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We thank you for your generally very positive feedback and your detailed suggestions
for improving our manuscript. Following your suggestions, we changed our manuscript
at several places as described in detail in our responses to specific reviewer’s
comments. Most importantly, two new metrics will be included for comparing results
of three selection methods; additional figures will be included in the Appendices that
demonstrate the variability of the meteorological and hydrological scenarios, and
demonstrate the performance of the hydrologic model in the calibration and validation
periods. All figures will be redrawn to improve their readability and including missing
information.
Below we provide our replies (italic) to all individual comments of this reviewer and list
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the changes that will be made in the revised version of the manuscript (in blue).

Referee’s general comments:
The paper is well written and properly structured. The scope of the study is clear, and
the purpose of the selection of models among a given ensemble is relevant in the
perspective of hydrological and hydraulic simulation for extreme flood estimation.
Authors’ Reply (AR): Thanks for the positive overall assessment.

However, the presented methods, their scoring, and the interpretation of these
scores deserve a better statistical assessment. For example, the presented scores,
used in the comparison of the selection methods, rely only on the counts of simulated
annual maxima being in or out of the predictive interval, without consideration of scale
or frequency within their distribution.
AR: Following this suggestion, we propose to include two additional metrics that
explicitly consider the resulting prediction intervals. These are the relative band spread
of predictive intervals (R∆PIs) and the overlapping pools of the predictive intervals
(ROPPIs). The latter metric is an adaption of the evaluation metric suggested by the
reviewer.
See also our detailed response to the reviewer’s comment to line 333.

No assessment of the width of the predictive intervals is given relative to a global
metric (standard deviation of annual maxima of the calibration data for example). Even
if a relative ranking of the three methods can be provided here, it is difficult to have a
proper statistical characterization of them in terms of robustness and reliability, which
can be an issue for using them for extreme flood evaluation.
AR: The newly proposed metrics should provide a sound basis for a more objective
comparison of the three selection methods developed here (for details see our reply
to reviewer’s comment to line 333). In addition, we propose to compute the latter
metric i.e. the overlapping pools of the predictive intervals (ROPPIs) in two ways.
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First, looking at all annual maximas (AMs), and then by focusing only on most extreme
floods, i.e. only for the upper tail of AMs in the frequency space. This should shed light
on the reliability and the robustness of the methods for rare floods.
See also further our detailed reply to reviewer’s comment to line 333.

Furthermore, no interpretation of these selections in term of flood process or
modelling is given. It is not supposed to be the core of this article, but it would help to
connect the results to some hydro-climatological features and their impact in terms of
variability.
AR: As suggested by the reviewer, in the revised manuscript we will provide more
details on the model calibration and validation as well as on the variability of the
hydro-meterological scenarios.
See also our detailed replies to reviewer’s comments to lines 374, 381 403.

The problem of parameter equifinality is not evoked here, although it is the main
factor of the parameters set variability, given that here, the 100 models have been
calibrated by the same algorithm using the same data.
AR: We thank the reviewer for this comment. Indeed, the equifinality issue is often a
problem for any environmental model being difficult to overcome. Here, we propose
a heuristic approach in which 100 parameter sets are derived from 100 independent
calibration trails using a Genetic Algorithm, i.e., each parameter set comes from an
independent model calibration but using the same dataset and the same calibration
algorithm. By using independent model runs, the possibility of being trapped in the
same local optimum should be reduced (at least to some extent). Albeit being not
directly related, this heuristic method of sampling the parameter space is in line with
the philosophy underlying ensemble forecasts (where model initial conditions are
changed). It represents an interesting solution to systematic sampling of the posterior
parameter distributions (e.g. via Markov Chain Monte Carlo Sampling) or to any Monte
Carlo method relying on a very high number of model runs. This will be more explicitly
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stated in the paper.
Despite the choice of 3 representative parameter sets for each case study will depend
on the 100 sets available to be chosen from, the developed methodology will not
depend on these available sets. Obviously different calibration methods could be here
applied to derive these 100 parameter sets. We agree that it would be interesting to
explore how such 100 representative optimal parameter sets should be chosen to
cover different flow conditions, which would be however a completely different study
than the one presented here.
We discuss this issue further in our detailed reply to reviewer’s comments to lines 120
381.

I would recommend then a major revision of this paper, in order to tackle with
those main issues.
AR: we thank the reviewer for this positive feedback and valuable suggestions. Our
detailed responses to the issues raised above are given below in responses to detailed
reviewer’s comments.

Referee’s detailed comments/questions:
Quoted sentences are written in italic.

1. Line 10: 10’000 years of synthetic streamflow data simulated with a weather gen-
erator. Simulated "thanks to" a weather would be more appropriate, the weather
generator doesn’t generates streamflow directly, it feds the hydrological models.
AR: this will be corrected in the revised manuscript.

2. Line 12: The methods are readily transferable to other situations where ensemble
simulations are needed. This is only evoked as a perspective at the end of the
paper, without providing an example of such "other" application. I am not sure it
deserves to be in the abstract.
AR: To better demonstrate the possible applications of our method, we will in-
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clude an additional paragraph in the discussion:
"Possible applications of these selection methods include all studies, where com-
putational requirements are an issue, e.g., rare flood analysis in safety-studies
concerning dams or bridge breaks, climate scenarios of these, evaluation of rare
floods as due to changes in climatic variables using several emission scenar-
ios and different uncertainty sources propagation. Finally, these methods could
be used for quantifying different uncertainty source contributions in rare flood
estimates but with little efforts from the hydrologic model as due to parametric
uncertainty propagation."

3. Line 39: initial conditions for use in combination with design storms. Regarding
the SCHADEX method detailed in (Paquet el al., 2013), I would add "initial con-
ditions for use in combination with design or randomly drawn storms".
AR: Will be added.

4. Line 43: especially if long time series are to be simulated using ensembles of hy-
drological parameter sets. And also if very high return times (above 1000 years)
have to be robustly estimated, thus implying several thousand years of simula-
tion.
AR: we will add this information in the text.

5. Line 45: extrapolating a synthetic design hydrograph. How? By scaling up a
synthetic hydrograph thanks to estimated extreme quantiles of peak and volume
values?
AR: we will add the missing information as:
"by scaling up an estimated synthetic design hydrograph by quantiles of extreme
peak and volume estimated using frequency analysis."

6. Line 51: These continuous hydrologic simulation frameworks are still rare for time
series >100 years. 100 years of simulation merely allow to compute a robust 20
year return period estimation, which is pretty useless for dam safety for example.
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I would rather say that "high computational power are needed in order to provide
estimations for high to extreme return times (up to 1000 years) required for safety-
related studies" (although this is almost written in the same terms in line 57).
AR: We will shorten this sentence to:
"These continuous hydrologic simulation frameworks are still rare for time series
>100 years due to heavy computational requirements (Grimaldi et al. 2013)."
And we will also include additional information as:
"High computational power is particularly needed to provide estimations for high
to extreme return periods (up to 1000 years and higher) required for safety-related
studies or hydrologic hazard management. For such rare events,. . ."

