

y-th year independently.

(d) The parameter sets selected in step (c) are compared over all J simulation years and the sets which are chosen most

often as the 5th, 50th and 95th ranks are retained as the parameter sets θR5, θR50 and θR95 representative for the entire

simulation period and for the entire hydrological simulation ensemble.

2.2.2 Quantiling205

(a) For each i-th hydrologic model parameter set, AMs computed with this parameter set are sorted by their magnitude over

the entire simulation period (J years), thus creating the ensemble of sorted AMs simulated with different parameter sets.
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simulation ensembles and ensemble ranges; bottom panel: three methods (A-C) proposed for selecting the representative parameter sets

based on annual maxima (AM) marked with red circles.

(b) The 5%, 50% and 95% quantiles of these ensembles are computed at each j-th point in the frequency space, resulting in

quantilesQ5,Q50 andQ95 over the entire simulation period (Fig. 2B).

(c) Next, for each i-th ensemble member, a metric RMSE is computed such that for each j-th point of the i-th ensemble210

member measures distances from Q5, Q50 and Q95. This metric is somehow similar to the mean square error and is
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computed forQ50 as:

RMSE,Q50,i =
1

J

J∑
j=1

(Q50,j −Hj(θi|Sm))
2 (1)

and in the same way forQ5 andQ95.

(d) Finally, the ensemble members which lie closest to Q5, Q50 and Q95, i.e., received the smallest values for RMSE,Q5,215

RMSE,Q50 andRMSE,Q95, respectively, are chosen as the ensemble members representative for the entire hydrological en-

semble, and the parameter sets corresponding to these members, i.e., θQ5, θQ50 and θQ95, are retained as representative.

2.2.3 Clustering

(a) Similar to the quantiling method, for each i-th parameter set AMs computed with this parameter set are sorted by their

magnitude over the entire simulation period, creating I ensemble members of sorted AMs simulated with different220

parameter sets.

(b) These members are next clustered into three representative groups (clusters) based on all J simulation years using the

k-means clustering with Hartigan–Wong algorithm (Hartigan and Wong, 1979), as implemented in the function kmeans

from the package “stats” (R Core Team, 2019), see Fig. 2C.

(c) Next, these clusters are sorted based on cluster means by their magnitude by comparing percentiles in the upper tail of225

the distribution (here we used a 90th percentile). Use of a percentile from the upper tail is important as methods are

focusing on rare floods. However, we found that the method was insensitive to the percentile choice as long as it lies in

the upper tail (i.e. ≥80th percentile). Based on the percentiles computed for each cluster mean, the lower, middle and

upper clusters are defined. Next, for the lower cluster a 5th percentile, for the upper – 95th percentile, and for the middle

– 50th percentile are computed, i.e., P 5, P 50 and P 95. Note that we use here percentiles instead of cluster means to230

make this method comparable with the other two methods and to better cover the variability of the hydrologic model

parameter sample. Use of the 5th and 95th percentiles appears as a fair choice for asymmetrically spread clusters, which

is most often the case as different parameter sets of a hydrologic model may emphasise different hydrologic processes

in the catchment.

(d) For each i-th ensemble member, the metric RMSE is computed in relation to three estimated cluster percentilesas , e.g.235

forQ50:

RMSE,P50,i =
1

J

J∑
j=1

(P 50,j −Hj(θi|Sm))
2 (2)

and in the same way for P 5 and P 95.

(e) For each of these three clusters, the ensemble member that lies closest to the cluster percentile, i.e., received the smallest

value of RMSE, is selected as the representative member for that cluster and the parameter sets which correspond to these240

members, θP5, θP50 and θP95, are retained as representative.
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For visualizing the selection methods, we use the Gumbel space (Generalized Extreme Value distribution Type-I) with the

Gringorten’s method (Gringorten, 1963) to compute the plotting positions of AMs in the Gumbel plots:

kj =
j− 0.44

J +0.12
(3)

where kj is a plotting position for the j-th (sorted) AM in the Gumbel space.245

2.3 Estimation of the predictive intervals for rare flood simulations

While the three methods described in Sect. 2.2 vary in the way the representative parameter sets are selected (see Sect. 2.4

for a summary), each of these selection methods results in three (different) representative hydrological simulation ensemble

members and can be thought of as representing the lower (infimum), upper (median) and middle (supremum) interval of the

full simulation range. The hydrologic model parameter sets corresponding to these are then noted as θinf, θmed, θsup. The250

simulations corresponding to these three parameter sets together create the so-called predictive interval, which can be used for

rare flood simulation studies. Here, these predictive intervals constructed based on representative parameter sets correspond to

90% predictive intervals (PIs).

2.4 Comparison of three selection methods

The major difference between these three methods is that the ranking method is evaluated based on individual simulation years255

using simple ranking of flow maxima independently of their frequency, i.e., it works on unsorted annual maxima. Note that in

this way, for each y simulation year, a different rank order of the I hydrologic model parameter sets may be achieved. In an

extreme case, where for each year y different parameter sets are chosen, a choice of the representative sets over all simulation

years may become problematic due to difficulties in identifying the parameter sets most frequently selected over all simulation

years. The derived predictive intervals thus are sensitive to individual years of simulations and their interpretation may be260

difficult (as they do not result from any flow frequency analysis).

In contrast to the ranking method, both other methods, i.e., quantiling and clustering, are performed on sorted AMs over all

simulation years, i.e., in the flow frequency space. This enables statistical statements to be made about the selected parameter

sets and about the predictive intervals constructed with the help of these parameter sets (as they are constructed on the entire

simulation ensemble). Furthermore, selected parameter sets can be assumed to be representative over the entire simulation265

period (see Table 1 for a detailed overview of three methods). Finally, the clustering method splits all ensemble members

(hydrologic simulations) into three clusters, and so each parameter set can be attributed into corresponding clusters. This could

be useful if one would like to extract more information on each cluster behaviour.

2.5 Assessment of the behavior of the approach

Testing the methods for a time period different than the one that was used for the parameter ensemble downsizing is crucial for270

assessing how well the reduced ensembles substitute the whole simulation ensemble for the selection of representative parame-

ter sets. Thus, we propose to assess the behavior of the developed approach by repeating the selection of the three representative
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Table 1. Comparison of three methods for selecting representative parameter sets based on annual maxima (AM).

