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 6 

Abstract. To study high impact tropical cyclone (TC) is of crucial importance due to its extraordinary destruction 7 

potential that leads to major losses in many coastal areas in the Western North Pacific (WNP). Nevertheless, 8 

because of the rarity of high-impact TCs, it is difficult to construct a robust risk assessment based on the historical 9 

best track records.  This paper aims to address this issue by introducing a computationally simple and efficient 10 

approach, using data from the THORPEX Interactive Grand Global Ensemble (TIGGE) archive with the 11 

application of impact-oriented tracking algorithm, to build a physically consistent high impact typhoon event set 12 

with non-realised TC events – data equivalent to more than 10,000 years of TC events.  The temporal and spatial 13 

characteristics of the new event set is consistent to the historical TC climatology in the WNP.  It is shown that this 14 

TC event set contains ~100 and ~77 times more Very Severe Typhoons and Violent Typhoons than the historical 15 

records, respectively.  Furthermore, this approach can be used to improve the return period estimation of TC-16 

associated extreme wind.  Consequently, a robust extreme TC hazard risk assessment, reflective of the current 17 

long-term climate variability phase, can be achieved using this approach.    18 

1 Introduction 19 

Increasing frequency and intensity of extreme meteorological events in the recent decades (IPCC, 2012) and 20 

increasing number of human population and assets located in risk-prone regions (Desai et al., 2015) lead to an 21 

increase of risk and loss potential to human and economic from natural disasters, for example tropical cyclones.  22 

In the period of 1st January and 18th October  2018, typhoon-related total direct economic losses in Western North 23 

Pacific (WNP) is up to 67.1 billion RMB (WMO, 2018).  While natural disaster has impact to all stakeholder of 24 

the society, governments are crucial in disaster risk reduction (DRR) because of their ability to implement 25 

necessary DRR-related policy and ability to allocate resources to appropriate parties (Shi, 2012).  Governments 26 

have various options for DRR investments, for example, post-disaster relief and risk financing.  Using cost-benefit 27 

analysis for a case study of typhoon disasters in China, Ye et al. (2016) showed insurance premium subsidies has 28 

the highest benefit-cost ratio.  This is because premium subsidies increases penetration rate of an insurance 29 

program, i.e. more protection is offered by the private sector and the risk is transferred to the private sector 30 

(Glauber, 2004).  Thus, development and application of effective financial instruments for risk transfer is 31 

important. 32 

Other than classical (re-)insurance solutions, parametric insurance solutions have been developed for test 33 

cases in areas of corn yield (Sun et al., 2014) and life stock (Ye et al., 2017) for Southeast Asia and China in 34 

https://doi.org/10.5194/nhess-2020-74
Preprint. Discussion started: 22 April 2020
c© Author(s) 2020. CC BY 4.0 License.



2 

 

recent years.  Swiss Reinsurance Company Ltd. (SwissRe) insured several municipal governments in Guangdong 35 

Province, China, through parametric insurance solution (Lemcke, 2017).  Parametric insurance requires no 36 

physical damage assessment after an event.  As soon as a certain threshold (i.e. trigger point) is exceeded, the 37 

insured party receives the agreed compensation from the insurer.  Thus it has low administrative cost and quick 38 

disbursement.  However, it is a challenge to determine a robust trigger point.  It is because it would require a 39 

reliable typhoon risk assessment for the region of interest.  A current common approach is to generate a large 40 

typhoon event set (e.g. equivalent to 7,000 years of real world data) based on historical track data using stochastic 41 

approach (e.g. Vickery et al., 2000; Emanuel, 2006; Emanuel et al., 2006; Rumpf et al., 2007, 2009).  There are 42 

two potential downsides with the stochastic approach: (i) such typhoon event set would be biased toward the past 43 

events, and the frequency-intensity distribution of the event set might not be the same as the underlying frequency-44 

intensity distribution; (ii) the storms in the typhoon event set might not be physically consistent.  Consequently, 45 

the trigger point derived from the common approach may not be optimal.  This means insurees could be either 46 

over- or under-compensated by the insurer. 47 

 A method to increase number of extreme weather events is to make use of ensemble prediction system 48 

(EPS).  Osinski et al. (2016) used European Centre for Medium-Range Weather Forecasts (ECMWF) EPS to build 49 

an event set of European windstorms.  Osinski et al. (2016) pointed out there are two types of storm events 50 

produced by EPS: (i) modified EPS storm (MEPS), and (ii) pure EPS storm (PEPS).  MEPSs are storms with 51 

modifications in the EPS which have real-world counterpart.  PEPSs are storms in the EPS which have no real-52 

world counterpart, i.e. unrealised.  PEPSs are independent events and the number of PEPSs increases as the lead 53 

time increase until the model has no memory of the initial conditions.  Thus one can form an event set of extreme 54 

weather event by using TC related PEPSs.  Osinski et al. (2016) demonstrated that reliable statistics of storms 55 

under the observed climate conditions can be produced based on EPS forecasts. 56 

 Building upon the results of Osinski et al. (2016), a new approach to construct a large data volume, 57 

physically consistent TC event set is presented in this study.  This event set is constructed by applying an impact-58 

oriented windstorm tracking algorithm (WiTRACK; e.g. Leckebusch et al. 2008) to a multi-model global 59 

operational ensemble forecast data archive, The THORPEX Interactive Grand Global Ensemble (TIGGE) 60 

(Bougeault et al., 2010; Swinbank et al., 2015).  The data volume of TIGGE is about 40,000 to 50,000 years.  The 61 

event set consists of all non-realised TC events which were forecasted by EPS of different centres, this event set 62 

is referred to as the TIGGE PEPS (TPEPS) event set.  In this study, we show the TPEPS event set has much higher 63 

information content: more TC events and more extremely high impact TC events.  The TPEPS event set can be 64 

used to produce a robust TC risk assessment and to determine a robust trigger point for parametric typhoon 65 

insurance. 66 

 In this paper, we first present a computationally simple, inexpensive and efficient method to construct a 67 

physically consistent, high information content TC event set using only the 6-hourly surface wind speed field of 68 

EPS forecast model outputs.  Then we analyse the characteristics of the TPEPS event set.  Validation of the new 69 

method is done by comparing with the event set which is constructed using reanalysis data.  The added values of 70 

this new approach are also discussed and presented.  The paper is organised as follows: data sets which are used 71 

in this study are described in Section 2.  Section 3 outlined the method that has been used to construct the TPEPS 72 
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event set.  Results and discussions including validation and investigate the characteristic of the TPEPS event set 73 

are presented in Section 4.  A summary and conclusions can be found in Section 5.  74 