7. Lines 77-86: The problem is particularly well stated here.
AR: Thanks for this comment.

8. Line 89: to select a reduced-size parameter ensemble for the use with a hydro-
logical model within a continuous simulation. Here and later on I would always
keep "parameter" linked to "hydrological model". Most simulation frameworks are
heavily parametrized, and the uncertainty linked to the hydrological model is only
one (important) of the numerous sources of uncertainty. I would then write "to se-
lect a reduced size ensemble of hydrological model parameters for the use within
a continuous simulation".
AR: We will correct the sentence as suggested.

9. Line 92: for simulation of extreme floods. A recurrent formal remark about the
word "extreme". Usually "extreme floods" refers to return times largely exceeding
the observational range, currently more than 1000 years, thus being extrapolated
(by FFA or simulation, or both). This is especially true in dam-safety related liter-
ature. In the presented case, the meteorological scenarios are 100 years long,
meaning that only very few "extreme" floods are simulated in the whole exper-
iment. At best a robust 1000 years estimation can be empirically inferred here
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given the fact than 100x100=10 000 meteorological years have been simulated.
The whole set of AM being extracted can surely not be considered as a set of
"extreme floods". The authors could consider using "intense floods", “rare floods”
or more simply “floods” when they refer to the simulated floods.
AR: We propose to change the term ‘extreme floods’ into ‘rare floods’ throughout
the manuscript and also in the title.

10. Line 97: simulated rare flood events. Following the remarks above, the term “rare
flood” is also appropriate alternative.
AR: see our reply to the comment above.

11. Line 99: the aim is thus i) to provide long enough simulation periods for extreme
flood analysis, ii) to avoid the propagation of errors due to data/model calibration
etc. and iii) to be able to focus entirely on the uncertainty of the hydrological
response. I my opinion this goes farer than the actual results of the study. The
uncertainty linked to model parameters is assessed, and properly summarized
thanks to a reduced number of meteorological simulations. But I don’t understand
why this “provides long enough simulation”, and why it “avoids the propagation
of errors”. If you have 100 “bad” models due to date, calibration, etc., three of
them are selected in order to keep a good representation of their variability, but
you still work with “bad” models (sorry for the term “bad”, it only means “affected
by uncertainty”!).
AR: We use here synthetic data, instead of real observations, for deriving model
simulations for testing the methods of selecting representative parameter sets
of a hydrological model. This approach enabled us to generate long pseudo-
observations for analysis of rare floods (100 meteorological scenarios x 100
years). Using such setting (instead of real observations that are usually of ∼30
years at best at an hourly temporal scale) enabled us, first, to test the method-
ology on rare events of return periods >100 years (instead of return periods of
up to 20 years if real observations were used). Second, taking such a setting as
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a start for our analysis, we focus here entirely on the parametric uncertainty of a
hydrological model and do not infiltrate into other uncertainty sources, i.e. input
or output uncertainties of calibration data. How these parameter sets are derived,
and the way of model calibration may contribute to the model ability to simulate
real events. Calibration of the hydrological model is, however, not the focus of
this paper. Hence, our ensemble of 100 parameters sets is assumed to be the
best representation of model parameters one can get. We agree, however, with
the reviewer that the uncertainty related to model calibration and calibration data
are partly included in the calibrated model parameter sets and will be included in
the simulations we get with these sets.
To clarify these issues, we will modify our text into:
“Using a simulation setting with synthetic data as a start for our analysis enables
us i) to provide long enough simulation periods for rare flood analysis with re-
turn periods <100 years, and ii) to be able to focus entirely on the uncertainty of
the hydrological response, while other uncertainty sources of a hydrologic model
(due to model calibration) are not explicitly considered. Note that way the hydro-
logic model is calibrated lies outside of this paper scope.”

12. Line 111: and not the model uncertainty of a weather generator. This is perhaps
one of the main limit of the study. At line 69, it is written that Arnaud et al. (2017)
found that the uncertainty of the rainfall generator dominates the uncertainty in
the simulated extreme flood quantiles. This uncertainty will not be considered
here, and I wonder how far the results exposed here would still be useful to deal
with the weather generator uncertainty (which of course is not to be confused
with the variability of the scenarios generated thanks a given set of parameters).
A comparison of both uncertainties (model and weather generator), even basic,
would have been welcomed here.
AR: As mentioned in the response to the above comment and in the manuscript
itself, the effect of weather generator uncertainty is not here considered. In this
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work, we use a tested and verified set-up of the weather generator (Ervin et al.
2018, 2019) and ready computed meteorological scenarios for our test study. As
already written in the original manuscript (lines 98-111):
“A meteorological scenario represents a single realisation from a stochastic
weather generator with constant model parameters. These meteorological sce-
narios are equally likely model realisations that differ in the precipitation and tem-
perature patterns, and together they represent the natural variability of the climate
(and not the model uncertainty of a weather generator)”.
Therefore, the assessment of the uncertainty due to the weather generator is not
possible here. To assess the effect of the uncertainty of the weather generator
on the simulated time series, uncertainty in parameters of the weather generator
should be considered that would lead to very different meteorological scenarios
from these that are here applied. We agree that such a study would be very inter-
esting, but it exceeds the scope of this paper that is the selection of representative
sets of hydrologic model parameters.

13. Line 120: (ii) the distribution is known. I am not sure that knowing the prob-
ability of parameters is a reasonable perspective, in my opinion the problem of
equifinality of parameters in models like HBV prevents an a priori expression of
parameter probability, as different sets of parameters can “produce” the same
model, i.e. models having the same behaviour for a given meteorological sce-
nario. And this is one of the interesting outcome of this study, which focuses on
the hydrological response of the models, and not on the actual values of the pa-
rameters. I think that this equifinality problem deserves more writing in this paper.
AR: Thank you for this comment. We refer here to the situation when the param-
eter distribution is estimated from the observation data, e.g. through Monte Carlo
or Bayesian approaches. Hence, we will clarify that in the text of the revised
manuscript as:
“the distribution is known (i.e. estimated from data). . .”
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We agree however that the issue of the parameter equifinality deserves more at-
tention in our paper and thus we included an additional paragraph on that in the
revised manuscript:
“Using multiple parameter sets for a hydrological model is justified by the param-
eter equifinality...“
And in discussion:
“Downsizing the hydrological model parameter sample can only aim at under-
standing and characterizing the hydrological part of the full hydrological ensemble
resulting from a combination of multiple parameter sets and multiple meteorolog-
ical scenarios. The variability of hydrologic model parameters arises from the
parameter equifinality (Beven and Freer 2001), and it can be overcome by using
several hydrologic model parameter sets that should encompass the parametric
and (implicitly) also other uncertainty sources. Our selection methods thus en-
able one to choose representative parameter sets from the hydrologic responses
point of view and in this way to cover the variability of hydrologic responses with
reduced hydrological model runs needed. These methods are however not appli-
cable for characterizing the climate variability (nor for downsizing the number of
meteorological scenarios needed).”