Criteria Ranking Quantiling Clustering

Selection window year all simulation years all simulation years

Annual maxima (AMs) unsorted over years sorted over years sorted over years

Sorting space simulated AMs AMs frequency, quantiling AMs frequency, clustering

Sorting extent AMs over simulations AMs over years AMs over years

Selection criteria ranks RMSE RMSE

Interpretation of pred. intervals no yes yes

Parameter grouping no no yes

parameter sets with the three proposed methods with multiple (M ) meteorological scenarios. Using multiple meteorological

scenarios enables, first, accounting for the natural variability of the hydrological response due to climate variability, and second,

gives us the possibility to evaluate the bias of the approach. Particularly, with the help of multiple meteorological scenarios we275

explore how the choice of the representative parameter sets θinf, θmed, θsup depends on the meteorological scenario.

2.5.1 Leave-one-out cross-validation

To evaluate the three selection methods, we perform a leave-one-out cross-validation simulation study, in which a meteoro-

logical scenario Sr is removed from the analysis and the selection of the representative parameter sets is executed based on

all other remaining meteorological scenarios, i.e., using all m= 1,2, ...,M and m 6= r. The evaluation of selection methods is280

then executed against the one meteorological scenario initially removed from the set. In detail, the following steps are executed

for each of the three methods independently:

(a) Pick-up and remove one meteorological scenario Sr from S1,2,..,M scenarios available;

(b) Analyze all other meteorological scenarios {SM−r}= {S1,2,..,M}\{Sx} each containing I ensemble members result-

ing from I hydrologic model parameter sets, {H(θi|Sm−r)}, for i= 1,2, ..., I , m= 1,2, ...,M and m 6= r, and based285

on the selected three representative parameter sets θinf,m−r, θmed,m−r, θsup,m−r as described in sect. 2.2;

(c) Estimate the predictive intervals of theseSM−r meteorological scenarios as the band spread betweenH(θinf,m−r|Sm−r)

and H(θsup,m−r|Sm−r), the interval defined in step (b);

(d) Evaluate the meteorological scenario Sr removed at step (a) against the predictive intervals of SM−r meteorological

scenarios to assess how well the defined identified intervals represent the ensemble members of this Sr meteorological290

scenario (see sect. 2.6 for assessment criteria).

The simulation is repeated M times to use each meteorological scenario once. In other words, this test evaluates how well the

selection methods applied to all but one scenario can predict the full simulation range of the left out scenario.

11



2.5.2 Multi-scenario evaluation

To further evaluate the three methods, we perform a simulation study using multiple (M ) meteorological scenarios. In this295

study, the three selection methods are executed on one meteorological scenario randomly (without replacement) selected from

the M available scenarios and evaluated against all remaining scenarios. In detail, the following steps are executed for each of

the three methods independently:

(a) Pick-up one meteorological scenario Sp out of the S1,2,..,M scenarios available;

(b) Analyze the I simulated hydrological ensemble members of this scenario H(θi|Sp), i= 1,2, ..., I , resulting from I300

hydrologic model parameter sets θi for Sp and select three representative parameter sets corresponding to θinf,p, θmed,p,

θsup,p, as described in sect. 2.2;

(c) For all other remaining meteorological scenarios {SM−p}= {S1,2,..,M} \ {Sp}, take all hydrological ensemble mem-

bers {H(θi|Sm)}, for m= 1,2, ...,M and m 6= p, that correspond to θinf,p, θmed,p, θsup,p. This results in M − 1 model

simulations for each of θinf,p, θmed,p, θsup,p, one per meteorological scenario;305

(d) Compute the 5th percentile for {H(θinf,p|Sm)}, the 50th for {H(θmed,p|Sm)}, and the 95th for {H(θsup,p|Sm)} for

m= 1,2, ...,M and m 6= p. The computed 5th and 95th percentiles are assumed to together describe the predictive

intervals;

(e) Evaluate the predictive intervals against all SM−p meteorological scenarios for assessing how well the identified predic-

tion intervals represent the ensemble members of these SM−p scenarios (see sect. 2.6).310

The steps (a-e) are repeated M times to use each meteorological scenario once. We call this evaluation a multi-scenario

evaluation because the evaluation is performed using multiple meteorological scenarios at once (SM−p) in contrast to the

leave-one-out cross-validation (Sect. 2.5.1), where the evaluation is performed against only one meteorological scenario (Sr).

This test quantifies how well the methods applied to a single scenario are transferable to all other scenarios.

2.6 Evaluation criteria315

2.6.1 Visual assessment

The simplest way of assessing the behavior of these three methods is a visual inspection of curves plotted in the frequency

space (e.g. using Gumbel distribution for plotting), which can tell us how well the selected members reproduce the simulation

ensemble and particularly whether the assignment of the representative parameter sets is correct or not. For this purpose,

we propose to plot all simulated hydrological ensemble members together with the selected representative members in the320

frequency space for each considered meteorological scenario m individually and to visually assess the assignment of the

three selected parameter sets, θinf,m, θmed,m, θsup,m, and the corresponding intervals, i.e., H(θinf,m|Sm), H(θmed,m|Sm) and
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H(θsup,m|Sm). The order of the intervals’ assignment is assumed to be correct if it holds in the frequency space that:

H(θinf,m|Sm)≤H(θmed,m|Sm)≤H(θsup,m|Sm). (4)

We further define a ratio of incorrectly attributed scenarios, with mixed-up intervals, i.e. for which Eq. 4 does not hold, as a325

measure of the bias as:

Rbias =

M∑
m=1

Rm

M
(5)

where Rm is computed for the m-th scenario as:

Rm =

0 if H(θinf,m|Sm)<H(θmed,m|Sm)<H(θsup,m|Sm)

1 else.
(6)

2.6.2 Quantitative assessment330

To quantitatively compare the three selection methods, we propose to compute the three following metrics:

(I) The ratio of simulation points in the frequency space, i.e. sorted annual maxima, lying outside the predictive intervals

computed for each m-th scenario as:

Rspo,m =

I∑
i=1

J∑
j=1

Rspo,m,i,j

I · J
(7)

whereRspo,m,i is the ratio for each i-th hydrologic model parameter set of the meteorological scenariom and is computed335

for each simulation point j (sorted annual maximum) as:

Rspo,m,i,j =

0 if Hj(θinf,m|Sm)≤Hj(θi|Sm)≤Hj(θsup,m|Sm)

1 else.
(8)

(II) In the leave-one-out cross-validation, the ratio of hydrological simulation ensemble members lying outside the predictive

intervals is computed for each m-th scenario as:

Rhso,m =

I∑
i=1

Rhso,m,i

I
(9)340

where Rhso,m,i is the ratio computed for each i-th ensemble member as:

Rhso,m,i =

0 if H(θinf,m|Sm)≤H(θi|Sm)≤H(θsup,m|Sm)

1 else.
(10)

13



(III) In the multi-scenario evaluation, the ratio of meteorological scenarios lying outside the predictive intervals is computed

for each scenario p as:

Rmso,p =

M∑
m

Rmso,m

M − 1
m=1,2,...,M &m 6= p (11)345

where Rmso,m is computed as:

Rmso,m =

0 if H(θinf,m|Sm)≤H(θi|Sm)≤H(θsup,m|Sm)∀i= 1,2, .., I

1 else.
(12)

(IV) Relative band spread of PIs (R∆PIs) that is computed for both tests and which compares the spread of PIs constructed

with the representative parameter sets versus 90%-PIs of the full hydrologic ensemble. In details, R∆PIs is computed for

each m-th scenario as:350

R∆PIs,m =

J∑
j

SPIs,repr.,m

SPIs,full,m
m=1,2,...,M & j=1,2,...,J (13)

where SPIs,repr.,m and SPIs,full,m are band spreads of the 90%-PIs constructed with the representative parameter sets and

with the full hydrologic ensemble. The band spread is computed as a difference between the upper (or supremum) and

the lower (or infimum) interval at each j-th simulation point in the frequency space.

(V) Overlapping pools of PIs (ROPPIs) that are computed for both tests in the frequency space by taking the Gumbel vari-355

ate and discharge values of sorted AMs as coordinates of the PI pools. In details, ROPPIs of PIs constructed with the

representative parameter sets is computed for each m-th scenario as:

ROPPIs,m =

J∑
j

(kj − kj−1)

2
(H(θsup,m,j)+H(θsup,m,j−1)−H(θinf,m,j)−H(θinf,m,j−1)) m=1,2,...,M & j=2,3,...,J

(14)

In a similar way,ROPPIs is computed for the full hydrologic ensemble using the pool restricted by the 90%-PIs, i.e. taking

the 5% and 95% intervals as pool borders.360

With respect to Rspo, the question arises of how to define the ratio of simulation points being outside the predictive inter-

vals if multiple hydrological simulations (leave-one-out cross-validation) or multiple meteorological scenarios (multi-scenario

evaluation) are considered. Here we propose to use the 50th percentile to characterize the ratio of the majority of simulation

points lying outside the computed predictive intervals for each of the methods.

In a similar way, for Rhso and Rmso an additional condition must be defined, i.e., how many out of J hydrological simulation365

points for Rhso, or how many out of I hydrological simulation ensemble members for Rmso must lie outside the defined

predictive intervals, so that the hydrological simulation H(θi|Sm), or the meteorological scenario Sm, is considered as lying

outside these intervals. For this purpose we define the rejection threshold rthr (dimensionless) that has to be reached, so that
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the meteorological scenario or hydrological simulation is assumed as lying outside the predictive intervals. In this work, we

consider two following values for rthr = {0.50,0.10}.370

With regards to R∆PIs, we propose to compute the relative band spread as a mean over all sorted AMs at first. Also, to focus

more on rare floods, we propose to compute means of rare floods limited by different Gumbel variates. Here we computedR∆PIs

for the upper half of AMs (R∆PIs,j≥51), for the most upper ten AMs (R∆PIs,j≥91) and the most upper five AMs (R∆PIs,j≥96).

These five metrics are computed for all three methods and for all M meteorological scenarios, and the median values over

these M scenarios are taken as a measure for comparing the three methods.375

3 Experimental set-up

3.1 Study catchment

For testing the methods developed here, a small close to natural catchment is preferable, i.e. with only little anthropogenic

influences, in which hydrological responses are transparent and the generation of rare flood (peaks) is not affected by human

constructions (dams, bridges). For this purpose, the Dünnern at Olten catchment with an area of 196 km2 is selected, located380

in the Jura region in Switzerland (Fig. 3). The Dünnern stream is a tributary of the Aare River and belongs to the basin of the

Rhine River. The mean elevation of the Dünnern at Olten catchment is 711 m. a.s.l. with an elevation span from 400 to 760

m. a.s.l.. The flow regime is defined as nival pluvial jurassien (Weingartner and Aschwanden, 1992; Schürch et al., 2010) with

high flows in winter and spring and low flows in autumn. With no direct human influence within the entire catchment known,

it can be assumed close to natural (BAFU, 2017). This catchment is part of a large-scale extreme flood modelling effort in385

Switzerland for the entire Aare catchment (Viviroli et al., 2020).

3.2 HBV model for hydrological simulations and calibration data

To simulate the hydrological catchment responses to meteorological scenarios, the HBV model is used. The HBV model is

a semi-distributed bucket-type model and it consists of four main routines: (1) precipitation excess, snow accumulation and

snowmelt, (2) soil moisture, (3) groundwater and streamflow responses and (4) runoff routing using a triangular weighting390

function. Due to the presence of the snow component, the HBV model is applicable to mountainous catchments (e.g., Jost

et al., 2012; Addor et al., 2014; Breinl, 2016; Griessinger et al., 2016; Sikorska and Seibert, 2018b).

In this study, the version HBV light (Seibert, 1997; Seibert and Vis, 2012) with 15 calibrated parameters is used; see

Table A1 in Appendix A for details on model parameters and their calibration ranges. Such a set-up of the HBV light was

previously successfully applied in Swiss catchments (e.g. Sikorska and Seibert, 2018a; Brunner et al., 2018c; Brunner and395

Sikorska-Senoner, 2019; Müller-Thomy and Sikorska-Senoner, 2019; Westerberg et al., 2020). Model inputs are time series

of precipitation and air temperature, and long-term averages of seasonally varying estimates of potential evaporation, all being

area-average values for the entire catchment. These inputs are next redistributed along pre-defined elevation bands using two
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Figure 3. Location of the Dünnern at Olten catchment with river network extracted from Swiss Map Vector 25 (SwissTopo, 2008).

different constant altitude-dependent correction factors for precipitation and temperature. The model output is streamflow at

the catchment outlet at time steps identical to input data (hourly in this study).400

For the study catchment, meteorological inputs (hourly precipitation totals, hourly air temperature means, average hourly

evaporation sums) for the HBV model are derived from observed records from meterological stations and are averaged to the

mean catchment values using the Thiessen polygon method. The recorded continuous hourly streamflow data at the catchment

outlet (Olten station) covers the period 1990-2014.

3.3 Identification of multiple HBV parameter sets405

To derive multiple parameter sets of the HBV model, we propose a heuristic approach that relies on multiple independent

model calibration trials using a Genetic Algorithm approach (Appendix A). By using independent model runs, the possibility

of being trapped in the same local optimum should be reduced. The Genetic Algorithm is used together with a multi-objective

function Fobj with three scores: the Kling-Gupta efficiency (RKGE) and the efficiency for peak flows (RPEAK), and a measure

based on the Mean Absolute Relative Error (RMARE). RPEAK is defined is a similar way to the Nash-Sutcliffe efficiency but410

using peak flows instead of the entire time series. While both RKGE and RPEAK focus on high (peak) flows, RMARE is sensitive

to low flows. See Appendix B for equations.