 75 

2 Data 76 

6-hourly instantaneous 10-m wind speed data in different data archives mentioned below are used in this study 77 

because it is highly related to TC wind damages.  The domain of this study covers the Western North Pacific 78 

(WNP), east and south-east Asia spanning from 85 E to 195 E and 15 S to 75 N.  The Japanese 55-year 79 

Reanalysis (JRA-55) (Kobayashi et al., 2015) from 1979 until 2017 (resolution of 1.25×1.25) is used for 80 

validation of the TPEPS event set.  JRA-55 (1979-2014) is also used in parameter selection in TC identification 81 

algorithm, construction of Logistic Regression Classifier (LRC) (Sect. 3.2.2), and the data in 2015-2017 is used 82 

for validation of LRC.  ERA-Interim (ERA-I) (Dee et al., 2011) is also used in the construction of LRC.   83 

The TIGGE data archive (Bougeault et al., 2010; Swinbank et al., 2015) is used in the construction of 84 

the PEPS TC event set.  The TIGGE data archive has been used extensively in the study of TC activity forecast 85 

(e.g. Vitart et al., 2012; Belanger et al., 2012; Halperin et al., 2013; Majumdar and Torn, 2014; Leonardo and 86 

Colle, 2017; Luitel et al., 2018).  TIGGE data archive consists of ~8-15-day ensemble forecast data from 10 87 

numerical weather prediction centres with about 11-50 members each.  In this study, only perturbed forecast 88 

outputs of EPS from selected centres are used and they are Chinese Meteorological Administration (CMA), 89 

European Centre for Medium-Range Weather Forecasts (ECMWF), Japanese Meteorological Agency (JMA), and 90 

National Centers for Environmental Prediction (NCEP) (cf. Table 1).  These four data sets are chosen because 91 

they are the most complete dataset in the archive for the study period 2008-2017.  Model configurations and model 92 

updates are documented online at https://confluence.ecmwf.int/display/TIGGE/Models.  ECMWF EPS is a 93 

variable resolution EPS, i.e. days 1-10 were run at a higher resolution than days 11-15.  For computational 94 

efficiency, ECMWF EPS outputs are regridded into a lower resolution grid of 0.5625 × 0.5625.  The resolution 95 

of the selected data sets ranges from 0.5625×0.5625 to 1.25×1.25.  Forecast lead time of each forecast outputs 96 

ranges from 216 to 384 hours.  Only forecast outputs, which are initialised during the main typhoon season, i.e. 97 

15 May-30 November, are considered.  The resultant TPEPS TC event set has data equivalent to more than 10,000 98 

years of TC model data of the current climate state.  99 

The International Best Track Archive for Climate Stewardship (IBTrACS) v03r10 (Knapp et al., 2010) 100 

is used for validation and identification of TC events in reanalysis and TIGGE data archive.  It contains all of the 101 

available best track records from different centres around the globe up to year 2017.  Since only part of the best 102 

track records of year 2017 are archived in this version of IBTrACS, best track data from Joint Typhoon Warning 103 

Centre (JTWC) is used for year 2017.   104 

 105 

3 Methods 106 

3.1 Identification and characterisation of typhoon-related windstorms 107 
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For identification and characterisation of typhoon-related windstorms, an impact-oriented tracking algorithm is 108 

used – WiTRACK (Leckebusch et al., 2008; Kruschke, 2015). Befort et al. (2020)  adapted the algorithm to 109 

tropical cyclones and showed WiTRACK is well capable to identify high impact typhoon events in WNP in 110 

comparable quality to more data intensive algorithms.  A brief description of the general procedure to track a 111 

windstorm using WiTRACK is as follows: (i) clusters with wind speed above the local threshold are identified 112 

for each of the 6-hourly time step of the input dataset; (ii) clusters with size smaller than a predefined threshold 113 

(minarea) are excluded; (iii) clusters identified in each 6-hourly time step are connected to a track using a nearest-114 

neighbour criterion with consideration of the size of the cluster; (iv) events with lifetime less than 8 6-hourly time 115 

steps are removed.  Majority of the settings of WiTRACK are identical to Befort et al. (2020), including the use 116 

of local 98th percentile wind speed as local wind threshold, except in this study minarea is chosen to be 15,000 117 

km2.  The 98th percentile wind speed is chosen because over 90% of loss events with losses above 3,000 million 118 

RMB can be identified by WiTRACK as demonstrated by Befort et al. (2020).  The value for minarea is chosen 119 

based on a series of sensitivity studies for parameter selection.  The output of WiTRACK contains information 120 

about the characteristics of all identified windstorm events, including size of the windstorm at any given 6-hourly 121 

time step, the overall footprint of extreme wind associated with the windstorm events, and storm severity index 122 

(SSI; Leckebusch et al., 2008).  These information are used in the identification of typhoon related pure EPS 123 

windstorm events (Sect. 3.2). 124 

3.2 Identifying typhoon-related pure EPS windstorm events 125 

WiTRACK identifies windstorm events of all kind, including MEPS TCs, PEPS TCs, MEPS extratropical 126 

cyclones.  Therefore additional requirements are needed to identify typhoon-related PEPS TC events.  4 post-127 

processing procedures are used: (i) Geographic Filter (GF), (ii) Logistic Regression Classifier (LRC), (iii) MEPS 128 

TC Identifier (MTI), and (iv) Detection at Initialisation Filter (DIF). 129 

3.2.1 Geographic Filter (GF) 130 

GF was first introduced by Befort et al. (2020).  It aims to remove non-TC-related windstorms, e.g. extratropical 131 

cyclones, cold surge outbreaks during the winter monsoon, and equatorial disturbances, from the event set by 132 

excluding windstorm events which solely identified north of 26 N and east of 100 E, and latitudinal position 133 

exclusively south of 10 N.  Befort et al. (2020) found this filter can reduce the false alarm rate (i.e. the ratio 134 

between number of identified non-TC related windstorms and total number of detected windstorms) of TC 135 

identification in JRA-55. 136 

3.2.2 Logistic Regression Classifier (LRC) 137 

In order to reduce computational cost and increase computational efficiency, the classical methods to determine 138 

whether the atmospheric disturbance is a TC or non-TC via cold/warm core determination (e.g. Hart, 139 

2003; Strachan et al., 2013) are not used because these methods require multiple variable fields which increase 140 

computational cost significantly.  Instead, a statistical learning approach, logistic regression classifier (LRC), is 141 

used to determine whether the windstorm event is related to a TC or not.  Details and background information of 142 