14. Line 129: The infimum (from the Latin – smallest) and supremum (from the Latin –
largest) refer to the greatest lower bound and the least upper bound (Hazewinkel,
1994), i.e., the largest interval bounding the ensemble from below and the small-
est interval bounding it from above. This definition deserves to be connected to
frequencies of the target variable, even if it’s not straightforward. Does it (roughly)
provides a 90, 95 or 99% confidence interval of the simulated variable? Given
that follows in lines 184 to 234, with quantiles 5 and 95%, it “looks like” a 90% CI.
AR: yes, the bounds bounded by the infimum and supremum set represents the
90% predictive intervals. This information will be added in the text.
“Thus, the representative band should correspond to 90% predictive bands of a
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target variable.”

15. Line 138: we thus propose to use the representation of AMs in the Gumbel space
as the reference model response space for parameter selection. The plotting in
Gumbel is useful here to illustrate the rare to extreme quantiles. Still, it doesn’t
explicitly play a role in the “parameter selection” (which doesn’t imply any ex-
plicit reference to an implicit Gumbel distribution of AM in the statistical crite-
ria/indicators used).
AR: this is a good remark. Indeed, the selection is based on the absolute values
of the annual maxima without referring to their distribution but with accounting for
their location in the list of maxima sorted by their magnitudes. The Gumbel space
is used for plotting purposes and to visualize the selection method and results.
We will correct this issue throughout the manuscript and in the sentence referred
above as:
“we thus propose to use the representation of AMs sorted by their magnitudes
(i.e. frequency space) as the reference model response space for parameter
selection.”

16. Line 142: inverse modelling approach. The term “inverse modelling” appears to
me somehow excessive. An inverse hydrologic modelling would be for example
to infer rainfall from discharges. Here it’s more a “post-modelling” approach.
AR: we agree and will correct that in the revised manuscript.

17. Line 145: the parameter set selection is made based on the full hydrological sim-
ulation ensemble but using only a limited simulation period. To be more specific
I suggest to write “based on the simulation with all the hydrological models but
using [: : :]”.
AR: we will correct this sentence to:
“The main idea behind all three methods is that the hydrologic parameter set
selection is made based on the full ensemble with all hydrological model simula-
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tions. . .”

18. Line 189: The parameter sets selected in step (d). Should be step (c).
AR: this will be corrected.

19. Line 189: the sets which are chosen most often as the 5th, 50th and 95th ranks
are retained as the parameter sets [: : :] representative for the entire simulation
period. The ranking methods yet shows its weakness: the 5th and 95th of a given
year have very low chance to match to the overall corresponding quantiles, given
the “climate variability” illustrated in Figure 1, thus preventing the parameters se-
lected on a given year to have a global representativeness. I am not sure it’s
worth keeping this method “in the game” for the rest of the paper.
AR: Thanks for this comment. We agree that the ranking method has its weak-
nesses, as it also appears from our analysis. However, its great advantage is
that it is straightforward to be performed. Thus, we prefer to keep this method for
detailed analysis in the paper and reject it based on the results and not prior to
that.

20. Lines 194-206: I don’t understand why the “Gumbel space” is evoked here (three
times!), and constantly throughout the paper. Apart from the plots of Figure 2 and
others, what is “Gumbel specific“ in the metrics and statistics presented? For ex-
ample, the RMSE scores are computed using each simulated annual maximum,
regardless its empirical frequency.
AR: yes, we agree with the reviewer and will remove referring to the Gumbel
space in selecting the representative parameter sets. We keep referring to the
Gumbel space when it comes to visually presenting and comparing results.

21. Line 201-205, equations 1-3: This is the same equation for the three considered
quantiles. Only one is necessary.
AR: This is another very good point! These three equations will be combined into
one equation.
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22. Line 211-234: same remark as above about the “Gumbel space”.
AR: We will remove the reference to Gumbel space where it is not valid.

23. Lines 214: These members are next clustered in the Gumbel space into three
representative groups (clusters) based on all J simulation years using the k-
means clustering. If I understood properly it means that the clustering has been
performed in the J-dimensional space of the full set of members values?
AR: yes, this is correct. Clustering was computed on J-annual maxima.

24. Line 217: Next, these clusters are sorted by their magnitude. What vari-
able/quantile is used for this sorting?
AR: Sorting of clusters is done based on their means and their magnitudes for
the quantile 90%. We have tested several quantiles in the upper range (i.e. 80%-
99%), and the choice of quantile did not impact the ordering of clusters. To
clarify that, we propose to add the following additional information in the revised
manuscript:
“Next, these clusters are sorted based on cluster means by their magnitude by
comparing percentiles in the upper tail of the distribution (here we used the 90th
percentile). Use of a percentile from the upper tail is important as methods are
focusing on rare floods. However, we found that the method was insensitive to
the percentile choice as long as it lies in the upper tail (i.e. ≥80th percentile).
Based on the percentiles computed for each cluster mean, the lower, middle and
upper clusters are defined. Next, for the lower cluster a 5th percentile, for the
upper – 95th percentile, and for the middle – 50th percentile are computed, i.e.,
P5, P50 and P95...”

25. Line 218: Note that we use here percentiles instead of cluster means to make
this method comparable with the other two methods. I am not sure of that : say
that each cluster regroups one third of the ensembles, and for a given quantile
in the AM distribution (say the 50%), it is evenly distributed through all the mem-
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bers, the percentile 5% of the lower cluster would more or less correspond to a
0.05x0.33 = 0.17 global percentile. The 5% and 95% are more “rare” than their
corresponding quantile in the quantiling method.
AR: we understand the reviewer’s point. Yet, the clusters are rarely symmetric,
i.e., there is no assumption that the clusters have to be symmetric. Hence, it is
hard to define a more fair selection of intervals than the one we describe here,
i.e. based on percentiles. Choosing 5% and 95% makes the clustering theoret-
ically comparable to the other two methods. Having symmetric clusters would
imply an idealistic situation when the responses of a hydrological model provide
simulations of the annual peaks that are symmetrically spread around the median
values, which is hardly realistic for real cases. This, however, does not have to be
the case, as the choice of different parameter sets may lead to emphasize differ-
ent hydrological processes in the catchment, i.e. floods resulting from snowmelts
or intensive rainfalls.
We will add an additional sentence on that in the text of the revised manuscript:
“Use of the 5th and 95th percentiles appears as a fair choice for asymmetrically
spread clusters, which is most often the case as different parameter sets of a hy-
drologic model may emphasize different hydrologic processes in the catchment.”

