
We warmly thank the Editor and the Referees for their careful reading of the manuscript and their valuable 

comments. Please find below our answers (in italic) to all the items raised, and the tracked-changes version, 

to whom the line numbers refer.  

Please note that in the revised version of the paper, numbering and positioning of the figures were 

reorganized, joining some graphs that were previously presented separately, with the aim to include more 

results (especially about drought characteristics, as required by Anonymous Referee #2) and increase 

remarkably the information content of the paper, keeping its overall structure as clear as possible. 

 

Anonymous Referee #1  

RC: This paper quantifies the performances of several combinations of regional climate models (RCMs) 

driven by different general circulation models (GCMs) in two regions of southern Italy. The GCM-RCM 

combinations are part of the Coordinated Regional Climate Downscaling Experiment (CORDEX) initiative in 

the European domain (EURO- CORDEX). Performances are evaluated in the ability to capture the spatial 

variability of mean annual and seasonal precipitation (P) and temperature (T), as well as three drought 

metrics derived by applying the run theory. I enjoyed reading this paper, which is well written; presents 

rigorous analyses; critically discusses the results; and has practical utility for impact studies in the study 

regions, since it provides a list of best GCM-RCM combinations. I recommend its publication and I only have 

a few minor requests and suggestions. 

AC: We thank the referee for the positive comments.  

 

RC: The authors should provide more details on how they applied the principal component analysis (PCA): 

Was it applied on monthly or annual P? The PCA returns spatial patterns that explain most of the P variability. 

How did the authors derive the subregions within these spatial patterns? This should be clarified. 

AC: We thank the referee for this comment, which allowed us to improve the description of the PCA. At this 

regard, further information to the manuscript was added as follows: 

Author’s changes to the manuscript (LL 168-201): “The precipitation patterns obtained by the interpolation 

procedure were analyzed adopting a methodology based on the Principal Component Analysis (PCA) to 

distinguish zones with rather independent climatic variability within the area under investigation. PCA is a 

well-known statistical tool used to transform an original set of intercorrelated variables into a reduced 

number of new linearly uncorrelated ones explaining most of the total variance (Rencher, 1998). The latter, 

derived as linear combinations of the original variables, are the principal components (PCs), while the 

coefficients of the linear combinations are the loadings, which in turn represent the weight of the original 

variables in the PCs. From a procedural standpoint, PCA consists of solving an eigenvalue-eigenvector problem 

applied to the covariance matrix. The eigenvectors, properly normalized, are the loadings of the principal 

components, while the eigenvalues provide a measure of the total variance explained by each loading (Bordi 

and Sutera, 2001 and references therein). Under this decomposition, the loadings represent the correlation 

between the associated PCs and observed time series. Mapping the loading patterns of each PC among the 

ones selected, based on the percentage of the total explained variance of the process, largely allow to identify 

independent climatic areas within the study region. Moreover, it may be useful to apply a rotation operation 

to the eigenvectors, so that the corresponding loadings are more spatially localized. In other words, the 



rotation leads to loadings with a high correlation with a smaller set of spatial variables and a low correlation 

with the remaining variables. Here, only orthogonal rotations were considered, computed by the varimax 

algorithm in Matlab® R2016. Clearly, each rotated pattern will not explain the same variance of the unrotated 

one, although the total variance explained remains unchanged. 

In the present study, the first nine rotated PCs both at the annual and seasonal (DJF, MAM, JJA, SON) scales 

were investigated. Regardless of the considered period, the selected PCs always explain more than 78% of the 

total variance, with a maximum of 85% in the winter season (DJF). The loading patterns of these rotated PCs 

were mapped for each considered period to identify climatically homogeneous regions. Homogeneous sub-

regions were detected at the annual scale and in autumn and winter seasons, whereas a confusing picture 

arose in spring and summer seasons. Furthermore, since about 75% of the total annual rainfall of the case-

study area occurs between autumn and winter (as a result of cyclonic storms), the climatically homogeneous 

sub-regions identified at the annual scale approximately overlap with the ones identified at seasons SON and 

DJF. Isolated grid cells showing a different PC correspondence with respect to the surrounding cells, were 

manually corrected to simplify the delimitation of the homogeneous sub-regions. This approach led in dividing 

the whole area into six climatically homogenous zones, three for Sicily and three for Calabria (Fig. 1), for which 

separate performance assessments were carried out. Concerning Sicily region, the three identified sub-regions 

roughly coincide with the ones detected by Bonaccorso et al. (2003), who investigated the spatial variability 

of droughts in Sicily region based on SPI series computed on monthly precipitation observed in traditional rain 

gauges and on NCEP/NCAR reanalysis data from 1926 to 1996. In particular, three distinct areas, namely 

North-Eastern (identified in the PCA as zone 5, Fig. 1b), South-Central Eastern (zone 4), and Central-Western 

(zone 1), were identified. In Calabria, three main zones were also determined, namely North-Western (zone 

2), North-Eastern (zone 3) and South-Eastern (zone 6), broadly corresponding to climatic homogenous areas 

found in previous studies (e.g., Versace et al., 1989). Interestingly, the South-Western tip of Calabria is 

identified as a part of a broader area (zone 5) extending over the North-Eastern Sicily.” 

 

RC: When ranking the models based on performance in reproducing annual P, the authors find that nine 

models have similar error metrics. Have they tried to compute the mean rank of each model across the zones 

and even across the five time scales considered (annual and the four seasons)? There may be some models 

that are consistently in the top (lowest ranks) and these should be mentioned. 

AC: This aspect was already partially investigated in a previous version of the manuscript, where we pointed 

out that the models Had-RACM, ECE-CCLM and Had-CCLM have the overall better performances at both 

annual and seasonal time scales. Thus, we have enlarged and made clearer the discussion in the revised 

version of the manuscript, adding also a figure (new Fig. 15) highlighting deviations in the performances of 

some models (e.g., CM5-ALAD), considering both the annual scale and the average behaviour at the seasonal 

scale (the higher the deviation, the higher the distance from the bisector).  

Author’s changes to the manuscript (LL 559-565): “Figure 15 shows a comparison between the ranking of 

interannual variability of annual precipitation and the average position in the ranking of seasonal 

precipitation. It highlights possible deviations of the performances of the models at different time scales (the 

higher the deviation, the higher the distance from the bisector). When considering the seasonal scale, the 

reduced performance of CM5-ALAD is evident, such as the better ranking of MPI-CCLM. In general, the best 

models both at the interannual and the seasonal scale, are Had-RACM and ECE-CCLM, followed by the two 

versions of ECE-RACM and two other CCLM models (namely, MPI-CCLM and Had-CCLM, the latter being 

penalized by the relatively lower ranking in winter).” 



 

Figure 15. Comparison between the RCM position in the ranking of interannual variability of annual 

precipitation versus the average position in the ranking of seasonal variability of seasonal precipitation. 

Data concerns the whole study area (Calabria and Sicily). 

 

RC: Line 45: Extremes occur everywhere. I suggest changing to “... occurrence of particularly intense 

extreme events, …”. If this is what the authors mean, a reference is also needed. 

AC: The sentence was changed according to the suggestion.  

Author’s changes to the manuscript (LL 48-50): “… and is characterized by the occurrence of particularly 

intense extreme eventss, such as prolonged droughts and high-intensity storms leading to floods (Bonaccorso 

et al., 2013; Bonaccorso et al., 2015a and 2015b; Llasat et al., 2016; Senatore et al., 2020).” 

 

RC: Line 55: CMIP5 has been already defined; just use the acronym. 

RC: Line 61: I suggest adding “historical” before simulations. 

RC: Line 326: it should be “show”. 

AC: The text was revised accordingly. 



Anonymous Referee #2  

RC: The paper is well written, the state-of-art well described in the introduction, and the methodology 

used in this study are clear and can be easily understood from the paper. Overall, the quality of this paper is 

good, but to be honest I do not think this should be a paper. I mean, I see it more as a technical report or, 

even better, as the preliminary part of a wider study, maybe from the selection of the best models to 

dedicated projections of hazard and impacts. I am aware that other studies dealing on the evaluations of 

newest GCM-RCM simulations do exist, focusing on small regions, e.g. the one cited by authors about 

Sardinia, but I feel that this is not a research paper, but a (very well performed) study on the performance of 

models on a test region. Thus, I am questioning myself: once the authors have decided that one combination 

of GCMs-RCMs performs better than the others, for each quantity analyzed (precipitation, temperature, 

drought), time scale (annual, seasonal), sub-region (3 for Sicily, 3 for Calabria).. what shall the reader do with 

this information inserted in a scientific paper? The region is very small, so - as the authors say (see lines 452-

453) - the choice of the best model depends on many factors, making this piece of work not conclusive. What 

shall be really of interest is what the authors plan for further analyses (Lines 454-456). I also have another 

major point about the possible publication: the paper is not about droughts. Drought is just slightly touched 

and with very basic metrics, far from the current standard in drought-related analyses, so my final verdict is 

to reject this submission. However, I see that authors made great efforts, so they might consider to rethink 

about the paper and try to resubmit, but I would definitely remove the word droughts from title. 

AC: We thank the referee for the attention devoted to our study and his partial appreciation of the 

manuscript. As the referee mentioned, many papers deal only with the evaluation of RCM historical 

simulations and do not include assessment of future impacts of climate change, as confirmed by the 

bibliographic review in Table I. Nonetheless, one of the distinguishing features of our study compared to the 

literature on the subject, is the high density of temperature and precipitation ground-based stations available 

in the case-study region. Besides, the target region is representative of one of the main hot-spots for climate 

change – the Mediterranean Basin. Concerning its spatial extent (about 40,540 km²), it should be pointed out 

that our interest lies in the implementation of RCMs for climate change impact studies and hydrological 

applications at small spatial scale regions with a complex topography (see LL 51-54). To this end, it is 

particularly important to test the RCMs’ skills in encompassing surface heterogeneities and mesoscale 

atmospheric processes at the considered spatial scale. We agree that the choice of the best model depends 

on many factors. That’s exactly why our study intends to provide indications on the best model to choose 

based on the variable, the time and the spatial scale considered. 

Moreover, it is worth highlighting the novelties introduced by the methodological approach, which adopts 

both PCA for identifying sub-regions in the analyzed area and proposes hybrid rankings involving 

precipitation, temperature, and drought characteristics. 

Finally, a comprehensive evaluation of RCMs is an important resource for readers and potential users of the 

RCM data. There are several ways to use this information, and the authors will not surely cover all possible 

ways. So, we want to provide the readership with a tool that they can use for specific purposes. From our part, 

we notice that this study could be useful for hydrological applications, where the use of a limited but properly 

selected set of models can help to avoid unnecessary computational burden, or for other high-temporal 

resolution applications, where information about models’ performance allow the user to narrow down the 

search domain for the most suitable projections. 

Regarding the drought analysis, we agree with the reviewer that more analyses were needed. Therefore, 

following his/her suggestions, we extended the analysis to the seasonal data, likewise the investigation on 



precipitation and temperature, and to the return period of drought duration as well (new Section 4.3 and 

related discussion in improved Sections 5.1 and 5.2). The effects of the improved drought analysis also 

influence the overall ranking (Section 5.4) 

 

RC: Why not using also Med-Cordex?  

AC: We could include Med-CORDEX data in our study. However, only a couple of models are currently 

available at the resolution used in this study (0.11°), thus we decided to focus on EURO-CORDEX only. 

 

RC: Are the Euro-CORDEX bias-adjusted? Why not using the bias-adjusted runs?  

AC: The EURO-CORDEX data in our study are not bias-adjusted. This is because the bias-adjustment is 

usually based on observed data (as a calibration procedure) and is particularly useful when RCMs are used 

for future projections. However, future projections are out of the scope of the present study, which addresses 

the evaluation of historical climate models simulations. The basic idea behind an evaluation study is to analyze 

the models’ skill in simulating hydro-climatic processes against observations, rather than to correct the 

simulations as it is, for instance, required in the case of climate impact studies. 