LRC can be found in Hastie et al. (2009) and the caret package in R is used for LRC training (Kuhn et al., 2018; 143 

available online at https://github.com/topepo/caret/).  LRC is trained using the track characteristics of the event in 144 
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the JRA-55 and ERA-Interim event set (1979-2014) as explanatory variables (Table 2).  This combination of 145 

training set is chosen based on preliminary studies of constructing an optimal classifier using different 146 

combination of training set.  In order to avoid issues that are associated with collinearity, a stepwise Variance 147 

Inflation Factor (VIF) selection method is used to identify independent variables.  17 variables have been chosen 148 

to use in the construction of LRC (Table 3).  Variables that relate to changes in storm position, lifetime of a storm, 149 

and mean wind field structure appear to be the most important variables in the LRC.  This is expected as the 150 

typical trajectory, duration, and structure of TCs and other windstorms are very different.  Validation using JRA-151 

55 event set (2015-2017) have shown that the accuracy of the LRC is about 90% with low rate of false positives 152 

and false negatives. 153 

3.2.3 MEPS TC Identifier (MTI) 154 

Since there are many replicated events of forecasted historical TCs (i.e. MEPS) in the operational forecast archive, 155 

it is necessary to remove these events from our event set to avoid biases toward historical events.  Instead of using 156 

the criteria suggested by Osinski et al. (2016), a set of strict criteria (MTI) is used in this study.  This can ensure 157 

the statistics and climatology of TPEPS event set is not biased toward the historical events.  The MTI eliminates 158 

forecast of MPES TC events where the forecasts of those MPES TCs were initialised (i) before, and (ii) after the 159 

time of MPES TC genesis (hereafter type 1 and type 2 forecast events respectively).  A similarity index (SI) (Eq. 160 

1) is used to eliminate type 1 forecast events: 161 

𝑑𝑖 = {
𝑑thres − 𝑑 𝑑 < 𝑑thres

0 𝑑 ≥ 𝑑thres
,         (1a) 162 

𝑆𝐼 =
∑ 𝑑𝑖

𝑡overlap
𝑖

𝑑thres × 𝑡overlap
,          (1b) 163 

where d is the great circle distance between position of historical TC and position of TIGGE TC at the overlap 164 

time step i, dthres is the maximum tolerance of d, toverlap is the number of overlap time steps in which both historical 165 

TC and TIGGE TC existed and it must be larger than 4.    Events with SI larger than SIthres are considered as MPES 166 

TC events. A series of sensitivity study have been done for determining the optimal choice of parameters (not 167 

shown) and the most optimal setting is dthres=900 km and SIthres = 0.1.  Type 2 forecast events are found if the 168 

separation distance between the position of historical TC and the TIGGE TC at any point of their overlap time is 169 

less than 400 km.  This threshold is determined by the minimum separation between historical TCs and TC in 170 

JRA-55 event set.  171 

3.2.4 Detection at Initialisation Filter (DIF) 172 

Any events that are detected at the time of model initialisation are removed following Osinski et al. (2016).  It is 173 

because these events are likely to be related to pre-existing disturbances or structures that leads to their 174 

development.  The removal of these events ensures the TPEPS event set is independent of any pre-existing weather 175 

patterns. 176 

3.3 Adjustment procedure 177 

More than one windstorm event could be found within a close proximity of each other over the WNP.  Since the 178 

clustering algorithm in WiTRACK does not have a maximum size restriction on the cluster, multiple windstorm 179 
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events in close proximity could be identified as one windstorm event by WiTRACK.  An additional procedure is 180 

used to separate these merged windstorm events.  This is an iterative procedure which would check whether all 181 

of the grid boxes at each 6-hr time step of the windstorm are within 1,000 km radius from the centre of the 182 

windstorm cluster.  If any of the event grid boxes are outside the 1,000 km radius, it will first remove these grid 183 

boxes and recalculate the centre of event cluster.  This procedure is repeated until there is no change in the centre 184 

of cluster.  This procedure addresses windstorm event with unrealistically large impact area and event SSI (ESSI).  185 

The threshold radius is chosen to be 1,000 km because typical size of TC wind field is smaller than a circle of 186 

1,000 km radius (Lee et al., 2010; Chan and Chan, 2011). 187 

4 Results and discussions 188 

4.1 Statistics and Validations 189 

The detection rates of historical TCs in CMA, ECMWF, JMA, and NCEP are 91.2%, 94.7%, 89.4%, and 90.7%, 190 

respectively, whereas only 54.2% of historical TCs in the period of 2008-2017 are detected in JRA-55 (Table 4).  191 

Since WiTRACK is a wind threshold exceedance based detection scheme and the 98th percentile wind speed value 192 

of JRA-55 within the tropical WNP is similar to these selected TIGGE data (Fig. 1), this implies JRA-55 193 

underestimates the wind speed of wind field of TCs, which is in agreement with Murakami (2014).  This also 194 

shows these selected TIGGE outputs provide a better representation of the atmosphere.  Total 515,712 TC related 195 

windstorm events are detected in the selected TIGGE data set.  ~38.5% of the all TPEPS events are PEPS TC 196 

events (Table 5).  Percentage of total TC windstorms as PEPS TCs can be treated as a proxy to quantify the 197 

forecast skill of the model.  Yet, this is not the focus of this study and the rest of the discussion focuses on the 198 

TPEPS TC event set. 199 

 Figures 2 and 3 show the spatial pattern and temporal variability, respectively, of the TPEPS and JRA-200 

55 event sets.  While individual model might have bias in certain spatial and temporal domain, for example the 201 

region with the highest track density of JMA is at the eastern WNP in Fig. 1d in comparison to other models, and 202 

NCEP failed to capture the peak activity prior 2012 in Fig. 2, the overall patterns of the TPEPS event set match 203 

the JRA-55 event set.  This is expected because (i) TC formation depends on the environmental conditions and 204 

initial disturbance (Gray, 1977; Ritchie and Holland, 1997; Nolan, 2007).  During the period of active TC season, 205 

environmental conditions over WNP are usually favourable for TC formation but often there is no suitable 206 

disturbance in the region.  Since EPS simulates the chaotic behaviour of the atmosphere, it would forecast 207 

disturbances which would be possible to form but not realised in the real atmosphere.  Hence PEPS TCs can be 208 

formed in those period of time over WNP; (ii) the trajectory of TCs depends mainly on the large scale 209 

environmental flow of the region (Chan, 2010).  This implies PEPS TCs would also follow the typical trajectory 210 

of real TCs given that the large scale flow is correctly represented in the forecast models.  Thus the spatial and 211 

temporal patterns of the TPEPS event set match the patterns of JRA-55 event set.  The spatial discrepancy near 212 

the dateline between the JRA-55 event set and the TPEPS event set (Figs. 2c and 2f) can be explained by 213 

considering the amount of data used in the construction of event sets.  The JRA-55 event set is constructed based 214 

on 39-year of reanalysis data whereas the TPEPS event set is constructed using more than 10,000 years of TC 215 

model data from operational forecast models.  Since both event sets are constructed from physical models (i.e. 216 