26. Line 223-227, equations 4-6: Same remark as for equations 1 to 3.
AR: We will combine equations 4-6 to a single equation in the revised manuscript.

27. Line 233, equation 7: This mention of the plotting position mention could be
moved at line 195.
AR: as we will remove the reference to the Gumbel space in line 195, we keep
this equation at its original place. However, we will add additional text to link the
method to plotting results in the Gumbel space:
“For visualizing the selection methods, we use the Gumbel space (General-
ized Extreme Value distribution Type-I) with the Gringorten’s method (Gringorten
1963) to compute the plotting positions of AMs in the Gumbel plots:. . .”
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28. Table 1: Sorting space = Gumbel space. Once again, I don’t undertand how
“Gumbel specific” the sorting process is for Quantiling and Clustering.
AR: we will correct ‘Gumbel space’ into annual maxima frequency when referring
to the sorting space in the table.

29. Table 1: Interpretation of pred. intervals / Parameter grouping. I don’t see to what
these lines refer in the text before.
AR: We will include additional information in the text that refers to the interpreta-
tion of predictive intervals contained in the table. Following sentence regarding
the ranking method will be added:
“The derived predictive intervals thus are sensitive to individual years of simula-
tions, and their interpretation may be difficult (as they do not result from any flow
frequency analysis).”
And regarding the other two methods:
“This enables statistical statements to be made about the selected parameter
sets and about the predictive intervals constructed with the help of these param-
eter sets (as they are constructed on the entire simulation ensemble).”
And regarding the parameter grouping:
“Finally, the clustering method splits all ensemble members (hydrologic simu-
lations) into three clusters, and so each parameter set can be attributed into
corresponding clusters. This could be useful if one would like to extract more
information on each cluster behaviour.”

30. Line 254: assessing how well the reduced ensembles cover the reference sim-
ulation ensemble. More specifically I would rather say “how well the reduced
ensembles substitute the whole simulation ensemble for the selection of repre-
sentative parameter sets”.
AR: This will be corrected accordingly.

31. Line 273: assess how well the defined identified intervals represent the ensem-
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ble members of this Sr meteorological scenario. What metric is used to do this
assessment?
AR: All assessment criteria are described in sect. 2.6. For clarity, we will include
in this sentence link to this section.

32. Line 288: Compute the 5th percentile [: : :] and the 95th for H(θsup,p/Sm) . The
mention “for m=1,2: : :,M and m6=p” could be added for more clarity.
AR: will be added.

33. Line 290: same question as for line 273.
AR: see the reply to the question for line 273.

34. Line 295 and below: as evoked above, the recurrent mention to the Gumbel
space is, in my opinion, useless, and over time tedious to read. In the paper, it
is quickly implicit that the plots and the metrics used are defined in the frequency
space (or frequency domain), being Gumbel or not, without need to repeat it.
AR: we agree with the reviewer and will modify this text which should read now:
“The simplest way of assessing the behavior of these three methods is a visual in-
spection of curves plotted in the frequency space (e.g. using Gumbel distribution
for plotting). . .”

35. Line 330: Here we propose to use different percentiles, i.e., the 5th, 50th, and
95th percentiles, to characterize the ratio of the simulation points lying outside
the computed predictive intervals for each of the methods. I don’t understand
this? Why not using only the 50th percentiles of this ratio? Refer to comments on
Table 3 for a more detailed version of this question.
AR: yes, this is a good suggestion. We will remove the 5th and 95th percentiles
and keep only the 50th percentile for comparing methods. This should corre-
spond to the situation with the majority of simulation points or scenarios lying
inside/outside the bands.
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36. Line 333: how many out of J hydrological simulation points [: : :] must lie outside
the defined predictive intervals. I think that the problem of such a simple “count”
of points (simulated annual maximum) outside the predictive interval doesn’t take
into account their position in the simulated distribution. As written in the title,
the methods exposed here are supposed to be used in the estimation of extreme
floods, which in any post-treatment of the hydrological simulation will strongly rely
on the high simulated quantiles. The scores should somehow reflect this focus
on high quantiles, which is not the case here. Instead of this count of “outside
points”, the area outside the predictive interval could be computed, using the
Gumbel variable (as x) and the discharge value (as y), thus giving a contrasted
score in which lying outside the predictive interval for high quantiles is more im-
portant than for low values.
AR: We thank the reviewer for this very useful comment! In the revised
manuscript, we propose to include two additional metrics that should put more fo-
cus on extreme floods. The newly proposed metrics are the relative band spread
of predictive intervals (R∆PIs) and the overlapping pools of the predictive inter-
vals (ROPPIs). The latter metric is an adaption of the suggested by the reviewer
computation of pools lying outside PIs. These new metrics will be described in
text in sect. 2.6.2, i.e. Quantitative assessment:
“[(IV)] Relative band spread of PIs (R∆PIs) that is computed for both tests and
which compares the spread of PIs constructed with the representative parameter
sets versus 90%-PIs of the full hydrologic ensemble. In details, R∆PIs is com-
puted for each m-th scenario as:
New Eq. 13:

R∆PIs,m =
J∑

j

SPIs,repr.,m
SPIs,full,m

m= 1, 2, ...,M (1)
where SPIs,repr.,m and SPIs,full,m are band spreads of the 90%-PIs constructed
with the representative parameter sets and with the full hydrologic ensemble. The
band spread is computed as a difference between the upper (or supremum) and
the lower (or infimum) interval at each j-th simulation point in the frequency space.
[(V)] Overlapping pools of PIs ROPPIs that are computed for both tests in the
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frequency space by taking the Gumbel variate and discharge values of sorted
AMs as coordinates of the PI pools. In details, ROPPIs of PIs constructed with
the representative parameter sets is computed for each m-th scenario as:
New Eq. 14:

ROPPIs,m =
J∑

j

(kj − kj−1)
2

[H(θsup,m,j) +H(θsup,m,j−1)−H(θinf,m,j)−H(θinf,m,j−1)]

m= 1, 2, ...,M&j= 2, 3, ...,J (2)
Similarly, ROPPIs is computed for the full hydrologic ensemble using the pool re-
stricted by the 90%-PIs, i.e. taking the 5% and 95% intervals as pool borders.
With regards to R∆PIs, we propose to compute the relative band spread as a
mean overall sorted AMs at first. Also, to focus more on rare floods, we propose
to compute the means of rare floods limited by different Gumbel variates. Here
we computed R∆PIs for the upper half of AMs (R∆PIs,j≥51), for the most upper
ten AMs (R∆PIs,j≥91) and the most upper five AMs (R∆PIs,j≥96).”.
These metrics are computed for both the cross-validation and multi-scenario eval-
uation tests and the medians over all scenarios will be summarized in the table
3.
“Analysis of overlapping PIs pools (ROPPIs) and relative band spreads (R∆PIs)
show that in the cross-validation test, all methods provide bands that are wider
than the 90%-PIs computed using the full simulation ensemble. This should not
surprise as the selection of relative parameter sets is based on a large sample
of hydrologic model realisations (i.e. 99 scenarios) than the full ensemble for
model assessment (i.e. single scenario). However, these metrics show large
differences in the multi-scenario test, in which the clustering method outperforms
other two selection methods, particularly when the focus lies on rare floods (com-
pare R∆PIs,j≥51, R∆PIs,j≥91 and R∆PIs,j≥96 in Table 3). The quantiling was
the second good method, while the ranking was performing the worst. These
observations are also confirmed when looking at the variability of these two met-
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rics for different return periods (Fig.10). A better performance of the clustering
method can be again noticed in the range of rare floods. While quantiling was
performing worse than clustering, it was still better than the ranking method.”
In addition, we will introduce an additional figure which presents cumulative re-
sults of these two metrics for all scenarios (as a new Figure 10, Fig. 1 in this
reposne).
New Figure 10. Evaluation of the leave-one-out cross-validation and the multi-
scenario test for the three selection methods using the relative band spread
(R∆PIs) and the relative overlapping pools (ROPPIs), both computed with ref-
erence to the 90%-PIs of the full hydrologic simulation ensemble.

37. Line 337: In this work, we consider the following values for rthr =
0.50,0.25,0.10,0.05. Following the preceding comment, a metric accounting for
the scale or the frequency of the points being outside the predictive interval would
avoid to distinguish such thresholds, which apart from the rthr=0.50 or 0.10 have
little statistical meaning in this context.
AR: We appreciate this comment and will reduce the thresholds to only two val-
ues, i.e. 0.50 and 0.10.

38. Line 343: For testing the methods developed here, a small natural catchment is
preferable. Why small?
AR: The choice of a small catchment is driven by the fact that hydrological re-
sponses in a small catchment may be better understood and are rather unaf-
fected by anthropogenic factors (such as dams, bridges, etc.) which may perturb
the flood peaks in terms of very rare floods. We will include additional information
in the text in the revised manuscript:
“For testing the methods developed here, a small close to natural catchment is
preferable, i.e. with only little anthropogenic influences, in which hydrological re-
sponses are transparent, and the generation of rare flood (peaks) is not affected
by human constructions (dams, bridges).”
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39. Line 358: In this study, the version HBV light [: : :] with 15 calibrated parameters
is used. The considered model can be then considered as heavily parametrized,
and thus fully affected by the equifinilaty problem of its parameter evoked in the
remark made for line 120.
AR: We agree that the model can be affected to some extent by the equifinality
problem. However, the HBV is a conceptual model that covers different modes
of the runoff generation accounting for snowmelt, soil moisture and groundwater.
To correctly represent these processes and to provide hydrologically interpretable
parameters, the parameters of individual modes should be included in the cali-
bration process. Hence, we used here such a set-up with 15 calibrated parameter
sets, which was previously successfully applied in Swiss catchments. We will add
a following sentence to the text:
“Such a set-up of the HBV light was previously successfully applied in Swiss
catchments (e.g. Sikorska & Seibert2018a, Brunner et al. 2018c, Brunner &
Sikorska-Senoner 2019, Müller-Thomy & Sikorska-Senoner 2019, Westerberg et
al. 2020).”

40. Line 374: for details on RPEAK and RMARE, see the work of Vis et al. (2015).
A brief description of RPEAK and RMAREwould be welcomed here, especially
as within the calibration process, the parameters conditioning the modelling of
floods are surely strongly conditioned by the RPEAK score.
AR: with response to this comment, we propose to add additional information in
the major text and equations used for computing RKGE, RPEAK, RMARE in the
newly created Appendix D. The new text reads as:
“RPEAK is defined in a similar way to the Nash-Sutcliffe efficiency but using peak
flows instead of the entire time series. While both RKGE and RPEAK focus
on high (peak) flows, RMARE is sensitive to low flows. See Appendix D for
equations.”

41. Line 377: The available observational datasets are split into a calibration (1990-
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2005 years) and a validation (2006-2014 years) period. What is the point of
having a validation period here? This validation period is never used in that fol-
lows.
AR: Splitting into calibration and validation period is needed to assess how well
the calibrated model performs outside the calibration period. This assessment is
important, as the paper focus lies here on simulations that are not included in the
calibration period. We will add a following sentence into the text:
“Evaluation of the model in the independent period is important as the model is
applied to simulate time series outside the calibration period.”

42. Line 381: The calibration is repeated 100 times resulting in 100 independent op-
timal parameter sets. I am surprised by the variability of the parameters obtained
by these 100 calibration runs, performed on the same calibration data with the
same objective function. I would like to read a comment from the authors on that.
Mine is that the optimization is not complete, seeming to depend on the aleatory
exploration performed by the genetic algorithm, somehow “trapped” in local opti-
mums, and/or affected by a strong equifinality problem (yes, once again, sorry).
An alternative strategy for the generation of model parameter sets, in my opinion
providing more “independent” models, could be to bootstrap 12 years among the
24 years available in order to generate 100 truly different calibration & validation
samples.
AR: We agree that a global optimizer should always lead to the same optimized
parameter set except for specific cases where the response surface (the objective
function) clearly has several optima with exactly the same value (which can hap-
pen in theoretical settings, e.g. with the so-called Himmelblau function). In set-
tings where the response surface has many local optima with very similar values
(equifinality), the start point of the search can indeed lead to a trapping in local
optima, especially if the optimizer is stopped after a fixed number of iterations as
is the case here. A solution to overcome this problem is classical Markov Chain
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Monte Carlo (MCMC) As we aimed here at developing the parameter selection
method that could be applied also for selecting parameter sets from independent
model calibrations, MCMC was not a desirable solution here. As a heuristic so-
lution, we propose here multiple independent trials using a genetic algorithm to
derive 100 sets of good model parameter sets. This is an approach which we
have in numerous studies recently (e.g., Seibert and Vis, 2016, van Meerveld et
al., 2018; Etter et al., 2020).
Note however that the method used for calibration of the model and the selec-
tion of 100 ‘best’ parameter sets was not the objective of this paper. Obviously,
there are other methods to obtain 100 parameter sets (or more) are possible
such as based on Monte Carlo methods or by bootstrapping as suggested by
the reviewer, but the approach of independent calibration trials has been found
suitable in these previous studies. Additional text will be included in the revised
manuscript:
“These 100 parameter sets represent similarly likely parameterisations of the hy-
drological functioning of this catchment and their variation can be explained by
the equifinality of hydrologic model parameters (Beven & Freer 2001).”
And:
“Note that the described above way to derive 100 parameter sets is one possi-
ble approach, and other calibration methods could be used (e.g. Monte Carlo or
bootstrapping).”