 

RC: I’d like to see more details on the station data, which could be potentially one of the most interesting 

parts of the study.  

AC: A Table with the most relevant information about the weather stations used in this study has been 

added as Supplementary Material. 

 

RC: Don’t include equations in the core manuscript, move them all to supplementary materials. 

AC: As a matter of fact, there are only three equations in the original manuscript. In the revised manuscript, 

few equations were added regarding the drought analysis, increasing the total number to eight. For the sake 

of readability, we prefer to keep them in the main text of the manuscript. 

 

RC: Drought part is very poor. Why not using, at least, the SPI and the SPEI? Also, the choice of quantities 

related to drought are not enough to justify the publication, I’d expect a lot more (frequency of events, 

intensity, severity, return periods, spatial aggregation, etc.) especially on monthly basis (not annual). 

AC: We thank the referee for this valuable suggestion. We agree with the referee that our work can benefit 

from more analyses on droughts, though we only partially agree with carrying out some of the analyses that 

he/she suggests. In particular, SPI and SPEI, by definition, follow a standard normal distribution. Hence long-

term statistics (mean, standard deviation, etc.) are the same for the model and the observations. This feature 

hinders the possibility to use the considered error metrics and models’ ranking to evaluate the models’ 

performances, as in principle differences between the statistics derived from simulated and observed 

standardized drought index series could be primarily accounted for as sampling variability, rather than the 



actual RCMs’ skill in reproducing wet and dry conditions. For this reason we preferred to apply the theory of 

runs to precipitation data for drought identification.  

To extend the drought analysis, as suggested by the referee, drought events were also identified on seasonal 

precipitation values simulated for the period 1971-2000. Also, the return period of drought events of fixed 

duration computed on both annual and seasonal precipitation data was included in the revised manuscript. 

The methodological aspects of these changes were addressed in the revised Section 3.2 of the manuscript (LL 

239-329). Concerning results, the following outcomes are described and discussed: 

• Frequency distribution of RCMs percentage errors in maximum drought duration, maximum drought 

accumulated deficit and maximum drought intensity at the annual and seasonal scale (new Fig. 11); 

• Frequency distribution of RCMs percentage errors in the return period of drought event of duration L 

equal to 1, 3, 5 and 7 years (new Fig. 12); 

• Frequency distribution of RCMs percentage errors in the return period of drought event of duration L 

equal to 2, 4, 6 and 8 seasons (new Fig. 13); 

• Improved rankings based on drought characteristics merging drought maximum intensities and 

return periods at the annual and seasonal levels (new Fig. 14); 

• Improved overall ranking embedding the new drought analysis (new Fig. 16). 

All the new findings were introduced and described in the improved sections concerning drought 

characteristics results (Section 4.3.1 LL 470-489 and the whole new Section 4.3.2 about results at the seasonal 

scale) and discussion (particularly Section 5.1, LL 566-576, and Section 5.2, LL 601-611). Tables 5 and 6 were 

also updated accordingly. 

Finally, regarding the possibility to include spatial aggregation of drought events (or drought characteristics) 

in our study, as the current investigations rest upon at-site analysis, for the sake of clarity (and brevity) we 

preferred to not introduce results at different spatial levels. However, we aim to consider regional droughts 

in a future evaluation study.  

 
RC: Some conclusions are exactly what one might expect: precipitation is modelled worse than 

temperature, drought (as computed in this study) is similar to precipitation, RCMs deeply affect the results 

more than GCMs. 

AC: In light of the changes made to the manuscript, and in particular, of the enhanced drought analysis, 

conclusions were rewritten, highlighting the main findings of the study. 
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Abstract. Many recent studies indicate climate change as a phenomenon that significantly alters the water cycle in different 

regions worldwide, also implying new challenges in water resources management and drought risk assessment. To this end, it 

is of key importance to ascertain the quality of Regional Climate Models (RCMs), which are commonly used for assessing at 

proper spatial resolutions future impacts of climate change on hydrological events. In this study, we propose a statistical 15 

methodological framework to assess the quality of the EURO-CORDEX RCMs concerning their ability to simulate historic 

climate (temperature and precipitation) and drought characteristics (duration, accumulated deficit,, and intensity and return 

period) determined by the theory of runs, at seasonal and annual time scales, by comparison with high-density and high-quality 

ground-based observational datasets. In particular, the proposed methodology is applied to Sicily and Calabria regions 

(Southern Italy), where long historical precipitation and temperature series were recorded by the ground-based monitoring 20 

networks operated by the formerly Regional Hydrographic Offices, whose density is considerably greater than observational 

gridded datasets available at the European level, such as E-OBS or CRU-TS. Results show that among the more skilful models, 

able to reproduce, overall, precipitation and temperature variability, as well as drought characteristics, are many are based on 

the COSMO-CLM-Community RCM, with the significant exception of theparticularly in combination based on the 

HadGEM2-ES GCM and the RACMOwith the HadGEM2 RCMGCM. Nevertheless, the the ranking of the models may 25 

slightly choice of the most appropriate modelchange dependings on the specific variable analysed, as well as the temporal and 

spatial scale of interest. From this point of view, the proposed methodology highlights the skills and weaknesses of the different 

configurations, supporting and can serve as an aid for a selecting the most suitable proper climate model selection for climate 

projectionsassessing climate change impacts depending on the examined hydrologic processeson drought processes and the 

primitive underlying variables on which it depends.   30 
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1 Introduction 

A growing number of scientific studies claims that climate change due to global warming will significantly alter the water 

cycle, with an increase of the intensity and frequency of extreme hydro-climatic events in several areas around the globe 

(Arnell et al., 2001; Huntington, 2006; IPCC, 2014; IPCC, 2018). These include the Mediterranean region, which is recognized 

as one of the major hot spots of climate change due to future projections of temperature increase and annual precipitation 35 

decrease (Giorgi, 2006; Kjellström et al., 2013).  

Global Circulation and Regional Climate Models (GCMs and RCMs) can play a crucial role in understanding the potential 

spatiotemporal evolution of climate change in the future, thus improving current monitoring and planning tools (e.g., 

Mendicino and Versace, 2007; Hart and Halden, 2019) and supporting decision-makers to choose and implement the best 

solutions to minimize the impact of climate change on human systems and the environment at the regional scale. While GCMs’ 40 

simulations describe climate evolution at large scale, by using coarse resolution information, RCMs simulations, derived 

through climate-downscaling techniques, aim at representing regional and local scale weather conditions with grid resolutions 

lower than 50 km down to about 10 km (Kotlarski et al., 2014; Peres et al., 2019).  

Several studies, focused on the use of climate models to simulate future climate scenarios for hydrological analyses, have 

shown that changes in temperature and precipitation vary in space depending on the future climate scenario, type, and 45 

resolution of the models, as well as on spatial heterogeneity of climatic features. This is particularly evident in the 

Mediterranean region where, for instance, precipitation is partially controlled by orography, shows strong seasonality and large 

interannual fluctuations, and is characterized by the occurrence of particularly intense extreme eventss, such as prolonged 

droughts and high-intensity storms leading to floods (Bonaccorso et al., 2013; Bonaccorso et al., 2015a and 2015b; Llasat et 

al., 2016; Senatore et al., 2020).  50 

Recently, there is a growing interest in the implementation of RCMs derived by dynamical downscaling of GCM outputs for 

climate change impact studies at small spatial scales. These are high-resolution models able to provide a more realistic 

representation of important surface heterogeneities (such as topography, coastlines, and land surface characteristics) and 

mesoscale atmospheric processes.  

The Coordinated Regional Climate Downscaling Experiment (CORDEX) initiative is the first international program providing 55 

a common framework to simulate both historical and future climate at the regional level, under different Representative 

Concentration Pathways (RCPs) (van Vuuren et al., 2011), and over different domains which cover all the land areas. More 

specifically, it provides climate data simulated by an ensemble of RCMs developed by several research centres all over the 

world which that are forced by Global Circulation Models (GCMs) from the Coupled Model Intercomparison Project phase 5 

(CMIP5);  (Taylor et al., 2012). In the present study, we refer to the CORDEX domain centred on the Euro-Mediterranean 60 

area, known as EURO-CORDEX (Jacob et al., 2014; ) (www.euro-cordex.net). In particular, EURO-CORDEX provides 

simulations for a historic reference period (baseline) and future projections up to 2100, with a 12.5 km grid resolution, available 

for four RCPs defined at the international level within the Coupled Model Intercomparison Project – Phase 5 (CMIP 5). 
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The reliability of individual RCMs in representing climate effects on the hydrological cycle depends on the quality of historical 

simulations and must be evaluated before using their output for impact assessment. Assessing RCMs performance is essential 65 

to either select single models for further applications (e.g., Senatore et al., 2011; Peres et al., 2017; Smiatek and Kunstmann, 

2019) or properly weight individual RCMs in multi-model ensembles to predict future impacts of climate change on 

hydrological processes (e.g., Christensen et al., 2010; Coppola et al., 2010). Indeed, intercomparison and validation studies to 

evaluate RCMs’ performances and to provide a ranking based on some hydrological measures, have demonstrated that no 

model can be considered optimal for every variable and region. Table 1 provides a broad, although not thorough, list of 70 

intercomparison studies within the CORDEX framework available in the literature. Overall, these studies show that CORDEX 

RCMs can reproduce the most important climatic features at regional scales, but that important biases remain, especially 

regarding precipitation or climate extremes. As reported by Kotlarski et al. (2014) and references therein, model biases may 

depend on the analysed region, choices in model configuration, internal variability, and uncertainties of the observational 

reference data themselves (Gampe et al., 2019). Concerning the latter, a common approach in evaluation exercises consists in 75 

comparing models’ simulations to observational gridded datasets, from remote sensing or model-derived reanalyses products 

available at global or continental spatial scales.  

In general, statistical measures, such as bias, root mean square error, correlation, and trend analysis, are used to quantify model 

performance. Regardless of the specific methods used to assess the differences between simulated and observed data, one of 

the main limitations in this approach is that the considered spatial resolution is too coarse for reliable climate change impact 80 

studies at relevant hydrological scales, especially in areas of complex topography. From this point of view, large-scale 

observational gridded datasets are of poor applicability, since they are built upon low-density hydro-meteorological networks.  

In principle, more accurate evaluations can be achieved when they rely on gridded reference data sets that are obtained by 

spatial interpolation of point measurements onto a regular grid. To this end, two main prerequisites are that data coverage well 

reflects the topography and variables with limited spatiotemporal climatic variability are investigated (Wagner et al., 2007). 85 

For example, Mascaro et al. (2018) compared the skill of several EURO-CORDEX RCMs at ~ 50 and 12 km grid spatial 

resolution in reproducing annual and seasonal precipitation regimens and trends in Sardinia (Italy), against a dense network of 

rain gauges with long term records. Their analysis revealed that, although the simulated spatial patterns of annual and seasonal 

means are well correlated with the observations, positive and negative biases up to ±60% in the simulation of annual mean and 

interannual variability are detected. Furthermore, the majority of RCMs underestimate winter and overestimate summer 90 

precipitation. 

In this study, we present we propose a similar an enhanced evaluation analysis exercise overn a different Mediterranean area 

with complex topography, namely Sicily and Calabria regions (Southern Italy). In particular, after , by investigating the ability 

of the EURO-CORDEX models to simulate the annual and seasonal temperature and precipitation regime, we analysed the 

skill in reproducing as well as drought event characteristics determined fromidentified through the run method proposed by 95 

(Yevjevich, (1967). sRun method, here defines a droughtd as  a spell of consecutive intervals where the annual precipitation 

values are continuously below the long term mean, according to the theory of runs proposed by Yevjevich (1967). Within the 
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analysis of drought analysis, we also consider alsoinvestigated the return period of drought events of fixed duration at both the 

annual and seasonal scales. In this case, given the limited number of droughts in a thirty-year long time series, we apply 

inferential methodologiesan analytical framework was applied that allow to computinge return period starting frombased on 100 

probabilisticreasonable assumptions on the probabilistic structure of annual and seasonal precipitation (Bonaccorso et 

al. …2003;,  Cancelliere and Salas, 2004). Furthermore, we analysed model skills at a sub-regional level. To this aim, we 

proposed the use of Principal Ccomponent Aanalysis (PCA) for delimitation of climatically homogeneous areas. The ability 

of climate models to reproduce observed precipitation, temperature and drought features wais analysed both per single 

characteristic as well as per multiple characteristics (e.g. precipitation and temperature together), by introducing a specific 105 

ranking criterion that allows combining any of the performances respect to the single characteristics.  