GCMs), the JRA-55 event set can be considered as a subset of the TIGGE event set.  Furthermore, in the region 217 
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0-20 N and 160-180 E, the 98th percentile values of JRA-55 is higher than all TIGGE models considered in this 218 

study (Fig. 1).  Consequently, systems with the same strength would be identified in that region in the TPEPS 219 

event set but not in the JRA-55 event set. 220 

Some of the examples of TPEPS TC tracks and impact footprints are shown in Fig. 4.  The trajectory of 221 

these TPEPS TC tracks is indistinguishable to historical TC trajectories in WNP.  This shows these TPEPS TC 222 

events are realistic and physically possible events.  Figure 5 shows the climatological daily number distributions 223 

of TCs for TPEPS TC event set and JRA-55 event set.  Although the peak activities period of JMA is slightly 224 

lagged behind and the over- and under-estimation of the peak of activity for CMA and NCEP are observed, 225 

respectively, the seasonal cycle of TPEPS TC event set is well captured and this matches to the seasonal cycle of 226 

the JRA-55 event set.  This shows our new approach is capable to produce spatially and temporally realistic events. 227 

 In general, the temporal evolutions of the number of first storm detections of TPEPS event set during the 228 

integration time has an increasing trend in the short lead time followed by a roughly constant behaviour (Fig. 6).  229 

In short lead time (i.e. close to initialisation of forecast), the true state of the atmosphere is well simulated by 230 

forecast models, thus EPSs are likely to produce storms that actually occurred (i.e. MEPS storms) and less likely 231 

to produce PEPS storms (Osinski et al., 2016).  As lead time increases, more PEPS storms are produced due to 232 

increasing uncertainty of the state and the chaotic behaviour of the atmosphere in EPSs.  When EPS has no 233 

memory of the initialisation state of the atmosphere, the probability distribution of formation of PEPS TCs 234 

becomes a uniform distribution. 235 

 The overall impact of any storm is related to the many factors for example lifetime of the storm, the size 236 

of the storm, and the intensity (or strength) of the storm (e.g. Vickery et al., 2000; Mori and Takemi, 2016; Kim 237 

and Lee, 2019).  Here we investigate whether there are systematic biases in the TPEPS TC event set which would 238 

affect these quantities.  The lifetime distribution of TPEPS TCs matches to the JRA-55 event set but proportionally 239 

overestimates for short-lived TCs and underestimates for long-lived TCs (Fig. 7a).  These differences are the 240 

consequence of the finite simulation time in forecast models.  If the same restriction (i.e. finite simulation time 241 

window) is applied to the JRA-55 TC event set (grey shaded areas in Fig. 7), the lifetime distribution of TPEPS 242 

TCs would be in good agreement to the JRA-55 TCs.  Similar conclusion can be reached in the comparison of the 243 

distribution of time required to reach lifetime maximum intensity (LMI) (Fig. 7b).  However, finite simulation 244 

time of EPSs cannot explain the difference in the distribution of impact area between TPEPS and JRA-55 event 245 

sets despite they have the same type of distribution (Fig. 7c).  The difference in the distributions of impact area 246 

maybe due to the fact that wind speed of the TC wind fields is underestimated in JRA-55 as discussed above.  247 

Consequently, many weaker TCs, which would have small impact areas, are not detected and thus they are not 248 

necessarily included in the JRA-55 TC event set.  249 

4.2 Robust TC risk assessment 250 

To demonstrate the benefit of our approach, TC records in IBTrACS, JRA-55 TC event set, and TPEPS TC event 251 

set are stratified into intensity classes according to their lifetime maximum intensity (c.f. Table 6).  Since 252 

WiTRACK is an impact-oriented, wind speed percentile based tracking scheme which tracks TCs with potential 253 

impact (Befort et al., 2020).  Many of the low impact TCs (i.e. TCs in the Tropical Depression and Tropical Storm 254 

(TD&TS) category) are not detected and thus not included in the TPEPS TC event set.  Focusing onto the 255 
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categories of high impact TC, i.e. Typhoon (TY), Very Strong Typhoon (VST), and Violent Typhoon (VTY), the 256 

TPEPS event set contains 302.14, 102.54, and 77.02 times more TY, VST, and VTY than the IBTrACS records, 257 

respectively.  This means our new approach can capture much more extremely high impact events such that a 258 

more robust analysis of extreme TC events can be done. 259 

 The key advantage of this new approach is that it constructs a physically consistent and high information 260 

content TC event set with good and realistic representation of the current climate state using a computationally 261 

inexpensive algorithm.  Since more physically consistent and physically possible TCs are included, more extreme 262 

events can be captured in the TPEPS event set.  Consequently, a robust TC risk assessment can be obtained.  Some 263 

of the examples are presented in this subsection. 264 

 Figure 8 shows the location of first detection of TCs with LMI at least typhoon strength, which made 265 

landfall within the given domain (105-180 E, 0-30 N) for TPEPS and JRA-55 TC event set.  The spatial pattern 266 

of the TPEPS TC event set (Fig. 8f) matches the spatial pattern of the JRA-55 TC event set.  The data in the JRA-267 

55 TC event set are sparse and it does not provide sufficient information about whether TCs, which made landfall 268 

in this region, are typically first identified in the WNP or in the South China Sea (SCS).  TPEPS event set, on the 269 

other hand, provides a clearer picture and suggests events, which made landfall in this domain, are typically first 270 

identified in the SCS and western WNP.  This is consistent with the known climatology.  As TCs within the SCS 271 

and western WNP usually follow the western and northwestern trajectory and subsequently made landfall over 272 

the Vietnam, south and southeast mainland China, Taiwan, and the Philippines.   273 

 Figure 9 shows the number of TC landfall events, which made landfall with at least typhoon strength, 274 

with the focus of southern and southeast mainland China, and Taiwan.  Much more landfall events have been 275 

captured by TPEPS TC event set (11449) than the JRA-55 TC event set (100).  The spatial distribution of TPEPS 276 