43. Line 381: The median model efficiency measured with Fobj over all 100 runs is
0.7. To better assess the quality and the variability of the models generated at
this step, it would be useful to show the distribution of NSE (Nash & Sutcliffe Ef-
ficiency) for both calibration validation, and the ensemble plots of daily regime
and classified discharge distribution for all the generated models. The ensemble
simulation of the biggest observed would also be very pedagogic.
AR: The Nash-Sutcliffe values for the calibration and validation periods will be
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provided in the revised manuscript in newly included Appendix: Model calibration
results. In addition, flow duration curves will be provided for mean daily dis-
charges for simulated versus observed values and these will be also included in
the same appendix.
New Figure A2. Flow duration curves and model performance metrics for calibra-
tion and validation periods over all 100 optimized parameter sets.
Also, the following sentence will be added in the main text:
“Also, diagnostics of the Nash-Sutcliffe efficiency and the Peak efficiency demon-
strate that the model performs well in the range of high flows which are most
important for simulation of rare floods studied in this paper (see Fig. A2 in Ap-
pendix C).”

44. Line 383: which can be assumed to be a good model performance on an hourly
scale. As mentioned above, this really need to be illustrated more richly.
AR: please see our reply to the above comment.

45. Line 397: The daily values generated with GWEXDisag were then disaggregated
to hourly values using the meteorological analogues method. More details would
be welcomed on that disaggregation: what fields/variable are used for analogy,
what analogy criterion, what about seasonality (i.e. are the analogues identified
within period of the year similar to the one of the simulation to be disaggregated,
etc.).
AR: The disaggregation with the weather generator is not the scope of this paper,
and it was already published by Evin et al. (2018, 2019). Thus, we refer to the
source papers on this disaggregation scheme. Here we use the ready meteoro-
logical scenarios that were made available for this catchment. These scenarios
were developed for the entire Aare catchment, and here we only use a small
subset for a single catchment.
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46. Line 399: Next, catchment means were computed using the Thiessen polygon
method. On how many simulated precipitation stations do the Thiessen average
rely on for the considered catchment? How many simulated stations lie within the
catchment?
AR: 3 stations located close by were used for that purpose. This information will
be added in the text.

47. Line 403: Thus, differences between scenarios are exclusively due to the natural
variability of the meteorological time series. “[: : :] and modelled by the GWEX
weather generator” could be added. Similarly to the models, the variability of
these scenarios deserve to be illustrated, and compared to the observations,
e.g. thanks to their average and standard deviation of the annual maximum daily
precipitations.
AR: we will add the sentence as suggested.
In addition, the variability of meteorological and resulting hydrologic scenarios is
presented in a newly introduced figure in the new Appendix: Scenarios variability
and briefly described in the appendix.
New Figure A3. Variability of 100 meteorological scenarios used in this study vs.
observations.
New Figure A4. Variability of 100 hydrologic scenarios used in this study; left
panel – hydrologic ensemble with all meteorological scenarios and all hydrologic
model parameters; right panel – hydrologic ensemble with all hydrologic model
parameters but for the median meteorological scenario only. PIs represent the
90% predictive intervals.

48. Line 406: These 100 meteorological scenarios are used as input into the HBV
model to generate streamflow time series with 100 different HBV parameter sets.
I am not sure that this sentence is useful. The simulation scheme is clear from
the beginning.
AR: we prefer to keep this sentence for clarity and the reading flow.
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49. Figure 4: The title of the second plot should be “Quantiling” instead of Quantail-
ing.
AR: we will remove this plot from the manuscript.

50. Lines 419-434: I find the results of this paragraph difficult to interpret. Some
violin plots show odd parameter selection patterns (like in Clustering/Infimum),
other show weak parameter discrimination (Quantiling/Median). The Table 2 is
quite difficult to read/interpret with so many counts exposed. In this paragraph
and in the following ones, some “illustrations” of the most selected parameter
sets should be provided, e.g. by presenting the range of hydrological responses
to observed meteorological data of the selected models compared to the full en-
semble. In other words, some interpretation in term of modelling and hydrological
processes would be welcomed.
AR: we will remove the violin plots, and instead, we will include an alternative
figure that presents a grouping of representative parameters selected with three
methods. This enables us to look at how the selection of parameters corresponds
to different processes being modelled by the model.
New Figure 5. Box-plots showing the variability of the hydrologic parameter sets
selected as the representative parameter sets over 100 meteorological scenarios
chosen with three methods. The white box-plots illustrate the entire parameter
ensemble (i.e. 100 sets), outliers are not presented. I - infimum, M - median and
S - supremum set. Units as in Table A1. The blue box surrounds parameters from
the response routine, the grey box from the snow routine and the yellow from the
soil moisture routine. MAXBAS is the only parameter from the routing routine,
and CET is a potential evaporation correction factor.
Following the new figure, a new paragraph will be included:
“The variability of selected parameter sets is presented in Fig.5. As can be seen
from the figure, some parameters presented smaller and others larger variability
of selected sets. It also appears that different values are selected for the infi-
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mum, median and supremum set but not always. Among three selection meth-
ods, the ranking method (marked in green) has the largest spread of parameter
values for most of the parameters. The clustering (blue) and quantiling (yellow)
selection methods seem to choose more extreme parameter values for both, i.e.
infimum and supremum sets. Looking at different model routines and hydrolog-
ical processes behind, no clear patterns could be seen regarding the choice of
parameter sets. It appears however that the representative parameters from the
response (blue) and soil moisture (yellow) routines have a smaller spread than
those from the snow routine (grey), as they are more often outside and further
away from the interquartile ranges (grey boxplots).”
We will also reduce the table to show only the three most selected parameters
(instead of 5).

51. Line 434: Interestingly, for the supremum set in the clustering method, only four
parameter sets among all 100 available are chosen over all 100 scenarios. Given
that, I don’t understand why in Table 2, column Clustering, 5 parameters sets (34,
22, 98, 86, 50) are identified.
AR: thank you for spotting this typo! It should be written for infimum set and not
for supremum set.

52. Table 2: a graphical alternative or a complement to that table deserves to be pre-
sented, to better assess the “density” of parameter sets selected by the different
methods.
AR: see our response to the comment to lines 419-434.

53. Line 437: intervals for extreme flood predictions. The term “extreme flood esti-
mations” could be more appropriate.
AR: this will be corrected.

54. Line 441: According to a first visual assessment, these three methods lead to
slightly different constructed frequency intervals particularly in the upper tail of
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the distribution. To ease this visual assessment, horizontal lines marking these
intervals for the upper values could be added to the plots of Figure 5.
AR: Horizontal and vertical lines will be added to all frequency plots.