 Indeed, understanding how well the models can reproduce past droughts is crucial for future effective water resources 

management in the Mediterranean region. In particular, the performance ofNineteen 19 coupled GCM and RCM simulations 

within the EURO-CORDEX framework weareare evaluated against a high-density and high-quality monitoring station-based 

reference dataset. Monthly temperature and precipitation records weare retrieved by two monitoring networks, operated by the 110 

former Regional Hydrographic Services, whose density is significantly higher than observational datasets available at the 

European scale, such as E-OBS (Haylock et al., 2008) or CRU-TS (Harris et al., 2014), allowing for a more accurate evaluation 

of the models. Beyond the intercomparison analysis of the EURO-CORDEX RCMs, the present study also aims at identifying 

potential sub-regions where model improvements are particularly advisable. 

The study is organized as follows: after introducing the study area, the station-based reference dataset, and the GCM and RCM 115 

datasets in Section 2, Section 3 outlines the methodology applied for identifying climatically homogeneous zones in the study 

area through the Principal Component Analysis (PCA), and for evaluating models’ performance in both the whole study area 

and the homogeneous zones; furthermore, the adopted statistical performance metrics and the ranking criteria are introduced. 

Then, Section 4 presents the evaluation results for each investigated variable over the whole study area and the different zones. 

The results are further discussed in Section 5, highlighting the basic model capabilities identified, as well as the biases in 120 

modelling climate and drought conditions in Southern Italy. Conclusive remarks are drawn in Section 6, together with an 

outlook on future evaluation and prediction activities in the EURO-CORDEX framework. 

2 Study area and datasets 

Our analyses were focused on Calabria and Sicily regions in Southern Italy, which respectively have an extension of 15,080 

km² and 25,460 km², for a total area of 40,540 km² (Fig. 1). Climate is of Mediterranean type with hot and dry summers and 125 

moderately cold winters with peak monthly precipitation occurring mostly in late autumn and winter. About 75% of the total 

precipitation in the study area occurs from October to March, because of cyclonic storms. These climate features make the 

area particularly prone to droughts:, with the most recent severe episode has occurred in 2017on ... (Rossi and Benedini, 2020, 

Bonaccorso,; Senatore…). Climate features are also highly variable in space due to a rather complex orography. In particular, 
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the mountain chains close to the coast enhance intense orographic precipitation and lead to relatively cold temperatures at the 130 

highest altitudes.  

2.1 Observed data  

Within the EURO-CORDEX control period (1951-2005), the comparison with observations was performed ion the period 

from 1971 to 2000. These three decades had the greatest availability of historical series of precipitation and temperature 

recorded by both the regional monitoring networks of Calabria and Sicily, managed by the Multirisk Operational Centre of 135 

Calabria region (ArpaCal) and the Water Observatory of Sicily region (WOS), respectively. Specifically, 84 thermometers (43 

in Sicily and 41 in Calabria Calabria and near the regional borders) and 335 rain gauges (173 in Sicily and 162 in Calabria and 

near the regional borders) were used (Fig. 1). Details on the monitoring network are given in the Supplementary Material to 

this paper.  

The corresponding data were retrieved by the WOS (www.osservatorioacque.it) and the ArpaCal (www.cfdcalabria.it) 140 

websites. Observations were enough widespread to represent the quite heterogeneous features of the study area. The 

temperature stations were located between 2 and 1295 m a.s.l., with annual average values ranging from 9.2 °C to 20.6 °C 

(mean value = 16.2±2.4 °C), while the rain gauge elevations varied from 1 to 1369 m a.s.l., with annual accumulated values 

ranging from 373 mm to 1736 mm (mean value = 812±287 mm). 

2.2 Climate models 145 

Monthly precipitation and monthly mean air temperature data from the EURO-CORDEX CMIP5 simulations (Jacob et al. 

2014; https://www.euro-cordex.net/) were retrieved from the nodes of the Earth System Grid Federation (ESGF, e.g. 

https://esgf.llnl.gov).  

We analysed the data at the finest resolution, 0.11° (~ 12.5 km), EUR-11 and considered the period 1971-2000 as a baseline. 

In particular, the combination of six GCMs (Tab. 2) and eight RCMs (Tab. 3) leading to 17 datasets, reported in Tab. 4, were 150 

collected for the study. Moreover, for two GCM-RCM combinations, two versions were available from the ESGF portal. 

Therefore, an overall ensemble of 19 combined models (CMs) was analysed. The ensemble mean of the 19 CMs was also 

evaluated. Even if the CMs have the same spatial resolution, each one is distributed on a specific grid (with slightly different 

origin and orientation of the axis). Therefore, the various data sets were resampled on the grid of the ECE-HIRH CM, which 

is shown in Fig. 1.   155 

We choose EUR-11 rather than EUR-44 simulations as several studies (Torma et al., 2015; Prein et al., 2016), have found that 

generally higher resolution CORDEX RCMs have better skills in simulating seasonal precipitation in regions with complex 

terrain. 

http://www.osservatorioacque.it/
http://www.cfdcalabria.it/
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3 Methodology 

3.1 Data processing and PCA 160 

To allow the comparison between the spatially distributed RCMs data and site-specific observations, the latter were spatially 

interpolated using the CORDEX 0.11° grid as reference (Fig. 1). In this way, month by month, each cell of the CORDEX grid 

could be associated with a single temperature or precipitation value derived from the observations network. Specifically, 

concerning temperature, an Inverse Distance Weighting (IDW) interpolation was applied to the residuals of the values obtained 

using a regression model with the altitude. For precipitation, whose measurement network is much denser, a simple IDW 165 

interpolation was performed. As shown in Fig. 1, the CORDEX grid cells which are not covered by any rain gauge are relatively 

few (less than 30%) and, except one case, the distance of the closest rain gauge to every grid cell is always less than 10 km. 

The precipitation patterns obtained by the interpolation procedure were analyzed adopting a methodology based on the 

Principal Component Analysis (PCA) to distinguish zones with rather independent climatic variability within the area under 

investigation. PCA is a well-known statistical tool used to transform an original set of intercorrelated variables into a reduced 170 

number of new linearly uncorrelated ones explaining most of the total variance (Rencher, 1998). The latter, derived as linear 

combinations of the original variables, are the principal components (PCs), while the coefficients of the linear combinations 

are the loadings, which in turn represent the weight of the original variables in the PCs. From a procedural standpoint, PCA 

consists of solving an eigenvalue-eigenvector problem applied to the covariance matrix. The eigenvectors, properly 

normalized, are the loadings of the principal components, while the eigenvalues provide a measure of the total variance 175 

explained by each loading (Bordi and Sutera, 2001 and references therein). Under this decomposition, the loadings represent 

the correlation between the associated PCs and observed time series. Mapping the loading patterns of each PC among those 

selected, based on the percentage of the total explained variance of the process, largely allow to identify independent climatic 

areas within the study region. Moreover, it may be useful to apply a rotation operation to the eigenvectors, so that the 

corresponding loadings are more spatially localized. In other words, the rotation leads to loadings with a high correlation with 180 

a smaller set of spatial variables and a low correlation with the remaining variables. Here, only orthogonal rotations were 

considered, computed by the varimax algorithm in Matlab® R2016. Clearly, each rotated pattern will not explain the same 

variance of the unrotated one, although the total variance explained remains unchanged. 

In the present study, the first nine rotated PCs both at the annual and seasonal (DJF, MAM, JJA, SON) scales were investigated. 

Regardless of the considered period, the selected PCs always explain more than 78% of the total variance, with a maximum of 185 

85% in the winter season (DJF). The loading patterns of these rotated PCs were mapped for each considered period to identify 

climatically homogeneous regions. Homogeneous sub-regions were detected at the annual scale and in autumn and winter 

seasons, whereas a confusing picture arose in spring and summer seasons. Furthermore, since about 75% of the total annual 

rainfall of the case-study area occurs between autumn and winter (as a result of cyclonic storms), the climatically homogeneous 

sub-regions identified at the annual scale approximately overlap with those identified at seasons SON and DJF. Isolated grid 190 

cells showing a different PC correspondence with respect to the surrounding cells, were manually corrected to simplify the 
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delimitation of the homogeneous sub-regions. This approach led in dividing the whole area into six climatically homogenous 

zones, three for Sicily and three for Calabria (Fig. 1), for which separate performance assessments were carried out. Concerning 

Sicily region, the three identified sub-regions roughly coincide with the ones detected by Bonaccorso et al. (2003), who 

investigated the spatial variability of droughts in Sicily region based on SPI series computed on monthly precipitation observed 195 

in traditional rain gauges and on NCEP/NCAR reanalysis data from 1926 to 1996. In particular, three distinct areas, namely 

North-Eastern (identified in the PCA as zone 5, Fig. 1b), South-Central Eastern (zone 4), and Central-Western (zone 1), were 

identified. In Calabria, three main zones were also determined, namely North-Western (zone 2), North-Eastern (zone 3) and 

South-Eastern (zone 6), broadly corresponding to climatic homogenous areas found in previous studies (e.g., Versace et al., 

1989). Interestingly, the South-Western tip of Calabria is identified as a part of a broader area (zone 5) extending over the 200 

North-Eastern Sicily.The precipitation patterns obtained by the interpolation procedure were analyzed adopting a methodology 

based on the Principal Component Analysis (PCA) to distinguish zones with rather independent climatic variability within the 

area under investigation. PCA is a well-known statistical tool used to transform an original set of intercorrelated variables into 

a reduced number of new linearly uncorrelated ones explaining most of the total variance (Rencher, 1998). The latter, derived 

as linear combinations of the original variables, are the principal components (PCs), while the coefficients of the linear 205 

combinations are the loadings, which in turn represent the weight of the original variables in the PCs. From a procedural 

standpoint, PCA consists in solving an eigenvalue-eigenvector problem applied to the covariance matrix. The eigenvectors, 

properly normalized, are the loadings of the principal components, while the eigenvalues provide a measure of the total 

variance explained by each loading (Bordi and Sutera, 2001 and references therein). Under this decomposition, the loadings 

represent the correlation between the associated PCs and observed time series. Moreover, it may be useful to apply a rotation 210 

operation to the eigenvectors, so that the corresponding loadings are more spatially localized. In other words, the rotation leads 

to loadings with a high correlation with a smaller set of spatial variables and a low correlation with the remaining variables. 

Here, only orthogonal rotations are considered, computed by the varimax algorithm in Matlab® R2016. Clearly, each rotated 

pattern will not explain the same variance of the unrotated one, although the total variance explained remains unchanged. 

In the present study, PCA led in dividing the whole area into six climatically homogenous zones, three for Sicily and three for 215 

Calabria (Fig. 1), for which separate performance assessments were carried out. Concerning Sicily region, the three identified 

sub-regions roughly coincide with the ones detected by Bonaccorso et al. (2003), who investigated the spatial variability of 

droughts in Sicily region based on SPI series computed on monthly precipitation observed in traditional rain gauges and on 

NCEP/NCAR reanalysis data from 1926 to 1996. In particular, three distinct areas, namely North-Eastern (identified in the 

PCA as zone 5, Fig. 1b), South-Central Eastern (zone 4), and Central-Western (zone 1), were identified. Also in Calabria, three 220 

main zones were determined, namely North-Western (zone 2), North-Eastern (zone 3) and South-Eastern (zone 6), broadly 

corresponding to climatic homogenous areas found in previous studies (e.g., Versace et al., 1989). Interestingly, the South-

Western tip of Calabria is identified as a part of a broader area (zone 5) extending over the North-Eastern Sicily. 
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3.2 Performance metrics and models’ ranking 

The CMs were evaluated based on their performances in capturing specific properties, namely: the interannual and seasonal 225 

variability of precipitation, temperature and drought characteristics. Such properties were expressed based on some relevant 

statistics.  