TCs is in good agreement with the JRA-55 TCs.  TCs, which made landfall with at least typhoon strength, are 277 

more likely to made landfall along the coast of the southern Fujian Province and the eastern Guangdong Province 278 

than any other coastal area of South and Southeast mainland China.  Furthermore, higher TC landfall frequency 279 

is observed on the side of islands (i.e. Hainan Island and Taiwan) which faces the open ocean than the other side 280 

of islands.  This is consistent with observations.  The TPEPS TC event set also provides information about the 281 

frequency of TC landfall at locations where no landfall events had observed in the JRA-55 event set, e.g. locations 282 

along the coastline of Guangdong Province.    283 

4.3 Application 284 

The TPEPS event set is constructed based on physical models, i.e. GCMs, which provide a good representation 285 

of the atmosphere of the real world.  The wind field associates to a TPEPS event is realistic and local effects, such 286 

as local topography, have been taken into account.  This implies the wind information of the TPEPS event set can 287 

be used for estimates return periods of local extreme wind events associated with typhoon with high confidence.  288 

Figure 10 shows the number of TC-related 6-hourly extreme wind (i.e. wind speed higher than the local 98th 289 

percentile climatological wind speed) data entries in each of the grid box within Guangdong Province in the 290 

Southern China.  The JRA-55 event set can only construct a TC-related 6-hourly extreme distribution with ~25 291 

(inland) and ~325 (coastal) data entries whereas such distribution can be constructed with at least 500 to over 292 

28,000 data entries using the TPEPS TC event set.  This implies the estimated return period using the TPEPS TC 293 
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event set would be more reliable than using the JRA-55 event set and similarly the observation data alone.  This 294 

is demonstrated as follows. 295 

Four surface observation stations are chosen for this demonstration, they are Baiyun International Airport 296 

(BAIYUN INTL; 23.392 N, 113.299 E; from 1945-2019), Baoan International Airport (BAOAN INTL; 22.639 297 

N, 113.811 E; from 1957-2019), Shanwei (22.783 N, 115.367 E; from 1956-2019), and Shangchuan Dao 298 

(21.733 N, 112.767 E; from 1959-2019).  For each selected surface station, the grid box of each EPS that 299 

corresponds to the surface station is identified (Fig.11).  Resolution of models is known to be a factor to limit the 300 

wind speed of TCs (Bengtsson et al., 2007).  This means for the same TC, the associated wind speed would be 301 

lower in low resolution model and higher for high resolution model.  In order to utilise the extreme wind 302 

information from EPSs with different resolution, the cube of 98th percentile relative exceedance of wind speed 303 

(EXCE) is used.  Since EXCE is a ratio, it is a resolution independent quantity and the tail behaviours of the 304 

EXCE distribution for these models are similar, which is in agreement with Osinski et al. (2016).  Information 305 

from different models can be combined using EXCE.  EXCE entries, which correspond to TC in the TPEPS TC 306 

event set, are extracted for those grid boxes.  This forms a set of “observations” of the impacts of high impact TCs 307 

at those grid boxes in the model space.  We assume all of the EXCE entries are independent and identically 308 

distributed (iid) random variables.  This is a reasonable assumption, due to the fast moving nature of TCs, diverse 309 

possible direction of the movement of wind field, and rapid decay of wind field over land for a 6-hour interval, 310 

local observations often have only one extreme wind observations of a TC event.  In order to translate this 311 

information to the physical world, quantile mapping is used for mapping EXCE to the observed surface wind 312 

speed which exceeded local climatological 98th percentile.  Historical in situ surface wind data are obtained from 313 

the Integrated Surface Database (ISD) (Smith et al., 2011).  Quantile mapping is done using the R package qmap 314 

(Gudmundsson et al., 2012; Gudmundsson, 2016).  Due to different geographic configuration and climatology of 315 

each in situ observation station, different quantile mapping strategies have been employed.  The optimal strategy 316 

is chosen based on minimisation of the root-mean-square-error (RMSE) of (see Gudmundsson (2016) for more 317 

details).  Using above information, the return period-return level plot (using threshold exceedance approach) is 318 

constructed using the R package extRemes (Gilleland and Katz, 2016).  For detail discussion of calculation of 319 

return period and return level, readers are referred to Elsner et al. (2006), Jagger and Elsner (2006), and Gilleland 320 

and Katz (2016).  Figure 12 shows the return period-return level plot of 4 selected stations which are derived using 321 

our proposed approach with the TPEPS event set and using in situ observational data.  The width of the 95% 322 

confidence interval which is calculated using our proposed approach is much sharper than the 95% confidence 323 

interval which is calculated using in situ observational data.  In other words, the uncertainty can be reduced by 324 

using the TPEPS event set because more observations are used in the calculation.  325 

The above application of the TPEPS event set can provide crucial information for the DRR community.  326 

As discussed in the introduction, typhoon parametric insurance can be an effective financial instrument for 327 

typhoon risk transfer.  However, an effective typhoon parametric insurance requires a robust trigger point, which 328 

is determined by the meteorological information, e.g. wind speed.  If the trigger point is too high, disbursements 329 

would not be made even if a catastrophic meteorological disaster has occurred, i.e. under-compensation; If the 330 

trigger point is too low, disbursements would be made even if no catastrophic event has occurred.  Using the 331 
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TPEPS event set, the estimated return period has smaller uncertainty than the estimation made by in situ 332 

observational data, such that an optimal trigger point for typhoon parametric insurance can be determined. 333 

5 Summary and Conclusions 334 

In this study, a new and efficient method to produce a physically consistent TC event set with high information 335 

content in the WNP has been presented.  This is achieved by applying an objective impact-oriented windstorm 336 

identification algorithm – WiTRACK, on 6-hourly 10-m horizontal wind field of selected ensemble data set from 337 

a multi-centre grand ensemble data archive – TIGGE.  Several sensitivity tests with different parameter settings 338 

are done using JRA-55 data to obtain the optimal setup for WiTRACK.  Since WiTRACK can identify all types 339 

of windstorm events, 4 post-processing procedures are used to identify PEPS TCs, these procedures include a 340 

geographic filter and logistics regression classifier.  The TPEPS event set has the climatological spatial and 341 

temporal pattern of TCs which match to the historical climatological pattern of TC in WNP.  More than 302, 102, 342 

and 77 times of TY, VSTY, and VTY, respectively, are found in the TPEPS TC event set in comparison to the 343 