Fobj is obtained through weighing these metrics as follows:

Fobj = 0.3RKGE +0.5RPEAK +0.2RMARE (15)

The weights in Fobj are chosen following our previous experience in modelling Swiss catchments (Sikorska et al., 2018;415

Westerberg et al., 2020). The available observational datasets are split into a calibration (1990-2005 years) and a validation
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(2006-2014 years) period. Evaluation of the model in the independent period is important as the model is applied to simulate

time series outside the calibration period. To set up the initial conditions, one year of model simulations are discarded from

the calibration simulation and the remaining used for model performance computation. For the validation period, the initial

conditions are taken from the calibration simulation.420

Here, the Genetic Algorithm is run 100 times resulting in 100 independent optimal parameter sets (see Fig. A1 in Ap-

pendix C). These 100 parameter sets represent similarly likely solutions to model hydrological responses in this catchment and

can be explained by the equifinality of hydrologic model parameters (Beven and Freer, 2001). The median model efficiency

measured with Fobj over all 100 runs is 0.7 in the calibration and in the validation periods, which can be assumed to be a good

model performance on an hourly scale. Also, diagnostics of the Nash-Sutcliffe efficiency and the Peak efficiency demonstrate425

that the model performs well in the range of high flows which are mostly important for simulation of rare floods studied in this

paper (see Fig. A2 in Appendix C).

Note that the described above way to derive 100 parameter sets is one possible approach, and other calibration methods

could be used (e.g. Monte Carlo or bootstrapping).

3.4 Generation of synthetic meteorological scenarios using a weather generator430

Meteorological scenarios of synthetic precipitation and temperature data for the Dünnern at Olten catchment are generated

with the weather generator model GWEX developed by Evin et al. (2018) and referred to in their paper as GWEX_Disag. This

stochastic model is a multi-site precipitation and temperature model that reproduces the statistical behavior of weather events

on different temporal and spatial scales. The major property of GWEX is that it uses marginal heavy-tailed distributions for

generating extreme precipitation and temperature conditions. Moreover, it has been developed to generate long term (≈ 1000435

years) meteorological scenarios. GWEX_Disag generates precipitation amounts at a 3-day scale and then disaggregates them

to a daily scale using a method of fragments (for details on the precipitation model, see the work of Evin et al. (2018), and for

details on the temperature model, see the work of Evin et al. (2019)).

The meteorological scenarios used in this study are a subset from the long-term meteorological scenarios developed for the

entire Aare River basin using recorded data from 105 precipitation stations and from 26 temperature stations in Switzerland440

(Evin et al., 2018, 2019). For this larger scale research project, GWEX_Disag was set up using daily precipitation and temper-

ature data from the period 1930-2015 and hourly records of precipitation and temperature from 1990-2015 for the Aare River

basin. The daily values generated with GWEX_Disag were then disaggregated to hourly values using the meteorological ana-

logues method, which for each day in the simulated dataset finds an analogue day in observed data, i.e., with a known hourly

time structure. Next, catchment means were computed using the Thiessen polygon method (using 3 stations located close by).445

For the present study, 100 different meteorological scenarios (precipitation and temperature) covering the same time frame

of 100 years at an hourly time step are available for the Dünnern at Olten catchment (see Fig. A3 in Appendix D) for an

overview of meteorological scenarios). The simulated data is assumed to be representative for current climate conditions, i.e.,

no variation due to climate or land use change, or river modification is considered. Thus, differences between scenarios are

exclusively due to the natural variability of the meterological time series and modelled by the GWEX_Disag weather generator.450
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Figure 4. Setup of the experimental study.

3.5 Generation of synthetic hydrological simulation ensembles

Finally, for our analysis, 100 meteorological scenarios with continuous data of 100 years of precipitation and temperature,

and 100 calibrated parameter sets of the HBV model are available. This number of 100 was chosen as a compromise between

minimizing the intensive model calibrations and the simulations at an hourly time step, and maximizing the information content

of the hydrologic parameter sample and the climate variability. We have chosen the same number of 100 for meteorological455

scenarios, parameter sets and simulation years to not favourable any of these components in the methods’ comparison. These

100 meteorological scenarios are used as input into the HBV model to generate streamflow time series with 100 different HBV

parameter sets. To set up the initial conditions of the model, a one year warming up period is always used prior to the simulation

period. To get an overview of the variability of such hydrologic ensembles, see Fig. A4 in Appendix D.

From each of these continuous hydrological simulations, 100 Annual Maxima (AM, one per each calendar year) are selected460

(see Fig. 4). This results in the following analysis set up:

– I = 100 and i= 1,2, ....,100;

– J = 100, y = 1,2, ....,100 and j = 1,2, ....,100;

– M = 100 and m= 1,2, ....,100.

with 100×100×100 combinations of the annual maximum × hydrologic model parameter set × meteorological scenario.465

These series of AMs are next used to test the developed methods of selecting the representative parameter sets from the

ensemble of 100 available sets.
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Table 2. The three representative parameter sets θinf, θmed and θsup most frequently selected with three methods. i stands for the set index

and ct. for the number of counts. The expression
∑

ct. stands for the sum of counts for the first three most frequently selected sets. Bold font

indicates parameter set indices which are selected as representative with at least two methods among the three sets most frequently chosen.

Method Ranking Quantiling Clustering

Repr. set θinf θmed θsup θinf θmed θsup θinf θmed θsup

Par. set i ct. i ct. i ct. i ct. i ct. i ct. i ct. i ct. i ct.

1st 97 21 1 11 20 25 47 78 2 22 19 32 47 62 2 13 34 48

2nd 16 15 2 7 19 13 66 10 93 11 86 15 97 35 46 11 22 33

3rd 6 12 14 7 57 9 67 4 46 9 69 11 66 2 62 11 98 7∑
ct. 48 25 47 92 42 58 99 35 88

4 Results

4.1 Representative parameter sets

The representative parameter sets selected with each of the three methods are summarized over all 100 meteorological scenarios470

in the Table 2 which presents the three most frequently chosen hydrologic parameter sets for each method.

Although different parameter sets are usually selected by different methods, in a few cases the same set is chosen with more

than one selection method. Among the first three most frequently chosen sets, the same parameter set is selected as the median

set once for all three methods and several times for at least two methods.