Let 𝑋(𝑗) and 𝑋𝜏(𝑗) be the variable under investigation (precipitation or mean temperature) at grid cell j at the annual and 

seasonal scale, respectively. For precipitation and mean air temperature, the following statistics were derived for each CM and 

cell in the area of interest:  230 

• Seasonal mean 𝜇𝑚(𝑋𝜏(𝑗)) =
∑ 𝑥𝜏,𝑖,𝑚(𝑗)𝑁

𝑖=1

𝑁
 

where 𝑥𝜏,𝑖,𝑚(𝑗) is the value of the variable at season 𝜏 (𝜏 = 1, 2, 3, 4) and year 𝑖 (𝑖 = 1, 2, … 𝑁) produced by the 𝑚-

th CM (𝑚 = 1, 2, … 𝑀) at cell grid j. Seasons are December – February (DJF), March – May (MAM), June – August 

(JJA), and September – November (SON); 

• Seasonal standard deviation 𝜎𝑚 (𝑋𝜏(𝑗)) = √∑ (𝑥𝜏,𝑖,𝑚(𝑗)−𝜇𝑚(𝑋𝜏(𝑗)))
2

𝑁
𝑖=1

𝑁−1
; 235 

• Annual mean 𝜇𝑚(𝑋(𝑗)) =
∑ 𝑋𝑖,𝑚(𝑗)𝑁

𝑖=1

𝑁
; 

where 𝑥𝑖,𝑚 is the value of the variable at year 𝑖 (𝑖=1, 2, … N) produced by 𝑚-th CM; 

• Annual standard deviation 𝜎𝑚 (𝑋(𝑗)) = √∑ (𝑥𝑖,𝑚(𝑗)−𝜇𝑚(𝑋(𝑗)))
2

𝑁
𝑖=1

𝑁−1
. 

Drought events were identified on both annual and seasonal (DJF, MAM, JJA, SON) precipitation values simulated for the 

period 1971-2000, according to the theory of runs (Yevjevich, 1967). In particular, drought events were selected as the periods 240 

during which consecutive annual or seasonal values of precipitation did not exceed a given threshold, here assumed equal to 

the long term means of annual and seasonal data (i.e. onea different threshold  for each season). Once drought events were 

identified, the corresponding drought characteristics in each cell were determined. In particular, the following statistics for 

drought characteristics are considered hereafter to assess the models’ performance:Drought events were identified on annual 

precipitation values simulated for the period 1971-2000, according to the theory of runs (Yevjevich, 1967). In particular, 245 

drought events were selected as the periods during which consecutive annual values of precipitation did not exceed a given 

threshold, here assumed equal to the long term mean. For further details about the theory of runs, the readers may refer to 

Bonaccorso et al. (2003, 2013) and reference therein. Once drought events were identified, the corresponding drought 

characteristics in each cell were determined. In particular, the following statistics for drought characteristics are considered 

hereafter to assess the models’ performance: 250 

• Maximum drought duration Lmax: maximum length of periods with consecutive annual precipitation values below the 

threshold; 
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• Maximum drought accumulated deficit Dmax: maximum of the sums of the differences between the threshold and the 

precipitation values along with the drought duration;.  

• Maximum drought intensity Imax: maximum of the ratio between drought accumulated deficit and duration; 255 

• Return period of drought events of fixed duration (at both annual and seasonal scales).. 

Concerning the return period of drought events, let E be a critical drought (e.g., a drought with duration L equal to a fixed 

value). Assuming independence between consecutive drought events, the return period of drought event E can be expressed as 

(Gonzales and Valdes, 2003; Cancelliere and Salas, 2004; Cancelliere and Salas, 2010; Bonaccorso et al., 2012): 

 260 

𝑇𝐸 =
𝐸[𝐿]+𝐸[𝐿𝑛]

𝑃[𝐸]
 

 

 

 

 265 

 

 

 

 

 270 

 

 

 (1) 

 

where E[L] is the expected value of drought duration L and E[Ln] is the expected value of the non-drought duration Ln and 275 

𝑃[𝐸] is the probability of occurrence of a critical drought E, which can be determined once that the probability distribution 

function of the event E is known.  

Regarding the probability distribution of drought duration, let us consider a periodic stochastic hydrological variable denoted 

as X where  represents the year and  represents the season. According to the theory of runs, drought duration L is the 

number of consecutive time intervals (seasons) where X ≤ xo,  is preceded and followed by at least one season where X > 280 

xo, where xo, is a threshold level representing water demand. The original variable can be replaced by a Bernoulli variable 

Y such that: 
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{

𝑌𝑣,𝜏 = 0 𝑖𝑓  𝑋𝑣,𝑡 ≤ 𝑥0,𝜏 (𝑑𝑒𝑓𝑖𝑐𝑖𝑡)

𝑌𝑣,𝜏 = 1 𝑖𝑓 𝑋𝑣,𝑡 > 𝑥0,𝜏 (𝑠𝑢𝑟𝑝𝑙𝑢𝑠)
 

 285 

 

 

 

 

 290 

 

 

 (2) 

 

Assuming that 𝑌𝑣,𝜏 is a lag-1 Markov stationary process, it can be shown (Sen, 1976; Cancelliere and Salas 2004; Cancelliere 295 

and Salas, 2010) that the probability distribution of drought duration L is geometric with parameter 𝑝01: 

 

𝑓𝐿(ℓ) = 𝑃[𝐿 == 𝑃[𝐿𝑝01)ℓ−1𝑝01 

 

 300 

 

 

 

 

 305 

 (3) 

 

The parameter 𝑝01 represents the transition probability from a deficit to a surplus, namely 𝑝01 = [𝑌𝑣,𝜏 = 1|𝑌𝑣,𝜏−1 = 0].  

Estimation of transition probabilities can be carried out following a non-parametric approach based on maximum likelihood, 

which leads to (Bonaccorso et al., 2012): 310 

 

𝑝01 = 1 − 𝑝00 = 1 −
𝑛00

𝑛00+𝑛01
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 315 

 

 

 

 

 320 

 

 (4) 

 

where 𝑛00 is the number of observations 𝑦𝑣,𝜏 = 0, for which 𝑦𝑣,𝜏−1 = 0, and 𝑛01 is the number of observations 𝑦𝑣,𝜏 = 1, for 

which 𝑦𝑣,𝜏−1 = 0.  325 

For independent stationary series, the probability distribution of drought duration L is geometric with parameter 𝑝1 =

𝑃[𝑌𝜏 = 1]. The latter can be simply estimated by applying a frequency analysis on 𝑌𝜏.  

Following previous studies (Bonaccorso et al., 2003; Cancelliere and Salas, 2004), the annual series were assumed independent 

stationary, whereas the seasonal series as lag-1 stationary Markov. 

Models’ skills in reproducing the interannual and seasonal variability of precipitation and mean air temperature variables were 330 

first assessed through: 

• boxplots of the errors and percentage errors of the mean values in all the grid cells of the investigated areas, which 

allow analysing the spatial variability of the models’ bias; 

• Taylor diagrams (Taylor, 2001), which show three metrics at the same time, i.e.: coefficient of correlation, standard 

deviation, and centred root mean square error of the anomalies (i.e., the variables of interest minus the corresponding 335 

means). It is noteworthy that standard Taylor diagrams do not provide any information about first-order statistics (i.e., 

bias). 

Later, to provide synthetic information about each CM starting from the various statistics computed for each property, a method 

based on Mascaro et al. (2018) was used. Specifically, for each property (i.e. seasonal and interannual variability of 

precipitation and mean temperature and drought characteristics), a single dimensionless error metric that combines multiple 340 

statistics characterizing that property was estimated. The error metrics follows the equation: 

𝜀𝑚 = √∑ (
∑ 𝐸𝑘,𝑚(𝑗)

∑ ∑ 𝐸𝑘,𝑚(𝑗)𝑃
𝑗=1

𝑀
𝑚=1

)
2

𝑆
𝑘=1  (15) 

where 𝐸𝑘,𝑚(𝑗) represents an error metric between observed and simulated data of the statistics k (k = 1,…, S) at grid cell j 

(j=1, … P, where P is the total number of grid cells), whose sum over the whole area was divided by the sum of the error 
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metrics of all models, therefore resulting in a dimensionless indicator for each statistic k of any property. Table 5 summarizes 345 

the statistics chosen for each property and describes how the corresponding errors were calculated.  

Based on the values of the error metrics in Eq. (1), a ranking of the models, describing the skills in reproducing each property, 

was obtained. It should be specified that while, for the sake of brevity, the boxplots and the Taylor diagrams illustrated in the 

next section refer to the whole study area, the ranking of the models for the mean air temperature, precipitation and drought 

characteristics also refers to the six climatically homogenous zones identified through PCA. This analysis, indeed, can help to 350 

highlight whether some models are more suitable than others to simulate certain variables in a given zone. 

4 Results  

In this section, results are presented and discussed separately for temperature, precipitation and drought characteristics. Results 

are differentiated for the following temporal and spatial aggregation scales: annual data, seasonal data, the whole case study 

region and the six climatically homogenous areas identified via PCA.  355 

4.1 Mean air temperature 

4.1.1 Interannual variability 

The observed and modelled means of the annual mean air temperature values in each of the grid cells within the study area 

were calculated and compared. More specifically, for each cell j, the error corresponding to the m-th CM was computed as:  

𝐸𝑚,𝑗 = 𝜇𝑚(𝑇(𝑗)) − 𝜇0(𝑇(𝑗)) (26) 360 

where T(j) is the mean annual temperature at cell j, whereas 𝜇𝑚(∙)  and 𝜇0(∙) are the modelled and observed means respectively. 

For each model, the distribution of the errors computed for all the grid cells of the study area based on Eq. (2), is represented 

in the form of box-plots in Fig. 2a. In particular, the central line represents the median value and the box is delimited by the 

first and the third quartile. The width of the box corresponds to the inter-quartile range (IQR), a well-known measure of 

dispersion. Values outside the whiskers, distant from the box at least 1.5 IQR, can be assumed as outliers.  365 

The overall tendency of the models is to underestimate temperatures, as the medians are negative. Errors are predominantly 

comprised between the values -5 and -1 °C, thus implying that the models underestimate up to 5 °C. The CMs that produce 

the most extreme negative errors are the ECE-RACM, ECE-RACMr12 and CM5-ALAD, with the latter showing the broader 

IQR (e.g. the highest spatial variability of the errors) and the greatest median error. All the CMs with RCA4 show the smallest 

IQR. The models with the smallest median error are MPI-REMO and MPI-REMOr2. 370 

To extend the CM skill comparison to other statistics, the Taylor diagram for the annual mean air temperature values was 

developed (Fig. 32b). For the sake of simplicity, standard deviations of the CMs are indicated as  hereinafter. The diagram 

allows visualizing if there are clusters of performances related to specific GCMs or RCMs among those considered. In the 

diagram, GCMs are indicated with different markers, while RCMs with different colors. The value corresponding to the 



 

13 

 

observations is the dot on the x-axis, whose standard deviation is marked through a continuous circular arc. In addition to every 375 

single model, the ensemble mean model result is reported in the diagram.  

From Fig. 32b , it can be seenshows that the simulated means are well correlated with the observations, with values larger than 

0.8 for all the considered models. Furthermore, the diagram seems to reveal that, on equal GCMs, RCMs play a significant 

role in determining the performance of the combinations. In general, for most of the models, the best performances are obtained 

when the RCM RCA4 is used. The only exception is CM5, performing better in combination with CCLM. The worst models 380 

are CM5-ALAD and IPS-WRF. 