IBTrACS record.  A robust representation of extreme TC events in WNP can be obtained using the TPEPS TC 344 

event set because of the high number of physically consistent extreme events.  Consequently, a robust hazard risk 345 

assessment of land-affecting typhoons in the WNP can be produced using the event set constructed by this new 346 

method.  Furthermore, the return-period of typhoon-related extreme wind events e.g. Typhoon Haiyan (2013) and 347 

Typhoon Mangkhut (2018), can be determined with sharper confidence intervals in a similar manner as Walz and 348 

Leckebusch (2019).  As a result, policymakers and related stakeholders can improve the current typhoon related 349 

disaster reduction and mitigation strategy.  Furthermore a robust trigger point for parametric typhoon hazard 350 

insurance can be determined using our proposed approach by reducing the uncertainty of estimated return period 351 

of a meteorological extreme event. 352 

The TC event set constructed using the method described in this paper has several unique properties in comparison 353 

to the TC event set constructed by other methods (Vickery et al., 2000; Emanuel et al., 2006; Rumpf et al., 354 

2009; Kim and Lee, 2019):  355 

(i) Many methods in the literature (Emanuel et al., 2006; Rumpf et al., 2009) use historical best track data to 356 

construct a spatial probability function that determine the genesis location of synthetic TCs and a parametric track 357 

model, that matches to the historical observations, to determine the movement of synthetic TCs.  Consequently, 358 

these synthetic tracks are highly likely to be identified in the region where TCs were identified from the historical 359 

observations and highly unlikely in the region where TCs were never identified but physically possible.  In contrast, 360 

TPEPS TCs are detected at any physically possible locations over the WNP.  The TPEPS event set includes events 361 

which are unlikely but physically possible.  This provides an important and unique advantage for typhoon risk 362 

assessment.   363 

(ii) In the literature, the structure of wind field of synthetic TCs follows a predefined, analytical model, e.g. 364 

parametric vortex structure developed by Holland (1980) or modified Rankine vortex.  For the TPEPS event set, 365 

complex physical processes in GCMs determine the structure of wind field of TCs, therefore the structure of wind 366 

field of TCs is realistic.  This is an advantage for robust wind risk assessment of land-affecting TCs because the 367 

resultant wind field includes the complex atmosphere-land interaction which depends on the local topography.  368 
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Consequently, the TPEPS event set can be used as addition observations for the estimation of return period of TC-369 

related extreme wind as demonstrated above. 370 

(iii) Many of the TC risk assessments are done based on wind risk, and/or wind-induced coastal risk but not TC-371 

related precipitation risk (Vickery et al., 2000; Emanuel et al., 2006; Rumpf et al., 2009; Mendelsohn et al., 372 

2012; Mori and Takemi, 2016; Marsooli et al., 2019; Kim and Lee, 2019).  A reason is that historical damages 373 

due to TC-related wind are much better documented than TC-related precipitation damages (Emanuel et al., 2006).  374 

However, damages due to TC-related precipitation, e.g. flooding, should not be ignored.  Based on the payout of 375 

National Flood Insurance Program of the United States for the flood event of Hurricane Ike (2008), Smith and 376 

Katz (2013) estimated the insured flood damage as 5.376 billion USD.  Furthermore, some of the high impact 377 

TCs in WNP have typical typhoon intensity but the amount of rainfall is extremely high, e.g. Typhoon Morakot 378 

(2009) (Wu, 2012).  Since precipitation is one of the output variables of these medium range ensemble forecasts, 379 

precipitation-related impact can be examine by integrating the realistic precipitation information from forecast 380 

outputs into the TPEPS event set.  Furthermore a spatial distribution of TC related hazard, e.g. extreme wind and 381 

extreme precipitation, of the TPEPS event set can be constructed using the notion of TC hazard footprint (Chen 382 

et al., 2018).  Consequently, a more thorough typhoon risk assessment can be achieved.  This is currently under 383 

our investigation. 384 

  385 
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 394 

Author contribution. KSN and GCL originated the idea, developed the methodology, performed data analysis, and 395 

wrote the paper. 396 

 397 

Competing interests.  The authors declare that they have no conflict of interest. 398 

 399 

Acknowledgments. The authors thank Drs. D. Befort and M. Angus for valuable discussion.  This work was 400 

supported by the Building Resilience to Natural Disasters using Financial Instruments grant INPAIS (Integrated 401 

Threshold Development for Parametric Insurance Solutions for Guangdong Province China, Grant Ref: 402 

NE/R014264/1, through Natural Environment Research Council (NERC).   The computations described in this 403 

paper were performed using the BlueBEAR HPC service at the University of Birmingham.   404 

https://doi.org/10.5194/nhess-2020-74
Preprint. Discussion started: 22 April 2020
c© Author(s) 2020. CC BY 4.0 License.



12 

 

References 405 

Befort, D. J., Kruschke, T., and Leckebusch, G. C.: Objective Identification of Potentially Damaging Tropical 406 

Cyclones over the Western North Pacific, Environmental Research Communications, ERC-100169, 407 

accepted 28 February 2020, 2020. 408 

Belanger, J. I., Webster, P. J., Curry, J. A., and Jelinek, M. T.: Extended Prediction of North Indian Ocean 409 

Tropical Cyclones, Weather and Forecasting, 27, 757-769, 10.1175/WAF-D-11-00083.1, 2012. 410 

Bengtsson, L., Hodges, K. I., and Esch, M.: Tropical cyclones in a T159 resolution global climate model: 411 

Comparison with observations and re‐analyses, Tellus A, 59, 396-416, 2007. 412 

Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., Chen, D. H., Ebert, B., Fuentes, M., Hamill, T. M., 413 

Mylne, K., Nicolau, J., Paccagnella, T., Park, Y.-Y., Parsons, D., Raoult, B., Schuster, D., Dias, P. S., 414 

Swinbank, R., Takeuchi, Y., Tennant, W., Wilson, L., and Worley, S.: The THORPEX Interactive 415 

Grand Global Ensemble, B Am Meteorol Soc, 91, 1059-1072, 10.1175/2010BAMS2853.1, 2010. 416 

Chan, J. C. L.: Movement of Tropical Cyclones, in: Global Perspectives on Tropical Cyclones, World Scientific 417 

Series on Asia-Pacific Weather and Climate, Volume 4, World Scientific, 133-148, 2010. 418 

Chan, K. T. F., and Chan, J. C. L.: Size and Strength of Tropical Cyclones as Inferred from QuikSCAT Data, 419 