The variability of the selected hydrologic parameter sets is presented in Fig. 5. As can be seen from the figure, some475

parameters presented smaller and others larger variability of selected sets. It also appears that different values are selected for

the infimum, median and supremum set but not always. Among three selection methods, the ranking method (marked in green)

has the largest spread of parameter values for most of the parameters. The clustering (blue) and quantiling (yellow) selection

methods seem to choose more extreme parameter values for both i.e. infimum and supremum sets. Looking at different model

routines and hydrological processes behind, no clear patterns could be seen regarding the choice of parameter sets. It appears480

however that the representative parameters from the response (blue) and soil moisture (yellow) routines have a smaller spread

than those from the snow routine (grey), as they are more often outside and further away from the interquartile ranges (grey

boxplots).

4.2 Infimum, median and supremum intervals

Using the selected representative sets, representative intervals for rare flood estimations are constructed for each of the 100485

meteorological scenarios and each of the three selection methods. Examples of these intervals for two meteorological scenarios

are presented in Figs. 6–7. Note that apart from selecting representative intervals, the clustering method leads to grouping all

ensemble members into three selected clusters.
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Figure 5. Box-plots showing the variability of the hydrologic parameter sets selected as the representative parameter sets over 100 meteo-

rological scenarios chosen with three methods. The white box-plots illustrate the entire parameter ensemble (i.e. 100 sets), outliers are not

presented. I - infimum, M - median and S - supremum set. Units as in Table A1. The blue box surrounds parameters from the response

routine, the grey box from the snow routine and the yellow from the soil moisture routine. MAXBAS is the only parameter from the routing

routine, and CET is a potential evaporation correction factor.

According to a first visual assessment, these three methods lead to slightly different constructed frequency intervals partic-

ularly in the upper tail of the distribution, i.e., for the most rare (highest) flows, which are of highest interest. Moreover, the490
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Figure 6. Example of the representative parameter sets’ selection with three methods in the Dünnern at Olten catchment (meteorological

scenario m=14). The top panel presents intermediate steps of selecting the representative sets and the bottom panel the finally constructed

intervals, i.e., infimum, median and supremum. The dashed lines (top panel) indicate the computed representative intervals (i.e., steps (a-c) in

ranking and clustering, and (a-b) in quantiling) and the solid lines (bottom panel) indicate the hydrological simulation members corresponding

to the parameter sets selected as representative (step (d) in ranking and quantiling, and (e) in clustering).

ranking method leads to less symmetrically spread intervals, with the median and infimum intervals lying close to each other.

The other two methods lead to more symmetrically spread intervals.

For the quantitative assessment, the ratio of scenarios incorrectly attributed, i.e. with intervals being mixed-up, (Rbias)

varies between the three methods and is the highest for the ranking method (Rbias =0.54). For the clustering method, the three

intervals are always correctly ordered for all 100 meteorological scenarios tested (Rbias =0.0). For the quantiling method, this495

ratio is equal to Rbias =0.02 and thus also very low. Hence, we can conclude that both clustering and quantiling methods

provide correctly attributed intervals with a bias ≤ 2%. For the ranking method, the correctness of the interval attribution is

poor, and in more than 50% of the meteorological scenarios, the simulations corresponding to the selected parameter sets lead

to mixed-up frequency intervals.
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Figure 7. Example of the representative parameter sets’ selection with three methods in the Dünnern at Olten catchment (meteorological

scenario m=93); description as in Fig. 6.

4.3 Evaluation of the three selection methods500

The behavior of the three selection methods is further evaluated with the 100 meteorological scenarios using the leave-

one-out cross-validation test (Sect. 2.5.1) and the multi-scenario evaluation method (Sect. 2.5.2) and corresponding metrics

(Sect. 2.6.2). Examples for two meteorological scenarios are presented in Fig. 8 for the leave-one-out cross-validation test and

in Fig. 10 for the multi-scenario evaluation. From the visual assessment, it is difficult to judge the methods, as they seem to

perform similarly well. However, the range of the predictive intervals obtained with 99 meteorological scenarios (one left out)505

is considerably narrower for ranking and quantiling on one hand and much wider for clustering on the other hand (Fig. 8 ).

Accordingly, the correspondence between the prediction interval and the full simulation range of the left-out scenario differs

between the methods (Fig. 10 ).

This is reflected in the quantitative assessment of the methods’ behavior, summarized in Table 3. Namely, the leave-one-out

cross-validation reveals that the quantiling method receives the highest values for both evaluation criteria, i.e., the ratio of510

simulation points lying outside the predictive intervals (Rspo) and the ratio of hydrological simulation ensemble members lying

outside the predictive intervals (Rhso), both presented as median values over all scenarios. Thus, this method performed the

poorest among all three methods tested here. Yet, with Rspo ≤ 0.14 for the 50th percentile and Rhso ≤ 0.05 for the threshold
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Figure 8. Example of leave-one-out cross-validation for the three selection methods and two meteorological scenarios. PIs represent the 90%

predictive intervals.

rthr ≥ 0.50, even this method can be qualified as behaving well based on the leave-one-out cross-validation. For the ranking and

the clustering methods, similar values for these two metrics are achieved, with slightly lower values for the ranking method.515

In summary, it can be said that all criteria values are relatively low for all three methods, and thus the computed criteria

values can only be used to order the methods by their behavior, while none of the methods is rejected.

In contrast to the above findings, the multi-scenario evaluation reveals different results withRspo being the lowest for cluster-

ing, and the largest for the ranking method. Similarly, the ratio of meteorological scenarios lying outside the predictive intervals

(Rmso) is the lowest for clustering and the highest for the ranking method (rthr in Table 3).520

Also, here all computed criteria values are relatively low withRspo ≤ 0.05 for the 50th percentile andRmso = 0 for the thresh-

old rthr ≥ 0.50 for the poorest behaving method (ranking). Hence, again here all three method can be qualified as behaving well

based on the multi-scenario evaluation.

Analysis of overlapping PIs pools (ROPPIs) and relative band spreads (R∆PIs) show that in the cross-validation test all methods

provide bands that are wider than the 90%-PIs computed using the full simulation ensemble. This should not surprise as the525

selection of relative parameter sets is based on a large sample of hydrologic model realisations (i.e. 99 scenarios) than the

full ensemble for model assessment (i.e. single scenario). However, these metrics show large differences in the multi-scenario

test, in which the clustering method outperforms other two selection methods, particularly when the focus lies on rare floods
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Figure 9. Example of multi-scenario evaluation for the three selection methods and two meteorological scenarios. PIs represent the 90%

predictive intervals.