Finally, the ranking analysis described in Section 3.2 yields the results in Fig. 34. The lower the rank, the lower is the error 

metrics in Eq. (1) and the better is the model. For better readability, ranking values are indicated through a chromatic scale, 

ranging from dark green (first ranked model) to dark red (last ranked model). 

The best performing models, in terms of ranking order for the whole study area, are MPI-CCLM, MPI-REMO, and Had-385 

CCLM. ECE-RCA4 and CM5-CCLM are also good models as highlighted by the Taylor diagrams. Figure 4 also shows 

rankings for each of the six homogeneous areas. As it can be observed, based on the range of colours in each row, MPI-CCLM 

and MPI-REMO provide the best performance for almost all the zones.  

Indeed, some differences exist for Zones 3 and 6 (North and South-Eastern Calabria), whose best CM is IPS-RCA4. Overall, 

results show that the worst model is CM5-ALAD for entity and dispersion of errors, lower correlations, higher RMSE, greater 390 

deviation from the standard deviation of the observed values, both for the whole study area and individual zones. ECE-RACM, 

ECE-RACMOr12, and ECE-RCA4 also show bad performance (the latter mainly because of its relatively strong bias).  

4.1.2 Seasonal variability  

For the sake of brevity, the box-plots related to the seasonal variability of mean air temperature are not shown since they 

provide similar results to the case of annual variability. 395 

Figure 45 shows the Taylor diagrams obtained from the analysis of the individual seasons. CM5-ALAD and IPS-WRF (and, 

to a slightly lesser extent, CM5-ALAR) appear as the worst models regardless of the season, although in summer (JJA) the 

worst-performing models are MPI-REMO and MPI-REMOr2. Summer is also the season with the (slightly) lowest values of 

correlation coefficients. 

Regarding the best models, in general, all the combinations with RCA4 and the CM5-CCLM work better, as for the interannual 400 

variability analysis. However, in summer better performances are obtained with ECE-RACM and ECE-RACMr12. 

Figure 56 represents the rankings of the models for the individual seasons and all the study areas, namely the whole case study 

and the six zones. There is a certain correspondence on the least performing models between Figs. 54 and 56. Nonetheless, 

differently from the results in Fig. 34, models’ performances may change significantly from season to season and, in the same 

season, from zone to zone. The best models for most of the zones are ECE-HIRH in winter (DJF), ECE-CCLM in spring 405 

(MAM), IPS-RCA4 in summer (JJA) and MPI-REMOr2 in autumn (SON). It’s worth highlighting that the latter provides the 
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best performances also for Zones 2 and 4 in spring and Zones 5 and 6 in summer. Conversely, ECE-HIRH, which is the best 

model in winter, works poorly in summer and autumn. The Zones 1 (Western Sicily) and 2 (Western Calabria) show a uniform 

behaviour in all seasons, with the only exception of spring, while Zones 5 (North-Eastern Sicily) and 6 (South-Eastern 

Calabria) show a uniform behaviour in all seasons but autumn. Besides, in summer and autumn, the best performing models 410 

for Zones 1, 2 and 4 (South-Eastern Sicily) are the same as for the whole study area. Zone 3 (North-Eastern Calabria) behaves 

like Zone 4 in winter and like Zones 1, 5 and 6 in spring. 

4.2 Precipitation  

4.2.1 Interannual variability  

Figure 6a7 shows box-plots for the percentage errors in mean annual precipitation, namely: 415 

𝐸𝑚,𝑗 =
𝜇𝑚(𝑃(𝑗))−𝜇0(𝑃(𝑗))

𝜇0(𝑃(𝑗))
⋅ 100 (73) 

where P(j) is the total annual precipitation at the grid cell j. 

In comparison to temperature, the errors are much larger, as well as the differences between the various models. There is a 

general tendency for the models to underestimate the total annual precipitation, except for some models like IPS-WRF, which 

also shows the largest IQR. The median value of the relative errors for some models is less than 20%; however, many models 420 

have a large dispersion with error values over 100%. The CM with the highest positive error is IPS-WRF, while the ones with 

the highest negative errors are the IPS-RCA4 and Nor-HIRH models. The GCM-RCM combinations with the smallest IQR of 

errors are those using CCLM RCMs. The model with the smallest bias is Had-RACM.  

The Taylor diagram in Fig. 6b8 confirms that the best combinations are those with CCLM RCMs. In particular, the best one 

seems ECE-CCLM. However, when used in combination with CM5, the corresponding model provides poor performance. 425 

The worst performing models are ECE-HIRH and Nor-HIRH. The diagram confirms that precipitation is modelled with less 

accuracy than temperature, as correlations are lower (<0.8).  

The application of the ranking criteria (see Fig. 97) suggests Had-RACM and ECE-CCLM as the best combinations for the 

entire area and most of the zones. Also, CM5-ALAD works well for the whole area and almost all the zones, except for Zone 

4, where it ranks the 11th. IPS-WRF, IPS-RCA4, Nor-HIR, and CM5-RCA4 are the worst models. 430 

4.2.2 Seasonal variability 

The seasonal variability analysis carried out on precipitation shows (Fig. 810) a lower error dispersion in the wet seasons (i.e., 

autumn and winter) with respect to summer. In summer, several models show broader IQR, such as all the CM5 models and 

IPS-WRF, with the latter showing the largest median error.  On the one hand, these outcomes depend on the poor performance 

of some models in reproducing the seasonal cycle, and on the other hand, are due to the fact that in the dry season where 435 

rainfall is normally low, large errors may result even though the departure from the observed mean is relatively small. These 
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results are consistent with those obtained by Giorgi and Lionello (2008) in a subdomain of the Mediterranean region and by 

Mascaro et al. (2018) for the Sardinia region. 

The Taylor diagrams in Fig. 911 highlight that NOR-HIRH and ECE-HIRH are the worst models for all the seasons but 

summer, where the IPS-WRF is the worst-performing.  440 

These indications are confirmed by the ranking results in Fig. 102. Concerning the best models, the following CMs perform 

the best in their respective seasons: ECE-RACMr12 in winter (DJF), ECE-CCLM in spring (MAM), MPI-REMOr2 in summer 

(JJA), MPI-CCLM and Had-RACM in autumn (SON). It is worth highlighting that ECE-RACMr12 provides the best rank 

also for Zone 2 in autumn; ECE-CCLM is the best performing also for Zone 6 in summer; MPI-CCLM provides the best 

performances also for Zone 1 in winter and Zone 4 in spring and Had-RACM is the best model for Zone 2 in spring. For 445 

summer precipitation, MPI-REMOr2 is the best performing CM also for Zones 1, 2, 3 and 4. As for the ranking of seasonal 

mean temperature, once again there is no uniform behaviour of the models between the different seasons and zones. 

4.3 Drought characteristics  

4.3.1 Annual scale 

The models’ performance in reproducing historical drought characteristics both at the annual and the seasonal scale was also 450 

tested. In particular, the following drought characteristics derived from the theory of runs were analysed: maximum duration 

(Lmax), maximum accumulated deficit (Dmax), and maximum intensity (Imax) and return period of drought duration.  

With reference to the drought characteristics identified on annual precipitation, Figures 11a, b and c s from 13 to 15 represent 

the boxplots of the errors related to maximum drought duration, accumulated deficit, and intensity, respectively. In particular, 

for drought duration, the errors were computed through Eq. (2) by simply replacing T with Lmax, whereas for maximum drought 455 

accumulated deficit and intensity, the percentage errors were calculated through Eq. (3), by replacing P first with Dmax and 

then with Imax. 

There is a slight tendency of some models to underestimate drought duration (Fig. 11a3). Overall, the errors span from -3 and 

+2 years. The broadest IQR is associated with MPI-REMO, while some models, such as CM5-CCLM, CM5-ALAR, ECE-

RACM and, Nor-HIRH seem equally reliable. 460 

The boxplots obtained for Dmax (Fig. 11b4), shows that the models may yield considerable errors, which can potentially be 

larger than those for annual precipitation, as the accumulated deficit, given by the sum of precipitation deficits on a time 

interval lasting several years, can be affected by multiple errors. For some models, the IQRs are not larger than 50%. The most 

reliable model is Had-CCLM, but comparable performances are given by models CM5-CCLM, CM5-ALAR and ECE-CCLM, 

while the least dispersed is MPI-CCLM (for this model, however, the median error is larger than others). The least reliable is 465 

IPS-WRF, followed by CM5-RCA4 and MPI-REMOr2. In general, as it can be seen from the box-plots, this feature is 

underestimated. Concerning Imax, the results indicate Had-RACM as the best model and CM5-RCA4 as the worst, followed by 
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IPS-WRF (Fig. 11c5). Errors for this feature are less scattered than for accumulated deficit, and there is a general tendency for 

Imax to be underestimated by models.  

Figure 12 shows box-plots of the errors in the return period of drought events of duration L equal to 1, 3, 5 and 7 years, 470 

respectively. In particular, the error was calculated as: 

𝐸𝑚,𝑗 = 𝜇𝑚 (𝑇𝑦(𝑗)) − 𝜇0 (𝑇𝑦(𝑗)) (8) 

where Ty(j) is the return period of a drought event of fixed duration at the grid cell j. 

As expected, on equal model, the error increases as the considered drought duration increases. However, regardless of the 

drought duration, there is no general tendency of the models towards overestimation or underestimation of the return periods. 475 

ECE-CCLM and Had-RACM are the models with the smallest IQR, with ECE-CCLM showing the lowest median error. 

Overall, the performance of the models looks rather similar, with limited errors until L=3 years (± 0.5 years). 

Finally, In agreement with the other variables analysed, the models were also ranked according to their ability in reproducing 

both observed drought maximum intensities and return periods of drought events with duration L=3 years (Fig. 14a6). Since  

Tthe purpose of this ranking is to provide a general comparison among the models about drought features, only dDrought 480 

intensity was selected is done concerning this feature only, as it merges drought accumulated deficit and duration of each 

drought event.  With reference toConcerning the return period, it is worth pointing out that the choice of the considered drought 

duration only affects the magnitude of the errors, while the performance of each model with respect to the others does not 

change (see Fig. 12). As shown in Fig. 14a6, the best models for the whole study area are confirmed to be ECE-CCLM, Had-

RACM, ECE-RACM, CM5-ALAR, and CM5Had-CCLM. These models Interestingly, have the highest ranking also for 485 

almost all the zones, with the only exception of CM5-ALAR is the best model for Zone 3, which does notbut seem unsuitable 

for Zone 6 and ECE-RACM for Zone 3the remaining zones. Overall, tThe worst models are CM5-RCA4for all the zones is 

CM5-RCA4, whereas poor performances are associated to ECE-RACMr12 for Zones 1 and 2, Had-RCA4 for Zone 3, MPI-

REMOr2 for Zones 4 and 6 and IPS-WRF and, Nor-HIRH for all the zones. for Zone 5. 

Generally speaking, the skills of CMs in reproducing drought characteristics and interannual variability of precipitation are 490 

significantly linked. Drought characteristics, derived through the application of theory of runs, are functions of the departure 

from the thresholds rather than of the modelled precipitation itself. In other words, although a CM could significantly 

underestimate or overestimate annual precipitation values (i.e. the data in the boxplots in Fig. 7 may look loosely grouped and 

the medians very far from 0), still it could provide good performance in terms of drought characteristics simulation if it can 

reproduce time variability. It is interesting to observe that the distribution of the percentage error of drought intensity (Fig. 15) 495 

is, in general, less scattered than that related to the accumulated deficit (Fig. 14); therefore, one can conclude that a partial 

error compensation occurs when the modelled accumulated deficit is divided by the modelled duration. Despite the differences 

in the percentage errors, there is however a general agreement in the identification of the best and, mainly, the worst models, 

also confirmed by the ranking of the models in reproducing drought intensity (Fig. 16). 
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4.3.2 Seasonal scale 500 

Figures 11d, 11e and 11f represent the boxplots of the errors related to maximum drought duration, accumulated deficit, and 

intensity identified on seasonal precipitation data.  