Mon Weather Rev, 140, 811-824, 10.1175/MWR-D-10-05062.1, 2011. 420 

Chen, W., Lu, Y., Sun, S., Duan, Y., and Leckebusch, G. C.: Hazard Footprint-Based Normalization of 421 

Economic Losses from Tropical Cyclones in China During 1983–2015, International Journal of 422 

Disaster Risk Science, 9, 195-206, 10.1007/s13753-018-0172-y, 2018. 423 

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. 424 

A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., 425 

Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. 426 

V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., 427 

Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The 428 

ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q J Roy 429 

Meteor Soc, 137, 553-597, 10.1002/qj.828, 2011. 430 

Desai, B., Maskrey, A., Peduzzi, P., De Bono, A., and Herold, C.: Making Development Sustainable: The 431 

Future of Disaster Risk Management, Global Assessment Report on Disaster Risk Reduction, United 432 

Nations Office for Disaster Risk Reduction (UNISDR), Genève, Suisse, Geneva: UNISDR, 2015. 433 

Elsner, J. B., Jagger, T. H., and Tsonis, A. A.: Estimated return periods for Hurricane Katrina, Geophys Res 434 

Lett, 33, 10.1029/2005GL025452, 2006. 435 

Emanuel, K.: Climate and tropical cyclone activity: A new model downscaling approach, J Climate, 19, 4797-436 

4802, Doi 10.1175/Jcli3908.1, 2006. 437 

Emanuel, K., Ravela, S., Vivant, E., and Risi, C.: A statistical deterministic approach to hurricane risk 438 

assessment, B Am Meteorol Soc, 87, 299-314, 10.1175/Bams-87-3-299, 2006. 439 

Gilleland, E., and Katz, R. W.: extRemes 2.0: An Extreme Value Analysis Package in R, Journal of Statistical 440 

Software; Vol 1, Issue 8 (2016), 10.18637/jss.v072.i08, 2016. 441 

Glauber, J. W.: Crop Insurance Reconsidered, American Journal of Agricultural Economics, 86, 1179-1195, 442 

10.1111/j.0002-9092.2004.00663.x, 2004. 443 

Gray, W. M.: Tropical Cyclone Genesis in the Western North Pacific, J Meteorol Soc Jpn, 55, 465-482, 1977. 444 

https://doi.org/10.5194/nhess-2020-74
Preprint. Discussion started: 22 April 2020
c© Author(s) 2020. CC BY 4.0 License.



13 

 

Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.: Technical Note: Downscaling RCM 445 

precipitation to the station scale using statistical transformations &ndash; a comparison of methods, 446 

Hydrol. Earth Syst. Sci., 16, 3383-3390, 10.5194/hess-16-3383-2012, 2012. 447 

Gudmundsson, L.: qmap: Statistical transformations for post-processing climate model output. R package 448 

version 1.0-4. 2016. 449 

Halperin, D. J., Fuelberg, H. E., Hart, R. E., Cossuth, J. H., Sura, P., and Pasch, R. J.: An Evaluation of Tropical 450 

Cyclone Genesis Forecasts from Global Numerical Models, Weather and Forecasting, 28, 1423-1445, 451 

10.1175/WAF-D-13-00008.1, 2013. 452 

Hart, R. E.: A cyclone phase space derived from thermal wind and thermal asymmetry, Mon Weather Rev, 131, 453 

585-616, Doi 10.1175/1520-0493(2003)131<0585:Acpsdf>2.0.Co;2, 2003. 454 

Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning, Springer Series in Statistics, 455 

Springer-Verlag New York, 745 pp., 2009. 456 

Holland, G. J.: An Analytic Model of the Wind and Pressure Profiles in Hurricanes, Mon Weather Rev, 108, 457 

1212-1218, 10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2, 1980. 458 

IPCC: Managing the risks of extreme events and disasters to advance climate change adaptation, Cambridge, A 459 

special report of Working Groups I and II of the Intergovernmental Panel on Climate Change, 2012. 460 

Jagger, T. H., and Elsner, J. B.: Climatology Models for Extreme Hurricane Winds near the United States, J 461 

Climate, 19, 3220-3236, 10.1175/JCLI3913.1, 2006. 462 

Kim, G. Y., and Lee, S.: Prediction of extreme wind by stochastic typhoon model considering climate change, 463 

Journal of Wind Engineering and Industrial Aerodynamics, 192, 17-30, 10.1016/j.jweia.2019.05.003, 464 

2019. 465 

Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C. J.: The International Best Track 466 

Archive for Climate Stewardship (IBTrACS) Unifying Tropical Cyclone Data, B Am Meteorol Soc, 467 

91, 363-376, Doi 10.1175/2009bams2755.1, 2010. 468 

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., 469 

Endo, H., Miyaoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic 470 

Characteristics, Journal of the Meteorological Society of Japan. Ser. II, 93, 5-48, 10.2151/jmsj.2015-471 

001, 2015. 472 

Kruschke, T.: Winter wind storms: Identification, verification of decadal predictions, and regionalization, 473 

Doktors der Naturwissenschaften, Institut f•ur Meteorologie, Freie Universit•at Berlin, 181 pp., 2015. 474 

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., 475 

Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., and Hunt, T.: Classification 476 

and Regression Training. 2018. 477 

Leckebusch, G. C., Renggli, D., and Ulbrich, U.: Development and Application of an Objective Storm Severity 478 

Measure for the Northeast Atlantic Region, Meteorologische Zeitschrift, 17, 575-587, 10.1127/0941-479 

2948/2008/0323, 2008. 480 

Lee, C.-S., Cheung, K. K. W., Fang, W.-T., and Elsberry, R. L.: Initial Maintenance of Tropical Cyclone Size in 481 

the Western North Pacific, Mon Weather Rev, 138, 3207-3223, 10.1175/2010MWR3023.1, 2010. 482 

https://doi.org/10.5194/nhess-2020-74
Preprint. Discussion started: 22 April 2020
c© Author(s) 2020. CC BY 4.0 License.