(compare R∆PIs,j≥51, R∆PIs,j≥91 and R∆PIs,j≥96 in Table 3). The quantiling was the second good method, while the ranking was

performing the worst. These observations are also confirmed when looking at the variability of these two metrics for different530

return periods (Fig. 10). A better performance of the clustering method can be again noticed in the range of rare floods. While

quantiling was performing worse than clustering, it was still better than the ranking method.

As it appears from the above, the rejection or acceptance of one of three methods tested here is not straightforward. Apart

from the ranking method, which was linked with a huge bias, both other methods, i.e. quantiling and clustering were performing

similarly well. Yet, these methods provide quite different intervals (of a different spread). The validity and usefulness of these535

methods for selecting the representative parameter sets are thus further discussed below in sect. 5.1. The detailed analysis

of the relative band spread and the overlapping pools indicated however that the clustering method was performing the best

particularly in the range of rare floods. The quantiling method was scored as the second best, while the ranking method was

performing poorest.
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Table 3. Metrics of the behavior of the approach for three methods of selecting representative parameter sets and the predictive intervals in

the leave-one-out cross-validation and in the multiple-scenario evaluation. The values represent the median values over all 100 scenario runs.

Leave-one-out cross-validation Multi-scenario evaluation

Metric / selection method Ranking Quantiling Clustering Ranking Quantiling Clustering

Rspo [-], 50th percentile 0.02 0.13 0.065 0.048 0.02 0

Rhso [-], rthr ≥ 0.50 0.02 0.05 0.02 - - -

Rhso [-], rthr ≥ 0.10 0.26 0.57 0.41 - - -

Rmso [-], rthr ≥ 0.50 - - - 0 0 0

Rmso [-], rthr ≥ 0.10 - - - 0.20 0.091 0.03

R∆PIs [-], mean 1.26 1.01 1.30 0.58 0.57 0.67

R∆PIs,j≥51 [-] 1.23 1.16 1.56 0.59 0.70 0.81

R∆PIs,j≥91 [-] 1.18 1.15 1.62 0.51 0.68 0.82

R∆PIs,j≥96 [-] 1.21 1.21 1.67 0.49 0.67 0.80

ROPPIs [-] 1.21 1.19 1.64 0.52 0.65 0.79
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Figure 10. Evaluation of the leave-one-out cross-validation and the multi-scenario test for the three selection methods using the relative band

spread (R∆PIs) and the relative overlapping pools (ROPPIs), both computed with reference to the 90%-PIs of the full hydrologic simulation

ensemble.
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Table 4. Synthesis of scoring ranks attributed to the three methods for selecting representative parameter sets (based on quantitative metrics).

The ranks are attributed descending from the best (1) to the worst (3) behaviour. The median scoring rank (last line) corresponds to the

median over all criteria.

Score criteria Ranking Quantiling Clustering

Unbiasedness (not mixed-up intervals) 3 2 1

Leave-one-out cross-validation 1 3 2

Multi-scenario evaluation 3 2 1

Independence from meteorological scenario 3 1 1

Independence from simulation years 3 1 1

Ease in application 1 3 3

Interpretability of prediction intervals 3 1 1

Median scoring rank 3 2 1

5 Discussion540

5.1 Behavior of three selection methods

The results from our experimental study demonstrate that generally all three methods are capable of selecting representative

parameter sets that yield reliable predictive intervals in the frequency domain, i.e. all three methods are fit-for-purpose for

extreme flood simulation, with the ranking method performing, however, clearly less well than the others (larger bias, as

visible in Sect. 4.2). As the developed methods rely on selecting three representative sets as infimum, median and supremum,545

they respect the maximum variability between individual ensemble members for a given meteorological scenario.

In the validation tests, the behaviour scores of the three methods, however, were attributed differently depending on the

evaluation criteria. To further compare the methods, we provide below a detailed discussion of the major differences and

present a synthesis of how the methods rank on average (averaged across all scenarios) for the quantitative evaluation criteria,

which we support with further qualitative evaluation criteria (Table 4).550

From the visual assessment, i.e. based on the method bias (Rbias), it clearly appears that the ranking method is the most biased

method (with more than half of all meteorological scenarios having mixed-up intervals), while the other two methods can be

considered as being unbiased with correctly attributed intervals for 98% (quantiling) or more (clustering) of all meteorological

scenarios considered here (Sect. 4.2, unbiasedness in Table 4). As expected, these findings are further confirmed by the results

from the multi-scenario evaluation that yield the best behaviour for the clustering method and the worst for the ranking method555

(Sect. 4.3), particularly if focus lies on rare floods as assessed by the relative band spread and the overlapping pools.

Interestingly, the leave-one-out cross-validation study, in contrast to the the multi-scenario evaluation, attributes the lowest

criteria value to the ranking method, i.e. ranks it as the best method (Table 4). This requires a careful interpretation and

understanding of how the predictive intervals are constructed in both evaluation studies. In the leave-one-out cross-validation
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study, the representative parameter sets are selected and the predictive intervals are constructed based on 99 meteorological560

scenarios and then evaluated against the full simulation range corresponding to the left out scenario. In the multi-scenario

evaluation, the representative parameter sets are selected based on a single scenario, and the predictive intervals are then

assessed by applying these three selected sets (selected based upon a single scenario) to the other 99 meteorological scenarios.

Hence, by comparing findings from these two evaluation studies, it appears that the ranking method performs poorly if using a

single scenario for selecting the representative sets (multi-scenario evaluation). In exchange, the ranking method outperforms565

the two other methods when a high number of meteorological scenarios is used for selecting the representative parameter sets

(leave-one-out cross-validation). This means that the ranking method strongly depends on the meteorological scenario choice,

while the other two methods result in representative parameter sets that are transferable to other meteorological scenarios. We

hence introduce here a criterion independence from meteorological scenario, which defines how strong the selected sets depend

on the meteorological scenario used for selection of representative parameter sets.570

In a similar way, independence from simulation years will define how strong the selected sets depend on the simulation

years used for selection of the representative parameter sets. To make statements on that, one needs to recall how the selection

methods are constructed: The ranking method, in fact, depends strongly on the selected simulation period (and hence on the

meteorological scenario) because the selection of the representative parameter sets is performed on unsorted annual maxima

for each simulated year independently. The other two methods are performed over the entire simulation period, which makes575

them less strongly dependent on individual simulation years.

Nevertheless, the ranking method can be considered as the (computationally and methodologically) easiest in application

due to its selection criteria relying purely on ranking within individual simulation years. We call this criterion as an ease in

application. The other two methods need to be performed in the frequency space on sorted annual maxima over the entire

simulation period and, in the case of the clustering method, require some additional computational effort (which remains low,580

however, compared to the hydrologic simulation).