With reference toConcerning drought duration (Fig. 11d), several models (9 out of 19) show a median error equal to 0, while 

the other models tend to underestimate, with the only exception of IPS-WRF. Overall, the errors span from -4 and +3 seasons. 

The broadest IQR is associated with CMC5-ALAR and ECE-CCLM, while some models, such as IPS-RCA4, MPI-RCA4, 505 

MPI-REMOr12 and, Nor-HIRH seem equally reliable. 

With reference toAs for Dmax (Fig. 11e), some similarities can be observed with respect toconcerning the annual time scale 

(Fig. 11b) in terms of magnitude of percentage errors, although in the seasonal case most of the models tend to overestimate. 

The most reliable models are CM5-ALAD, ECE-CCLM and Had-RACM. As for the annual scale, the least reliable is IPS-

WRF, followed by CM5-RCA4 and Nor-HIRH.  510 

Concerning Imax, also in the seasonal case Had-RACM is confirmed as the best model, while MPI-REMOr12 and IPS-WRF 

are the worst (Fig. 11e). Once again, errors for this feature are less scattered than for accumulated deficit. Only four models 

underestimate Imax while most of the models has or are close to a zero median percentage error.  

Figure 13 shows box-plots of the errors in the return period of drought event of duration L equal to 2, 4, 6 and 8 seasons, 

respectively. In particular, the error was calculated as in Eq. (8) by replacing 𝑇𝑦 with 𝑇𝑠, namely the return period of a drought 515 

event of fixed duration identified on seasonal data. As for the annual case, even for the seasonal case the performance of the 

models looks rather similar, with limited errors (± 5 seasons) until L=4 seasons, with the exception of CM5-ALAD, CM5-

ALAR, CM5-RCA4 and Had-RCA4. 

Figure 14b illustrates the ranking of the models in reproducing the drought maximum intensities and return periods of drought 

events with duration L=4 seasons. With respect to the annual scale, there is a certain agreement in identifying the best 520 

performance models, that in this case are Had-RACM, Had-CCLM, and ECE-CCLM. In particular, Had-RACM performworks 

finewell in every zone, while Had-CCLM is the best model for Zones 1, 2, 5 and 6. With reference to tThe least performing 

models, these are CM5-ALAD, CM5-ALAR, albeit it ranks second for Zone 5, CM5-RCA4 and Nor_HIRH. 

 

5 Discussion 525 

Table 6 illustrates the best performing models according to the ranking approach for each of the considered variables over the 

whole area and the six homogeneous zones, respectively. In particular, the three best performing models are reported for the 

mean temperature and precipitation interannual variability and drought intensity and return period of drought duration, while 

only the best CM for each season is indicated for seasonal variability.  

It is worth underlining that the rankings are aimed to provide straightforward information about the relative accuracies of the 530 

models, e.g., for supporting the selection of a single or few models in a specific area, therefore, for the sake of simplicity, they 
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provide reduced information based on cardinal numbering. However, the actual performance of each CM compared to the 

others can be highlighted by looking closer at the m values, which reflect and summarize the results provided by the box-plots 

and the Taylor diagrams. 

Two kinds of comparisons are carried out in this section: 1) on the same variable, across different time scales; 2) on the same 535 

time scale, across different variables. Further discussion is provided about relative impacts of different GCMs and RCMs and, 

finally, an overall ranking is attempted aimed at providing a global evaluation of the CMs performance. 

5.1 Analyses across different time scales (interannual and seasonal) 

Concerning temperature, the intercomparison between the interannual and seasonal variability is rather straightforward. All 

the simulations are characterized by a more or less pronounced underestimation (Fig. 2a), together with a usually high 540 

correlation with observations (Fig. 2b3 and 45), i.e. both the observed interannual and seasonal variability are well reproduced. 

This is somehow confirmed by the rankings, where the relative differences among the models’ performances are not very 

marked.  

Conversely, in the case of precipitation, the performances of the models change significantly with the time scale. The most 

interesting case with this variable is CM5-ALAD that, considering the total area, ranked 3rd with the annual precipitation, but 545 

provided low performances in most of the seasons (9th in MAM, 11th in DJF and 18th in JJA). Though CM5-ALAD can 

reproduce relatively well the annual amount of rainfall, it is not as much able to simulate the seasonal variability, therefore the 

good performance at the annual time scale is due to the counterbalancing effects of the errors in different seasons. This feature 

of CM5-ALAD is amplified in several of the six zones, e.g., zone 2 (where it is ranked 4th with the mean annual value, but 14th 

in DJF and 18th in MAM and JJA) or zone 6 (1st with the mean annual value, but 13th on DJF and 18th on JJA). On the other 550 

hand, MPI-CCLM in the total area ranked 8th considering the annual precipitation but provided rather good results in single 

seasons (it is ranked 3rd on MAM and 1st on SON).  

However, considering the total area and the annual precipitation, the values of the error metric m leading to the rankings are 

not very different among the first 9 models, being the m value of the model ranked 9th (i.e., CM5-ALAR) only 37% higher 

than the best. The difference with respect to the best m value is lower than 50% in DJF for the first 7 models, in MAM for the 555 

first 5 models, in JJA for the first 6 models and in SON for the first 7 models. The models providing always (i.e., considering 

both the annual and the seasonal values) differences lower than 50% with respect to the best m value are Had-RACM, ECE-

CCLM and Had-CCLM.  

Figure 15xxx shows a comparison between the ranking of interannual variability of annual precipitation and the average 

position in the ranking of seasonal variability of seasonal precipitation. It highlights possible deviations of the performances 560 

of the models at different time scales (the higher the deviation, the higher the distance from the bisector). When considering 

the seasonal scale, the reduced performance of CM5-ALAD is evident, such as the better ranking of MPI-CCLM. In general, 

Tthe best models, both at the interannual and, averagely, the the seasonal scale, are Had-RACM and ECE-CCLM, followed 
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by the two versions of ECE-RACM and two other CCLM models (namely, MPI-CCLM and Had-CCLM, the latter being 

penalized by the relatively lower ranking in winter). 565 

With reference toFocusing on drought analysis, box-plots highlight a relevant variability in the frequency distribution of the 

error for all the considered drought characteristics. As for drought duration (Fig. 11a and d), the differences among the models 

appear more evident at the annual scale, while at the seasonal scale the models’ behaviour looks rather similar. A general 

agreement can be observed between the box-plots of drought accumulated deficit at the annual and the seasonal scale (Fig. 

11b and e), where the IPS-WRF is confirmed as the worst model. Concerning drought intensity (Fig. 11c and f), CM5-RC4 570 

provides a very poor performance at the annual scale, but a light improvement can be observed at the seasonal scale. 

With reference toAs for the return periods (Fig. 12 and 13), the seasonal scale emphasizes the poor quality of CM5-ALAD, 

which is also confirmed at the annual scale, together with CM5-ALAR, ECE-RACMr12 and MPI-CCLM.  

Finally, the rankings combining the performance of the models to simulate maximum drought intensity and return period of 

drought event of fixed duration (Fig. 14a and b) agree in considering Had-RACM and ECE-CCLM as the best models both at 575 

the annual and seasonal scale. 

5.2 Analyses across different variables 

In terms of interannual variability, it’s worth observing that, while MPI models appear the most suitable for mean temperature 

regardless of the area of investigation, especially regarding those in combination with REMO and CCLM RCMs, this is not 

the case for precipitation, although both the boxplot and the Taylor diagram indicate some potential of the MPI-CCLM for 580 

precipitation (Fig. 6a7 and 6b8). The boxplots for both variables displayed a large spatial variability of the errors, suggesting 

the limited capacity of RCMs to properly capture spatial variations of both temperature and precipitation patterns. Regarding 

precipitation, a similar result was obtained by Mascaro et al. (2018) for the Sardinia region. To find a possible explanation, we 

decided to investigate possible relationships between the amount of the errors and the cells’ mean altitude. In particular, 

correlation analyses between the elevation and the mean and the standard deviation of the mean annual air temperature and 585 

precipitation errors were carried out. Nonetheless, results, here not shown for the sake of brevity, did not provide significant 

correlations. 

 

Given the methodology adopted for identifying droughts, based on the annual values of precipitation, it is not surprising that 

the drought intensity ranking fits quite well that of the annual precipitation. However, models’ performances in the drought 590 

intensity ranking are closer each other: the first 12 models show differences with respect to the best m value (provided, once 

more, by Had-RACM) lower or equal to 50%, while only 5 models (IPS-RCA4, Nor-HIRH, MPI-REMO, IPS-WRF and, 

especially, CM5-RCA4) show differences near to or higher than 100%. 

Turning to seasonal variability, some similarities between mean temperature and precipitation arise in spring, with the ECE-

CCLM model looking valuable for both variables. ECE models also perform well in winter but in combination with different 595 

RCMs (i.e. HIRH for temperature and RACM for precipitation). In summer, MPI-REMOr2 model is the best option for 
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precipitation but works well also for mean temperature, mainly for Zones 5 and 6. In autumn, MPI-REMOr2 is once again the 

best performing model but for mean temperature only. Alternatively, MPI-CCLM looks valuable for both mean temperature 

and precipitation during this season, as also confirmed by the Taylor diagrams (Figs. 45 and 911). Finally, the best models for 

drought intensity broadly recall those identified for annual precipitation, specifically for ECE-CCLM and Had-RACM. 600 

The skills of CMs in reproducing drought characteristics and variability of precipitation are significantly linked. Drought 

characteristics, derived through the application of theory of runs, are functions of the departure from the thresholds rather than 

of the modelled precipitation itself. In other words, although a CM could significantly underestimate or overestimate annual 

and seasonal precipitation values (i.e. the data in the boxplots in Fig. 6a and 8 may look loosely grouped and the medians very 

far from 0), still it could provide good performance in terms of drought characteristics simulation if it can reproduce time 605 

variability. It is interesting to observe that the distribution of the percentage error of drought intensity (Fig. 11c and f) is, in 

general, less scattered than that related to the accumulated deficit (Fig. 11b and e); therefore, one can conclude that a partial 

error compensation occurs when the modelled accumulated deficit is divided by the modelled duration. Despite the differences 

in the percentage errors, however, there is a general agreement in the identification of the best and, mainly, the worst models,.  

also confirmed by the ranking of the models in reproducing drought intensity and return period of drought events with fixed 610 

duration (Fig. 14a and b) both at the annual and the seasonal time scale. 

Models’ performances in the drought ranking (Fig. 14a) are closer each other: the first 12 models show differences with respect 

to the best m value (provided, once more, by Had-RACM) lower or equal to 50%, while only 5 models (IPS-RCA4, Nor-

HIRH, MPI-REMO, IPS-WRF and, especially, CM5-RCA4) show differences near to or higher than 100%. 

 615 

5.3 Impact of GCM and RCM choice and different realizations  

Overall, no GCM prevails on the others because the RCMs deeply affect the final results. For example, concerning annual 

precipitation, the simulations relying on the Had GCM provide two high-ranked models (i.e., Had-CCLM and HADHad-

RACM) and a low-ranked model (i.e., Had-RCA4). In the case of precipitation, only one among the GCMs used more than 

once (i.e. IPS) some indications come only from the two less used GCMs, i.e. IPS (two models) and Nor (one model), which 620 

providecoherently provides always bad results (IPS).  

Concerning the most used RCMs, CCLM seems able to improve performances always with temperature (Fig. 34) and in most 

cases with precipitation (Fig. 79). Also, RACM usually provides high rankings with precipitation, while lower performances 

are found with temperature. The five occurrences of RCA4 very seldom provide high rankings with precipitation, as well as 

the two occurrences of HIRH. 625 

It is of some interest to analyse the behaviour of different realizations of the same CM, which provide insight into the effects 

of the variability of a multi-member GCM ensemble (von Trentini et al., 2019). In this study, two cases occur, i.e., ECE_RACM 

and MPI_REMO. Looking at all the box-plots and Taylor diagrams, the two versions of the models behave rather coherently. 