55. Line 446: the three intervals are always correctly attributed. I would temper this
in writing that “the three intervals are always correctly ordered” as this exactly
what it is measured in Rbias.
AR: yes, it will be corrected.

56. Line 456: From the visual assessment, it is difficult to judge the methods. See
remark on Figures 7-8. Figure 5 to 8: Instead of having an x-axis graduated with
the Gumbel variable U, some ticks at remarkable return times (2, 5, 10, 20, 50 &
100 years) could be added in order to ease the reading of these plots, and avoid
the long caption The Gumbel variates etc. in Figure 4.
AR: Information on return periods will be included in all figures.

57. Line 463: the highest values for both evaluation criteria, i.e., the median ratio
of simulation points lying outside the predictive intervals (Rspo) and the median
ratio of hydrological simulation ensemble [: : :]. Given the definitions of s.2.6.2,
this is more a mean ratio than a median ratio.
AR: It is a mean for each scenario but median over all scenarios. To clarify that
we will include the additional text:
“. . . ,both presented as median values over all scenarios.”

58. Line 475: Hence, again here all three method can be qualified as behaving well
based on the multi-scenario evaluation, and only the order of their behavior can
be established. Honestly, at the end of this paragraph, I have no clear idea of the
absolute performance of each method. One important point is that the methods
provide rather different intervals (like illustrated in the Figure 6), thus a method
providing wide intervals will have good “in/out” scores (like the ones in Table 3),
better than for narrow intervals, but the question of the statistical relevance of
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such intervals is not solved.
AR: We will add an additional paragraph at the end of the result section that sum-
marizes major findings:
“As it appears from the above, the rejection or acceptance of one of three meth-
ods tested here is not straightforward. Apart from the ranking method, which was
linked with a huge bias, both other methods, i.e. quantiling and clustering were
performing similarly well. Yet, these methods provide quite different intervals (of
a different spread). The validity and usefulness of these methods for selecting
the representative parameter sets are thus further discussed below in sect. 5.1.
The detailed analysis of the relative band spread and the overlapping pools indi-
cated however that the clustering method was performing the best particularly in
the range of rare floods. The quantiling method was scored as the second best,
while the ranking method was performing poorest.”

59. Figure 7-8: I found the plots of the top panels of both figures rather counterin-
tuitive: the prediction interval resulting from selecting representative parameter
sets for 99 meteorological scenarios and compared to the full simulated range
with all 100 parameter sets seems narrower than “statistically expected” (more
and less a 5-95% confidence interval given the quantiles or percentiles involved
in the process). For the highest simulated quantiles, the prediction interval seems
only to cover about 50 to 66% of their variability. In the bottom plot of the Figure
7 for clustering, a second blue interval is plotted without being identified in the
legend nor in the caption.
AR: This second blue interval is indeed the grey interval, which comes from the
scenario assessed here. For clarity, we redesigned these plots by removing the
upper panel, which might have been misleading, and by improving the readability
of the bands.
New Figure 9. Example of multi-scenario evaluation for the three selection meth-
ods and two meteorological scenarios. PIs represent the 90% predictive intervals.

C28



60. Line 480: [: : :] selecting representative parameter sets that yield reliable predic-
tive intervals in the frequency domain. Following the comment on line 475, I see
no statistical demonstration of the reliability of the predictive interval (like the one
that could be done by controlled random generation of a given variable to which
a statistical test is applied, then a proper statistical scoring). I agree with the au-
thors on that a ranking between the three methods (according to the presented
scores) is however established.
AR: Two additional metrics giving more focus to extreme floods will be included
in the revised manuscript. See also our above reply to the reviewer comment to
line 333.

61. Table 3: Three quantiles of the Rspo score are given, although the caption men-
tions that the values represent the median values over all 100 scenario runs.
What for providing the 5th and 95th quantile of a score measuring the ratio of
simulation points [: : :] lying outside the predictive intervals (line 312), which
should be, on average, close to 10% (once again given the quantiles involved in
the selection process)? In the low part of the Table 3, the Metric method is written
as Rhso (Rmso). Which scores are the ones provided?
AR: The Rspo is now presented only for 50th percentile. RegardingRhso &Rmso,
both metrics are provided in table 3 as Rhso is used in the cross-validation test
and Rmso in the multi-scenario test. This will be clarified in the new table 3.

62. Line 481: all three methods are fit-for-purpose for extreme flood simulation. Fol-
lowing the preceding comment, if the presented method cannot be statistically
demonstrated, it can be considered as an ad-hoc heuristic, build for a given pur-
pose, here extreme flood simulation/estimation. This last step is not evoked in
the paper, then depriving the reader from assessing the relevancy/robustness of
this heuristic.
AR: two new metrics that will be introduced (relative band spread of PIs and
their overlapping pools) should provide better evaluation and comparison of the
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proposed selection methods. See also our reply to the comment to line 333.

63. Line 487: for additional ease of use criteria. I don’t understand this sentence.
AR: We will correct the sentence as follows:
“To further compare the methods, we provide below a detailed discussion of the
major differences and present a synthesis of how the methods rank on average
(averaged across all scenarios) for the quantitative evaluation criteria, which we
support with further qualitative evaluation criteria (Table 4).”

64. Line 488: From the visual assessment. Based on which figure?
AR: we will add additional explanation here:
“From the visual assessment, i.e. based on the method bias (Rbias),. . .”

65. Table 4: The different ranking features should be linked to the scores presented
in Table 3. Some of them deserve to be better explained in the text: Indepen-
dence from meteorological scenario, Independence from simulation years, Ease
in application, Interpretation of prediction intervals. They don’t refer explicitly to
scores, statistics or plots presented before.
AR: More explanation will be provided on these metrics in the text:
“We hence introduce here a criterion independence from meteorological sce-
nario, which defines how strong the selected sets depend on the meteorological
scenario used for selection of representative parameter sets.
In a similar way, independence from simulation years will define how strong the
selected sets depend on the simulation years used for selection of the represen-
tative parameter sets. To make statements on that, one needs to recall how the
selection methods are constructed:. . .”
And:
“Nevertheless, the ranking method can be considered as the (computationally
and methodologically) easiest in application due to its selection criteria relying
purely on ranking within individual simulation years. We call this criterion as ease
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in application. The other two methods need to be performed in the frequency
space on sorted annual maxima over the entire simulation period and, in the case
of the clustering method, require some additional computational effort (which re-
mains low, however, compared to the hydrologic simulation).
The use of the frequency space in selecting the representative parameter sets
helps, however, to interpret the constructed prediction intervals and to directly
assign return periods to them. This speaks for their higher interpretability of pre-
diction intervals as compared to the ranking method, in which interpretation of
intervals is very limited (as they are selected without any flow frequency analy-
sis).”