The use of the frequency space in selecting the representative parameter sets helps, however, to interpret the constructed

prediction intervals and to directly assign return periods to them. This speaks for their higher interpretability of prediction

intervals as compared to the ranking method, in which interpretation of intervals is very limited (as they are selected without

any flow frequency analysis).585

Overall based on scoring results from Table 4, it appears that the clustering method behaves the best (with a median scoring

rank of 1) due to its unbiasedness and due to a good performance achieved for all evaluation criteria, for both the leave-one-out

cross-validation and the multi-scenario evaluation.Finally, this method was proved to perform the best if the focus lies on rare

flood simulations.

5.2 Limitations and perspectives590

We should emphasize that the presented methods are independent of the selected hydrologic model calibration approach or

from the selected hydrological response model and are thus readily transferable to any similar simulation setting. Despite the

calibration of a hydrological model lies beyond the scope of this paper, it is assumed that (at least) 100 parameter sets of a
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hydrologic model can be made available for selecting the representative parameter sets. For that purpose, a hydrological model

should be calibrated with observed data of a long enough record that covers rare floods so that rare floods could be realistically595

simulated. In this work, to derive 100 parameter sets, we proposed a heuristic approach that relies on multiple independent

model calibration trials using a Genetic Algorithm approach and a multi-objective function. This method represents an inter-

esting solution to systematic sampling of the posterior parameter distributions (e.g. via Markov Chain Monte Carlo Sampling)

or to any Monte Carlo method relying on a very high number of model runs. Its strength is that it can be applied for selecting

parameter sets from independent model calibration settings (with different scores, calibration periods, etc.).600

Note however that for the purpose of deriving 100 parameter sets, a continuous hydrologic model does not necessarily require

continuous calibration data and it could be also calibrated to discrete data (e.g. using hydrologic signatures (Kavetski et al.,

2018)). If no observed data or only too short records are available, model parameters can be acquired through regionalization

approaches (see the work of Brunner et al. (2018a) for an overview of regionalization methods). The developed methods are

of use for applications when a hydrologic model should be employed for simulations of rare floods. If the use of a hydrologic605

model is not possible, i.e. neither information for calibration nor sufficient information for parameter regionalization is avail-

able, these methods cannot be applied. Moreover, although the methods are tested with a bucket type hydrologic model, the

most valuable application of the proposed methods would be to computationally more demanding hydrological models that

can profit even more from a reduced computational demand.

Furthermore, the proposed approach is tested here using synthetic hydrologic data, i.e., using streamflow simulations of the610

hydrological model in response to meteorological scenarios. We chose to use synthetic instead of real observed data to work

with long enough continuous simulations that cover rare events and to minimize the focus of the model error arising from the

calibration data and procedure. By using synthetic data as a reference (instead of observed data), the latter error can be here

neglected. The proposed methods should be tested with more catchments and other models, to verify the scoring of methods

that was achieved in this study.615

Selection methods proposed in this study enable one to choose representative parameter sets of a hydrologic model and

based on those to construct uncertainty predictive intervals (PIs) for extreme flood analysis in the frequency space. Here, we

tested the methodology using 100 meteorological scenarios that should represent the natural climate variability and in this

way should provide independent conditions for methods’ evaluation. Such a method for constructing PIs from an hydrological

model ensemble is a powerful tool that opens several avenues for further detailed uncertainty analysis. For instance, one may be620

interested in contributions of different uncertainty sources into the total PIs constructed, e.g. coming from the hydrologic model

or the natural climate variability. As these two components are not linearly additive, their separation is not straightforward. In

addition, any ensemble simulation also encompasses other uncertainty sources of the modeling chain, such as resulting from

the weather generator or from the structure of the selected hydrological model, from the prediction of very rare flood events,

etc. (Lamb and Kay, 2004; Schumann et al., 2010; Kundzewicz et al., 2017). To assess individual contributions of interest, a625

simple sensitivity analysis based on the variance variability could be here recommended, in which one uncertainty source is

propagated through the method at once while other sources are kept at their mode or median values and by comparing resulting

PIs spread.
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Downsizing the hydrological model parameter sample can only aim at understanding and characterizing the hydrological

part of the full hydrological ensemble resulting from a combination of multiple parameter sets and multiple meteorological630

scenarios. The variability of hydrologic model parameters arises from the parameter equifinality (Beven and Freer, 2001), and

it can be overcome by using several hydrologic model parameter sets that should encompass the parametric and (implicitly) also

other uncertainty sources. Our selection methods thus enable one to choose representative parameter sets from the hydrologic

responses point of view and in this way to cover the variability of hydrologic responses with reduced hydrological model runs

needed. These methods are however not applicable for characterizing the climate variability (nor for downsizing the number635

of meteorological scenarios needed).

Moreover, in developing the selection methods, we did not distinguish between different flood-types such as heavy rainfall-

excess or intensive snowmelt events (Merz and Blöschl, 2003; Sikorska et al., 2015). Also, as we focused only on large annual

floods (annual maxima), we did not represent the flood seasonality in our analysis. Yet, some recent works emphasise the need

to include such information on the flood type (Brunner et al., 2017) or on flood seasonality (Brunner et al., 2018c) into bivariate640

analysis of floods, or to represent a mixture of both flood type and flood seasonality in flood frequency analysis (Fischer et al.,

2016; Fischer, 2018). Thus, the proposed selection methods could potentially be extended to account for different flood types

during representative parameter selection, using e.g. automatic methods of flood type attribution from long discharge series

(Sikorska-Senoner and Seibert, 2020). For that purpose, Peak-Over-Threshold (POT) selection criteria of flood peaks could

be more appropriate, instead of a block selection (annual maximum) used here, in constructing the simulated distributions of645

hydrological responses, in order to cover a range of different flood processes.

Finally, we downsize the hydrologic model parameter sample to three sets which represents the predictive intervals of the

full ensemble of hydrological responses fairly well, given different meteorological scenarios. This number of three sets is

motivated by the fact that it can be readily processed within a fully continuous ensemble-based framework using numerous

climate settings. This is common practice in flood frequency analysis, and the three sets emulate the common practice of650

communicating median values along with prediction limits (Cameron et al., 2000; Blazkova and Beven, 2002; Lamb and Kay,

2004; Grimaldi et al., 2012b). For safety-studies, these representative intervals should be additionally statistically proved.

Optionally, one could further downsize the hydrologic model parameter sample to two sets (i.e., infimum and supremum)

which would represent the intervals only. Downsizing to more than three parameter sets (e.g. five) could have an advantage of

containing more information on uncertainty intervals, e.g. in the case they are asymmetric, and should be explored in further655

study.