Nevertheless, because of the variability of the overall model ensemble, usually, they are not ranked in subsequent positions. 
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E.g., considering annual drought intensity ranking and the total area, ECE-RACM is ranked 2nd 3rd and ECE-RACMr12 17th, 630 

while in the seasonal drought ranking MPI-REMO is ranked 17th 7th and MPI-REMOr12 12th15th. This result highlights that, 

at least to a certain extent, the variability induced by different driving ensemble members is of the same order of the variability 

given by other GCM-RCM combinations. On the other hand, given the similar performances of the different realizations 

pointed out by the box-plots and Taylor diagrams, it is confirmed that rather slight differences in models’ performance can be 

found even for distances of 4-5 positions in the rankings. 635 

5.4 Overall ranking and comparison with literature 

For a final evaluation of the models, an overall ranking criterion was applied. This ranking takes into consideration both the 

skills of the considered GCM-RCMs models to replicate annual precipitation and temperature variability, as well as drought 

characteristics. As shown in Fig. 176, the models with the best overall performances, both in the whole case study area and in 

the six climatically homogeneous zones are those in combination with CCLM RCMs, with the significant exception of Had-640 

RACM, which is ranked 1st considering the total area and Zones 2 and 4 for the annul time scale. Generally, the worst models 

both at the annual and the seasonal scale are Nor-HIRH, IPS-WRF, and CM5-RCA4, although at the seasonal scale also CM5-

ALAD and CM5-ALAR have poor performances. 

An attempt can be made to compare the results of our ranking exercise with similar studies. Such a comparison is here limited 

to the Euro-CORDEX climate models for which, indeed, only a few studies do exist. Perhaps the study from Kotlarski et al. 645 

(2014) allows the most interesting comparisons for our purposes, being focused on both precipitation and temperature at 

seasonal and yearly timescales, and covering all areas of Europe, with specific results for the Mediterranean area. Models here 

denoted as CCLM (CLMCOM-11 in the mentioned study) perform well in reproducing annual temperature and precipitation 

in both studies. Differences arise for precipitation in the MAM season, since CCLM models show poor performances according 

to Kotlarski et al. (2014), in contrast to our findings. Mascaro et al. (2018), whose study is focused on the Sardinia region 650 

(Italy), also found that the Had-RACM and ECE-CCLM models perform well in reproducing annual precipitation, while there 

is no agreement on the CM5-ALAD model. At the seasonal level, ECE-RACMr12, MPI-REMOr2 and MPI-CCLM perform 

well in both studies in the seasons DJF, JJA, SON respectively, while, in contrast to our results, in the MAM season the ECE-

CCLM does not perform well. These differences in the ranking could be partially due to the different observational datasets 

used, which have found to play a key role in climate model evaluations (Kotlarski et al., 2017).  655 

6 Conclusions 

In the presentis study, we compared the skill of nineteenseveral EURO-CORDEX RCMs at 0.11° (~ 12.5 km) grid spatial 

resolution in reproducing the annual and seasonal temperature and precipitation regime, as well as several drought 

patternsfeatures, observed in the period 1971-2000 in a dense network of rain gauges in Sicily and Calabria regions (Southern 

Italy).  660 
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From our investigation study a few general and specific conclusions can be drawn. From a general point of view, the model 

combinations are able to simulate temperature better than precipitations, even though important biases do exist in both 

variables. Models which are reliable in simulating precipitation may not be the same respect to temperature. This is the case, 

for instance, of the ECE-RACM model which is in the top ranks for precipitation, while being in the lower ranks for 

temperature.  Models that perform the best for precipitation do almost the same for all drought features. Differences between 665 

the rankings of annual respect to seasonal characteristics do exist, but top rankingtop-ranking models at the annual scale do 

mostly perform well in the single seasons, both for precipitation and temperature.  Looking more specifically to the models, 

the Had-RACM, ECE-CCLM, Had-CCLM and ECE-RACM are those that perform the best for precipitation and drought, 

while the CM5-RCA4 and IPS-WRF are those that perform worst. For temperature, models that perform best are MPI-CCLM, 

MPI-REMO and Had-CCLM, while the worste are CM5-ALAD, ECE-RCA4, ECE-RACM and CM-RCA4. As can be seen 670 

the Had-CCLM performs well for both precipitation and temperature, while the CM5-RCA4 performs bad for both.   

The CMs are more capable to simulate both annual and seasonal mean air temperature than precipitation and drought 

characteristics, with high correlation values. There is a general agreement among the models to underestimate annual 

precipitation and mainly mean annual temperature. Most of the models show deficiencies in the simulation of seasonal 

precipitation, especially concerning summer values, requiring further investigation.  675 

Overall, our analyses illustrate that the best performing models depend on the specific property of the investigated variable, as 

well as the temporal and the spatial scale of interest. It provides a general overview of model performance without aiming at 

ultimately explaining the biases of individual models. We reserve to carry out detailed investigations in follow-up studies that 

will address specific aspects of model performance and investigate the causes leading to the model biases for possible bias 

correction. Results of this study reveal insight on RCMs performances in small-scale regions, which are often targeted by 680 

impact studies and have so far received less attention, and provide some guidance to select the best models about the variable 

and the area under investigation. This is a key issue before addressing projections changes in the evolution of extreme hydro-

meteorological events, such as drought characteristics (frequency, duration, and magnitude). 
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Figure 1. a) Study area (Calabria is the southernmost peninsula of Italy and Sicily is the neighbouring island) with the locations of the 

gauges of the high-density observational network and the CORDEX reference grid; b) the six homogeneous zones identified through PCA.   
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 905 
Figure 2. a) Box-plots representing the frequency distribution of RCMs errors in mean annual temperature for the whole study area. b) 

Taylor diagram comparing models performances in reproducing the interannual variability of mean annual temperature for the whole study 

area.  
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Figure 3. RCMs ranking with respect to interannual variability of mean annual temperature, for the entire area and the climatically 

homogenous zones.Taylor diagram comparing models performances in reproducing the interannual variability of mean annual temperature 

for the whole study area. 

 915 
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Figure 4. Taylor diagram comparing models performances in reproducing the seasonal variability of mean annual temperature for the 

whole study area.RCMs ranking with respect to interannual variability of mean annual temperature, for the entire area and the climatically 

homogenous zones.   920 
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Figure 5. RCMs ranking with respect to seasonal variability of mean annual temperature, for the entire area and the climatically 925 
homogenous zones.Taylor diagram comparing models performances in reproducing the seasonal variability of mean annual temperature 

for the whole study area.  
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Figure 6. a) As Fig. 2a but for annual precipitation. b) As Fig. 2b but for annual precipitation.RCMs ranking with respect to seasonal 930 

variability of mean annual temperature, for the entire area and the climatically homogenous zones.    
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Figure 7. As Fig. 3 but for annual precipitation.As Fig. 2 but for annual precipitation.  
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Figure 8. Box-plots representing the frequency distribution of RCMs percentage errors in seasonal precipitation for the 

whole study area.As Fig. 3 but for annual precipitation.  



 

39 

 

 
 

 945 
Figure 9. As Fig. 4 but for mean annual precipitation for Sicily and Calabria. As Fig. 4 but for annual precipitation. 
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Figure 10. As Fig. 5 but for seasonal precipitation. Box-plots representing the frequency distribution of RCMs percentage errors in 

seasonal precipitation for the whole study area.  950 
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Figure 11. As Fig. 5 but for mean annual precipitation for Sicily and Calabria.a)  Box-plots representing the frequency distribution of 

RCMs percentage errors in: a) maximum drought duration (annual analysis); b) Box-plots representing the frequency distribution of RCMs 955 
percentage errors in maximum drought accumulated deficit (annual analysis); c) Box-plots representing the frequency distribution of 

RCMs percentage errors in maximum drought intensity (annual analysis); d)  Box-plots representing the frequency distribution of RCMs 

percentage errors in maximum drought duration (seasonal analysis); e) Box-plots representing the frequency distribution of RCMs 

percentage errors in maximum drought accumulated deficit (seasonal analysis); f) Box-plots representing the frequency distribution of 

RCMs percentage errors in maximum drought intensity (seasonal analysis).  960 
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Figure 12. Box-plots representing the frequency distribution of RCMs percentage errors in the return period of drought events of duration 

L equal to 1, 3, 5 and 7 years. As Fig. 6 but for seasonal precipitation   



 

43 

 

 965 

 
Figure 13.  Box-plots representing the frequency distribution of RCMs percentage errors in the return period of drought event of duration 

L equal to 2, 4, 6 and 8 seasons. As Fig. 2 but maximum drought duration  
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Figure 14. RCMs ranking with respect to their ability in reproducing both observed drought maximum intensities and return periods of 

drought events with duration L=3 years (left) and L=4 seasonsBox-plots representing the frequency distribution of RCMs percentage 

errors in maximum drought accumulated deficit 

 (right). 975 
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Figure 15. Comparison between the RCM position in the ranking of interannual variability of annual precipitation versus the average 980 

position in the ranking of seasonal variability of seasonal precipitation. Data concerns the whole study area (Calabria and Sicily). As Fig. 

14 but for maximum drought intensity. 
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Figure 16. Ranking of models in reproducing maximum drought intensity for the whole area and the six climatic zones  985 
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Figure xxx. Comparison between the RCM position in the ranking of interannual variability of annual precipitation versus the 

average position in the ranking of seasonal variability of seasonal precipitation. Data concerns the whole study area (Calabria 

and Sicily).   990 
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Figure 1716. Overall Ranking. 
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Table 1. Intercomparison studies of RCMs’ performances within the CORDEX framework 995 

References Models Variables  Region Main conclusions  

Schmidli et al. (2007) 6 statistical 

downscaling models 

(SDMs) and 3 RCMs  

Daily precipitation European Alps SDMs and RCMs tend to have similar biases but differ 

with respect to interannual variations, with SDMs 

strongly underestimate the magnitude of the year-to-

year variations, mainly in winter. RCMs indicate a 

strong trend toward drier conditions including longer 

periods of drought. The SDMs, on the other hand, 

show mostly non-significant or even opposite changes. 

Endris et al., (2013) 10 RCMs from 

CORDEX Africa 

domain 

Seasonal and annual precipitation  Eastern Africa 

and 3 sub-

regions 

RCMs reasonably simulate the main features of the 

precipitation climatology. However significant biases 

are detected in individual models depending on sub-

region and season. The ensemble mean has better 

agreement with observation than individual models. 
Kotlarski et al. (2014) 9 EURO-CORDEX 

RCMs 

Spatiotemporal patterns of the 

European climate 

Europe The analysis confirms the ability of RCMs to capture 

the basic features of the European climate. Seasonally 

and regionally averaged temperature biases are mostly 

smaller than 1.5 °C, while precipitation biases are 

typically located in the ±40% range. 

Meque and Abiodun (2015) 10 RCMs from 

CORDEX Africa 

domain 

Link between El Niño Southern 

Oscillation (ENSO) and Southern 

African droughts expressed by 

the  Standardized Precipitation 

and Evapotranspiration Index 

(SPEI) 

Southern Africa ARPEGE model shows the best simulation, while 

CRCM shows the worst.  

Mascaro et al. (2015) 6 RCMs driven by 10 

GCMs from 

CORDEX Africa 

domain 

Properties of the hydrological 

cycle 

Niger River 

basin (West 

Africa) 

Most RCMs overestimate (order of +10% to +400%, 

depending on model and subbasin) the mean annual 

difference between precipitation (P) and evaporation 

(E), 

Wu et al. (2016) 4 RCMs from RMIP 

Project and their 

regional multi-model 

ensemble, and their 

driving GCM 

ECHAM5 

Summer extreme precipitation  East Asia All models can adequately reproduce the spatial 

distribution of extremely heavy precipitation. 