66. Line 497-502: This lines could be put in section 2.5 to describe the assessment
of the approach better.
AR: as suggested, we will move these sentences to the method section.

67. Line 514: The other two methods need to be performed in the Gumbel space
over the entire simulation period and, in the case of the clustering method, re-
quire some additional computational effort. Once again this reference to “Gumbel
space” is unappropriated given the scores computed, and the additional compu-
tational effort doesn’t seem significant, completely justified by the added robust-
ness.
AR: we will correct it to the term ‘frequency space’.

68. Line 516: The use of the Gumbel space in selecting the representative param-
eter sets helps, however, to interpret the constructed prediction intervals and to
directly assign return periods to them. Same remark as for line 295.
AR: will be corrected to the term ‘frequency space’.

69. Lines 522-534: These lines are, in my opinion, a short summary of the study, and
do not fit in this section (Limitations and perspectives).
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AR: Lines 522-529 will be removed, while lines 529-534 will be moved into the
sect. 3.5., in which the set-up of the study is presented.

70. Line 541: This use of synthetic data makes the approach results independent
from the catchment properties and limits the effect of the hydrological model er-
ror and errors in calibration data on the methods comparison results. I may be
more cautious on that, given that the scores and the ranking of the methods are
somehow linked to 1) the variability of the ensemble models, which depends on
the equifinality of the model’s parameters, the calibration data and FOs, etc. and
to 2) the meteorological variability of intense events generated by the weather
generator which depends on the climatology, the scale etc. Only some tests on
different catchments (in scale and climatology) could ground this assertion.
AR: we thank for this comment. We suggest rewriting this paragraph as follows:
“We chose to use synthetic instead of real observed data to work with long
enough continuous simulations that cover rare events and to minimize the fo-
cus of the model error arising from the calibration data and procedure. By using
synthetic data as a reference (instead of observed data), the latter error can be
here neglected. The proposed methods should be tested with more catchments
and other models to verify the scoring of methods that was achieved in this study.”

71. Line 544: We can, however, not directly assess here how much variability in
the full hydrological ensemble is due to the climate variability and how much
is due to the uncertainty resulting from the hydrological model parameters, be-
cause these two components are not linearly additive. A simple exercise could
help by 1) choosing a “median” model (in term of median response on the me-
teorological ensemble) and plotting/scoring the variability of simulations for the
whole meteorological ensemble, and 2) choosing similarly a median meteorolog-
ical scenario and simulating with the whole set of models and then 3) comparing
the spread/variance of definite quantiles in the simulations. In my opinion, this is
an indispensable complement to the presented results.
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AR: we thank the reviewer for this comment which showed us that we were not
clear here about the purpose of our study. Separation of uncertainty intervals
is not the aim of this work and the developed methodology for providing the un-
certainty intervals based on representative sets. The selection methods should
one enable to construct the uncertainty intervals based on three pre-selected
parameter sets of a hydrological model. We use here different meteorological
scenarios to verify how the selection criteria depend on a meteorological sce-
nario and whether it is valid for different scenarios (independent meteorological
conditions). Having such representative parameter sets of a hydrologic model
selected, opens several avenues for further research. One example would be
to separate uncertainty into contributing sources, i.e. hydrologic model, natural
climatological variability and others. As contributions of such a separation will
be case-specific – i.e. they depend on the selected hydrologic model, available
meteorological scenarios, etc. – thus, they must be performed for each case
study independently. We thank for suggestions on how such an analysis could
be performed and these suggestions will be included in the revised manuscript.
We do not see however, a need to perform such decomposition in our case, as
our paper presents only the methodology for deriving representative parameter
sets of a hydrologic model.
To clarify this issue, we will modify our text, which the reviewer is referring to into:
“Selection methods proposed in this study enables one to choose representative
parameter sets of a hydrologic model and based on those to construct predic-
tive uncertainty intervals (PI) for extreme flood analysis in the frequency space.
Here, we tested the methodology using 100 meteorological scenarios that should
represent the natural climate variability, and in this way, should provide indepen-
dent conditions for methods’ evaluation. Such a method for constructing PI from
a hydrological model ensemble is a powerful tool that opens several avenues
for further detailed uncertainty analysis. For instance, one may be interested in
contributions of different uncertainty sources into the total PI constructed, e.g.
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coming from the hydrologic model or the natural climate variability. As these
two components are not linearly additive, their separation is not straightforward.
Also, any ensemble simulation also encompasses other uncertainty sources of
the modeling chain, such as resulting from the weather generator or from the
structure of the selected hydrological model, from the prediction of very rare flood
events, etc. (Lamb & Kay 2004, Schumann et al. 2010, Kundzewicz et al. 2017).
To assess individual contributions of interest, a simple sensitivity analysis based
on the variance variability could be here recommended, in which one uncertainty
source is propagated through the method at once while other sources are kept at
their mode or median values and by comparing resulting PI spread.”

72. Line 560: Thus, the proposed selection methods could potentially be extended to
account for different flood types. Another option could be to consider Peak-Over-
Threshold selection instead of a block selection (annual maximum) in building the
simulated distributions. If different flood processes are present above a certain
intensity threshold, flood type and seasonality sampling will be relevant.
AR: we agree and will add a following sentence in the text:
“For that purpose, Peak-Over-Threshold (POT) selection criteria of flood peaks
could be more appropriate, instead of a block selection (annual maximum) used
here, in constructing the simulated distributions of hydrological responses, to
cover a range of different flood processes.”

73. Line 566: the three sets emulate the common practice of communicating median
values along with prediction limits. But in that case, these predictive intervals
have to be statistically calibrated (or checked) in order to be used in safety stud-
ies, especially if these studies lead to engineering or compliance check.
AR: we agree and will add:
“For safety-studies, these representative intervals should be additionally statisti-
cally proved.”
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74. Line 572-584: Here again, the term Gumbel space could be replaced by “fre-
quency domain” or equivalent.
AR: this will be changed into ‘frequency domain’.

75. Appendix A Figure A1: Interesting but rather off-topic here, as only continuous
hydrological simulation has been used in this study.
AR: as suggested, we will remove the Appendix A and Fig. A1 from the revised
manuscript.

76. Figure A3: For a better assessment of the distribution of calibrated parameters, I
suggest that the scale of the horizontal axis of the violin plots (parameter values)
exactly matches the corresponding calibration range written in the Table A1.
AR: The figure will be updated with initial calibration ranges as suggested.
New Figure A1. Violin plots (blue) summarizing 100 optimized parameter sets of
the HBV model for the Dünnern at Olten catchment vs. initial calibration ranges
(gray). Units as in Table A1.
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Fig. 1. New Figure 10.
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Fig. 2. New Figure A2
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Fig. 3. New Figure A3
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Fig. 4. New Figure A4
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Fig. 5. New Figure 5
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Fig. 6. New Figure 9
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Fig. 7. New Figure A1
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