Possible applications of these selection methods include all studies, where computational requirements are an issue, e.g.,

rare flood analysis in safety-studies concerning dams or bridge breaks, climate scenarios of these, evaluation of rare floods as

due to changes in climatic variables using several emission scenarios and different uncertainty sources propagation. Finally,

these methods could be used for quantifying different uncertainty source contributions in rare flood estimates but with little660

efforts from the hydrologic model as due to parametric uncertainty propagation.
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6 Conclusions

In this study, we propose and test three methods for selecting the representative parameter sets of a hydrological model to be

used within fully continuous ensemble-based simulation frameworks. The three selection methods are based on ranking, quan-

tiling and clustering of simulation of annual maxima within a limited time window (100 years) that is much shorter than the full665

simulation period of thousands of years underlying the simulation framework. Based on a synthetic case study, we demonstrate

that these methods are reliable for downsizing a hydrologic model parameter sample composed of 100 parameter sets to three

representative sets that represent most of the full simulation range in the frequency space. Among the tested methods, the clus-

tering method that selects parameter sets based on cluster analysis in the frequency space, appears to outperform the others due

to its unbiasedness, its transferability between meteorological scenarios, and a better performance for rare floods. The ranking670

method, which is the only tested method that completes the parameter selection on non-sorted annual maxima, can clearly not

be recommended for typical settings since it i) tends to result in mixed-up prediction intervals in the frequency space and ii)

depends too strongly on the simulation period used for parameter selection and thus lacks transferability to other periods or

other meteorological scenarios. Possible applications of these methods include all fully continuous simulations schemes for

rare flood analysis, and particularly those for which computational constraints arise such as safety-studies or scenario analysis.675

Data availability. The observed discharge data for calibrating the hydrological model can be ordered from the FOEN (https://www.bafu.admin.ch,

last access: 12 February 2020), the observed meteorological data from MeteoSwiss (http://www.meteoswiss.ch, last access: 12 February

2020), and the topographic data from Swisstopo (http://www.swisstopo.ch, last access: 12 February 2020).

Appendix A: Details on the HBV model parameters and model calibration

For searching the best hydrologic model parameter sets within the defined parameter ranges (Table A1), a Genetic Algorithm680

and Powell optimization (GAP) approach (Seibert, 2000) is used. This approach is executed in two major steps. Firstly, the

GA optimization is performed that relies on an evolutionary mechanism of selection and recombination of a user defined

number of parameter sets (i.e., parameter population) randomly selected within the defined parameter ranges. The principle

idea of this searching relies on regenerating the parameter sets from the subgroup of parameter sets selected using the defined

objective function Fobj as a criteria to choose the parameters that give the highest value of Fobj at the previous step of the model685

calibration. The search for the best parameter set is terminated at a user defined maximum number of model interactions and

results in a selected optimal parameter set. Secondly, the optimal parameter set obtained at the previous step is used as a starting

point for a local optimization search using the Powell’s quadratically convergent method (Press et al., 2002). The parameter

set finally achieved from the local optimization is retained as the best set. In this study, the total number of model interactions

is set to 2500 for the GA and 500 for the local Powell’s optimization.690
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Appendix B: Equations used in the multi-objective function

RKGE = 1−
√

(r− 1)2 +(α− 1)2 +(β− 1)2 (B1)

where r, α, β are the correlation, a measure of the relative variability in the simulated and observed values, and a bias.

RPEAK = 1−
∑

(Qo,peak−Qs,peak)
2∑

(Qo,peak−Qo,peak)2
(B2)

where Qo,peak and Qs,peak are observed and simulated values for flood peaks, and Qo,peak is the average value of Qo,peak.695

RMARE = 1− 1

n

∑ |Qo−Qs|
Qo

(B3)

where n is the number of observation points, Qo and Qs are observed and simulated discharge.

For further details on RKGE, see the work of Gupta et al. (2009); for details on RPEAK see the work of Seibert (2003) and on

RMARE, see the work of Dawson et al. (2007).

Appendix C: Model calibration results700

The optimized hydrologic model parameter sets are presented in Fig. A1, whereas diagnostics of the model performance during

the calibration and validation periods are presented in Fig. A2.

Appendix D: Scenarios variability

The variability of the precipitation depth (annual daily maxima) and temperature (annual daily minima and maxima) of 100

meteorological scenarios used in this study are presented in Fig. A3. It can be seen that, in comparison to the observations,705

the meteorological scenarios are generally slightly colder (µ=22.9 ◦C & σ=1.5 ◦C vs. µ=25.8 ◦C & σ=1.4 ◦C for the annual

daily maxima; and µ=-11.9 ◦C & σ=3.1 ◦C vs. µ=-7.3 ◦C & σ=3.5 ◦C for the annual daily mimima) and wetter (µ=46.1 mm

& σ=12.4 mm vs. µ=45.9 mm & δ=12.0 mm for the annual maximal daily precipitation depths). The variability of resulting

hydrologic scenarios is presented in Fig. A4 together with observations.
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Figure A1. Violin plots (blue) summarizing 100 optimized parameter sets of the HBV model for the Dünnern at Olten catchment vs. initial

calibration ranges (gray). Units as in Table A1.
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Figure A2. Flow duration curves and model performance metrics for calibration and validation periods over all 100 optimized parameter

sets.
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Figure A3. Variability of 100 meteorological scenarios used in this study vs. observations.
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Figure A4. Variability of 100 hydrologic scenarios used in this study; left panel – hydrologic ensemble with all meteorological scenarios and

all hydrologic model parameters; right panel – hydrologic ensemble with all hydrologic model parameters but for the median meteorological

scenario only. PIs represent the 90% predictive intervals.
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Table A1. Parameter ranges for the calibration of the HBV model

Parameter Unit Min Max Description

PERC mm h−1 0 1 Percolation parameter

UZL mm 0 100 Groundwater runoff threshold parameter

K0 h−1 1e-04 0.2 Recession coefficient

K1 h−1 1e-05 0.1 Recession coefficient

K2 h−1 1e-08 0.05 Recession coefficient∗)

MAXBAS h 1 100 Length of triangular weighting function

CET ◦C−1 0 0.5 Correction factor for potential evaporation

TT ◦C -2.5 2.5 Threshold temperature

CFMAX mm h−1 ◦C−1 1e-03 5 Degree-hour factor

SFCF - 0.4 1.6 Snowfall correction factor

CFR - 0 0.1 Refreezing correction factor

CWH - 0 0.2 Water holding capacity

FC mm 50 550 Maximum moisture storage in soil box

LP - 0 1 Threshold for reduction of evaporation

BETA - 1 10 Shape coefficient

∗)For recession coefficients the following condition must be fulfilled: K0 > K1 > K2
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