However, they do not perform well in simulating 

summer consecutive dry days. The ensemble average 

of multi-RCMs substantially improve model capability 

to simulate summer precipitation in both total and 

extreme categories when compared to each individual 

RCM. 
Park et al. (2016) 5 RCMs form the 

CORDEX East Asia 

domain 

Climatology of summer extremes 

(seasonal maxima of daily mean 

temperature and precipitation) 

East Asia RCMs show systematic bias patterns in both seasonal 

means and extremes. The models simulate temperature 

means more accurately compared to extremes because 

of the higher spatial correlation, whereas precipitation 

extremes are simulated better than their means because 

of the higher spatial variability. 
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Table 1. Continues 

References Models Variables  Region Main conclusions 

     

Smiatek et al. (2016) 13 EURO-CORDEX 

RCMs 

mean temperature and 

precipitation, frequency 

distribution of precipitation 

intensity, maximum number of 

consecutive dry days 

Greater Alpine 

Region (GAR) 

Though the models reproduce spatial seasonal 

precipitation patterns, the seasonal mean temperature 

is underestimated (from -0.8 °C to -1.9 °C) and mean 

precipitation is overestimated (from +14.8% in 

summer to +41.5% in winter). Larger errors are 
found for further statistics and various GAR sub-

regions. 

Diasso and Abiodun (2017) 10 RCMs from 

CORDEX Africa 

domain 

Drought characteristics evaluated 

through 4 Principal Components 

of the SPEI 

West Africa Only two models (REMO and CNRM) reproduce all 

the four drought modes. REMO and WRF give the best 

simulation of the seasonal variation of the drought 

mode over the Sahel in March-May and June-August 

seasons, while CNRM gives the best simulation of 

seasonal variation in the drought pattern over the 

Savanna.  

Um et al. (2017) 4 RCMs from 

CORDEX East Asia 

domain, their 

ensemble mean and a 

driving GCM 

Drought characteristics based on 

the SPEI 

East Asia Drought severity diverges markedly among the RCMs. 

Estimates of drought spatial extent are generally 

accurate in wet regions but inaccurate in dry regions. 

In general, the spatial extents of the droughts diverge 

among the RCMs, and the models fail to accurately 

capture droughts with large spatial scales. 

Foley and Kelman (2018) 7 EURO-CORDEX 

RCMs and 5 driving 

GCMs  

Several precipitation indices 

(accumulated precipitation 

amount, mean daily precipitation 

amount, max 1-day and 5-day 

precipitation amounts, simple 

daily intensity, number of heavy 

and very heavy precipitation 

days)  

Scottish islands While no models perform skilfully across all the 

metrics studied, some models capture aspects of the 

precipitation climate at each location particularly well. 

Adeniyi and Dilau (2018) 10 RCMs from 

CORDEX Africa 

domain 

Precipitation, temperature and 

drought 

West Africa ARPEGE has the highest skill at Guinea Coast, while 

PRECIS is the most skilful over Savannah and RCA 

over the Sahel. 
Senatore et al. (2019) 8 RCMs from 

CORDEX South Asia 

domain 

Annual and seasonal precipitation 

and temperature 

Iran and 6 sub-

regions 

No model is significantly better than others for every 

season and zone. Some enhancements are obtained by 

a weighting approach to take into account useful 

information from every RCM in the sub-zones. More 

reliable models show a strong precipitation decrease. 

Di Virgilio et al. (2019) 6 RCMS from 

CORDEX Australasia 

domain 

Near-surface max and min 

temperature and precipitation at 

annual, seasonal, and daily time 

scales 

Australia All RCMs showed widespread, statistically significant 

cold biases in maximum temperature and 

overestimated precipitation, especially over 

Australia’s populous eastern seaboard. 
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Table 2. List of GCMs, together with the abbreviations used in this paper, included at least once in the EURO-CORDEX 

ensemble 

Model name Abbreviation Reference Institution  

CNRM-CERFACS-

CNRM-CM5 

CM5 Voldoire et al. (2013) Centre National de Recherches 

Météorologiques  

ICHEC-EC-EARTH 

 

ECE  

Hazeleger et al. (2010) 

Irish Centre for High-End Computing 

 

EC-Earth Consortium, Europe 

IPSL-IPSL-CM5A-MR IPS Dufresne et al. (82013) Institut Pierre Simon Laplace  

MOHC-HadGEM2-ES Had Collins et al. (2011) Met Office Hadley Centre 

 

MPI-M-MPI-ESM-LR MPI 

 

Giorgetta et al. (2013) Max‐Planck‐Institute für Meteorologie 

NCC-NorESM1-M Nor Bentsen et al. (2013), 

Iversen et al. (2013)  

Norwegian Earth System Model 

 

  1000 
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Table 3. List of RCMs, together with the abbreviations used in this paper, included at least once in the EURO-CORDEX 

ensemble 

Model name Abbreviation Reference Institution  

CNRM-ALADIN53 ALAD Colin et al. (2010) 

  

Météo-France / Centre National de Recherches 

Météorologiques 

RMIB-UGent-ALARO-0 ALAR De Troch et al. (2013) Royal Meteorological Institute of Belgium and 

Ghent University 

CLMcom-CCLM4-8-17 

 

CCLM Baldauf et al. (2011), 

Rockel et al. (2008) 

 

Baldauf et al. (2011), 

Rockel et al. (2008) 

Climate Limited-area Modelling Community 

(CLM-Community) 

DMI-HIRHAM5 HIRH Christensen et al. (2007) Danish Meteorological Institute 

KNMI-RACMO22E RACM van Meijgaard et al. 

(2008) 

Royal Netherlands Meteorological Institute, De 

Bilt, The Netherlands 

SMHI-RCA4 RCA4 Strandberg et al. (2014) Swedish Meteorological and Hydrological 

Institute, Rossby Centre 

MPI-CSC-REMO2009 REMO Teichmann et al. (2013) Helmholtz-Zentrum Geesthacht, Climate 

Service Center, Max Planck Institute for 

Meteorology 

IPSL-INERIS-WRF331F WRF3 - Institut Pierre-Simon Laplace and French 

National Institute for Industrial Environment 

and Risks (Ineris) 
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Table 4. List and acronyms of climate models (GCM-RCM combinations) included at least once in the EURO-CORDEX 

ensemble. The asterisk * means that two versions of the GCM-RCM combination are available 

 CNRM-

CERFACS-

CNRM-CM5 

ICHEC-EC-

EARTH 

IPSL-IPSL-

CM5A-MR 

MOHC-

HadGEM2-ES 

MPI-M-MPI-

ESM-LR 

NCC-

NorESM1-M 

CNRM-

ALADIN53 

CM5-ALAD - - - - - 

RMIB-UGent-

ALARO-0 

CM5-ALAR - - - - - 

CLMcom-

CCLM4-8-17 

CM5-CCLM ECE-CCLM - Had-CCLM MPI-CCLM - 

DMI-

HIRHAM5 

- ECE-HIRH - - - Nor-HIRH 

KNMI-

RACMO22E 

- ECE-RACM* - Had-RACM - - 

SMHI-RCA4 CM5-RCA4 ECE-RCA4 IPS-RCA4 Had-RCA4 MPI-RCA4 - 

MPI-CSC-

REMO2009 

- - - - MPI-REMO* - 

IPSL-INERIS-

WRF331F 

- - IPS-WRF - - - 
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Table 5. Summary of the statistics involved in the ranking process. Statistics with subscript 0 refer to observed values. 1010 

Property Statistics k Error Ek,m(j) 

Seasonal variability 
Seasonal mean |𝜇0(𝑋𝜏(𝑗)) − 𝜇𝑚(𝑋𝜏(𝑗))| 

Seasonal standard deviation |𝜎0(𝑋𝜏(𝑗)) − 𝜎𝑚 (𝑋𝜏(𝑗))| 

Interannual variability 
Annual mean |𝜇0(𝑋(𝑗)) − 𝜇𝑚(𝑋(𝑗))| 

Annual standard deviation  |𝜎0(𝑋(𝑗)) − 𝜎𝑚 (𝑋(𝑗))| 

Drought characteristics 

Maximum drought duration |𝐿𝑚𝑎𝑥,0(𝑗) – 𝐿𝑚𝑎𝑥,𝑚(𝑗)| 

Maximum drought accumulated deficit |𝐷𝑚𝑎𝑥,0(𝑗) – 𝐷𝑚𝑎𝑥,𝑚(𝑗)| 

Maximum drought intensity |𝐼max,0(𝑗) − 𝐼max,𝑚(𝑗)| 

Return period |𝑇r,0(𝑗) − 𝑇r,𝑚(𝑗)| 
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Table 6. Best performing RCMs according to the ranking at the annual and seasonal scale. 

 

 

 

Whole area Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 

         

T interannual variability 

 MPI-REMO MPI-REMO MPI-CCLM IPS-RCA4 MPI-CCLM MPI-CCLM IPS-RCA4 

 MPI-CCLM Had-CCLM MPI-REMO MPI-CCLM MPI-REMO MPI-REMO MPI-REMO 

 Had-CCLM MPI-CCLM Had-CCLM Had-CCLM Had-CCLM Had-CCLM MPI-CCLM 

         

T seasonal variability 

DJF ECE-HIRH CM5-CCLM CM5-CCLM ECE-HIRH ECE-HIRH MPI-CCLM MPI-CCLM 

MAM ECE-CCLM ECE-CCLM MPI-REMOr2 ECE-CCLM MPI-REMOr2 ECE-CCLM ECE-CCLM 

JJA IPS-RCA4 IPS-RCA4 IPS-RAC4 Had-RCA4 IPS-RCA4 MPI-REMOr2 MPI-REMOr2 

SON MPI-REMOr2 MPI-REMOr2 MPI-REMOr2 Had-CCLM MPI-REMOr2 MPI-REMOr-12 MPI-CCLM 

         

P interannual variability 

 Had-RACM Had-RACM ECE-RACM ECE-CCLM ECE-CCLM ECE-CCLM CM5-ALAD 

 ECE-CCLM CM5-CCLM Had-RACM Had-CCLM Had-RACM CM5-ALAD Had-RACM 

 CM5-ALAD CM5-ALAD CM5-ALAR Had-RACM Had-CCLM Had-RACM ECE-RACMr12 

         

P seasonal variability 

DJF ECE-RACMr12 MPI-CCLM ECE-RACMr12 ECE-RACM ECE-RACMr12 ECE-RACMr12 ECE-RACM 

MAM ECE-CCLM ECE-CCLM Had-RACM CM5-CCLM MPI-CCLM ECE-CCLM ECE-CCLM 

JJA MPI-REMOr2 MPI-REMOr2 MPI-REMOr2 MPI-REMOr2 MPI-REMOr2 Had-CCLM ECE-CCLM 

SON MPI-CCLM MPI-CCLM ECE-RACMr12 IPS-WRF MPI-CCLM Had-RACM Had-RACM 

         

Drought intensityI + 

Ty(L=3 years)  (annual 

scale) 

 ECE-CCLMECE-

CCLM 

ECE-CCLMHad-

CCLM 

Had-

RACMCM5-

ALAR 

CM5-

ALARECE-

CCLM 

Had-

RACMCM5-

ALAR 

ECE-

RACMECE-

CCLM 

ECE-CCLMHad-

CCLM 

 Had-RACMHad-

CCLM 

Had-RACMECE-

RACMr12 

ECE-RACMHad-

RACM 

Had-RACMMPI-

CCLM 

ECE-

RACMECE-

CCLM 

ECE-CCLMECE-

RACMr12 

MPI-

CCLMCM5-

CCLM 

 ECE-RACMHad-

RACM 

CM5-

CCLMECE-

CCLM 

Had-CCLMECE-

CCLM 

ECE-CCLMHad-

CCLM 

ECE-CCLMMPI-

REMO 

Had-RACMMPI-

REMO 

Had-RACMHad-

RACM 

 

         

I+Ts(L=4 seasons) 

(seasonal scale) 

 Had-RACM Had-CCLM Had-CCLM Had-RACM Had-RACM Had-CCLM Had-CCLM 

 Had-CCLM Had-RACM MPI-RCA4 IPS-WRF ECE-CCLM CM5-ALAR Had-RACM 

 ECE-CCLM CM5-CCLM Had-RACM ECE-RCA4 ECE-RACMr12 ECE-CCLM ECE-CCLM 

 