14 

 

Lemcke, G.: A resilient world: NatCat parametric insurance solutions for China's Provincial Government, Sigma 483 

event 2017: Catastrophes-Protecting the unisured. Solutions for a resilient world, Zurich, Switzerland, 484 

6-7 April, 2017. 485 

Leonardo, N. M., and Colle, B. A.: Verification of Multimodel Ensemble Forecasts of North Atlantic Tropical 486 

Cyclones, Weather and Forecasting, 32, 2083-2101, 10.1175/WAF-D-17-0058.1, 2017. 487 

Luitel, B., Villarini, G., and Vecchi, G. A.: Verification of the skill of numerical weather prediction models in 488 

forecasting rainfall from U.S. landfalling tropical cyclones, Journal of Hydrology, 556, 1026-1037, 489 

10.1016/j.jhydrol.2016.09.019, 2018. 490 

Majumdar, S. J., and Torn, R. D.: Probabilistic Verification of Global and Mesoscale Ensemble Forecasts of 491 

Tropical Cyclogenesis, Weather and Forecasting, 29, 1181-1198, 10.1175/WAF-D-14-00028.1, 2014. 492 

Marsooli, R., Lin, N., Emanuel, K., and Feng, K.: Climate change exacerbates hurricane flood hazards along US 493 

Atlantic and Gulf Coasts in spatially varying patterns, Nature Communications, 10, 3785, 494 

10.1038/s41467-019-11755-z, 2019. 495 

Mendelsohn, R., Emanuel, K., Chonabayashi, S., and Bakkensen, L.: The impact of climate change on global 496 

tropical cyclone damage, Nature Climate Change, 2, 205-209, 10.1038/nclimate1357, 2012. 497 

Mori, N., and Takemi, T.: Impact assessment of coastal hazards due to future changes of tropical cyclones in the 498 

North Pacific Ocean, Weather and Climate Extremes, 11, 53-69, 10.1016/j.wace.2015.09.002, 2016. 499 

Murakami, H.: Tropical cyclones in reanalysis data sets, Geophys Res Lett, 41, 2133-2141, 500 

10.1002/2014GL059519, 2014. 501 

Nolan, D. S.: What is the trigger for tropical cyclogenesis?, Aust. Met. Mag., 56, 241-266, 2007. 502 

Osinski, R., Lorenz, P., Kruschke, T., Voigt, M., Ulbrich, U., Leckebusch, G. C., Faust, E., Hofherr, T., and 503 

Majewski, D.: An approach to build an event set of European windstorms based on ECMWF EPS, Nat. 504 

Hazards Earth Syst. Sci., 16, 255-268, 10.5194/nhess-16-255-2016, 2016. 505 

Ritchie, E. A., and Holland, G. J.: Scale interactions during the formation of Typhoon Irving, Mon Weather 506 

Rev, 125, 1377-1396, 1997. 507 

Rumpf, J., Weindl, H., Höppe, P., Rauch, E., and Schmidt, V.: Stochastic modelling of tropical cyclone tracks, 508 

Mathematical Methods of Operations Research, 66, 475-490, 10.1007/s00186-007-0168-7, 2007. 509 

Rumpf, J., Weindl, H., Höppe, P., Rauch, E., and Schmidt, V.: Tropical cyclone hazard assessment using model-510 

based track simulation, Nat Hazards, 48, 383-398, 10.1007/s11069-008-9268-9, 2009. 511 

Shi, P.: On the role of government in integrated disaster risk governance—Based on practices in China, 512 

International Journal of Disaster Risk Science, 3, 139-146, 10.1007/s13753-012-0014-2, 2012. 513 

Smith, A., Lott, N., and Vose, R.: The Integrated Surface Database: Recent Developments and Partnerships, B 514 

Am Meteorol Soc, 92, 704-708, 10.1175/2011BAMS3015.1, 2011. 515 

Smith, A. B., and Katz, R. W.: US billion-dollar weather and climate disasters: data sources, trends, accuracy 516 

and biases, Nat Hazards, 67, 387-410, 10.1007/s11069-013-0566-5, 2013. 517 

Strachan, J., Vidale, P. L., Hodges, K., Roberts, M., and Demory, M.-E.: Investigating Global Tropical Cyclone 518 

Activity with a Hierarchy of AGCMs: The Role of Model Resolution, J Climate, 26, 133-152, 519 

10.1175/JCLI-D-12-00012.1, 2013. 520 

https://doi.org/10.5194/nhess-2020-74
Preprint. Discussion started: 22 April 2020
c© Author(s) 2020. CC BY 4.0 License.



15 

 

Sun, B., Guo, C., and Cornelis van Kooten, G.: Hedging weather risk for corn production in Northeastern China: 521 

The efficiency of weather-indexed insurance, Agricultural Finance Review, 74, 555-572, 522 

10.1108/AFR-01-2014-0001, 2014. 523 

Swinbank, R., Kyouda, M., Buchanan, P., Froude, L., Hamill, T. M., Hewson, T. D., Keller, J. H., Matsueda, 524 

M., Methven, J., Pappenberger, F., Scheuerer, M., Titley, H. A., Wilson, L., and Yamaguchi, M.: The 525 

TIGGE Project and Its Achievements, B Am Meteorol Soc, 97, 49-67, 10.1175/BAMS-D-13-00191.1, 526 

2015. 527 

Vickery, P. J., Skerlj, P. F., and Twisdale, L. A.: Simulation of Hurricane Risk in the U.S. Using Empirical 528 

Track Model, Journal of Structural Engineering, 126, 1222-1237, 10.1061/(ASCE)0733-529 

9445(2000)126:10(1222), 2000. 530 

Vitart, F., Prates, F., Bonet, A., and Sahin, C.: New tropical cyclone products on the web, ECMWF Newsletter, 531 

130, 2012. 532 

Walz, M. A., and Leckebusch, G. C.: Loss potentials based on an ensemble forecast: How likely are winter 533 

windstorm losses similar to 1990?, Atmos Sci Lett, 20, e891, 10.1002/asl.891, 2019. 534 

WMO: Member report [China], ESCAP/WMO Typhoon Committee 13tth Integrated Workshop, 2018. 535 

WMO: Typhoon Committee Operational Manual, World Meteorological Organization, World Meteorological 536 

Organization, 2019. 537 

Wu, C.-C.: Typhoon Morakot: Key Findings from the Journal TAO for Improving Prediction of Extreme Rains 538 

at Landfall, B Am Meteorol Soc, 94, 155-160, 10.1175/BAMS-D-11-00155.1, 2012. 539 

Ye, T., Wang, Y., Wu, B., Shi, P., Wang, M., and Hu, X.: Government Investment in Disaster Risk Reduction 540 

Based on a Probabilistic Risk Model: A Case Study of Typhoon Disasters in Shenzhen, China, 541 

International Journal of Disaster Risk Science, 7, 123-137, 10.1007/s13753-016-0092-7, 2016. 542 

Ye, T., Li, Y., Gao, Y., Wang, J., and Yi, M.: Designing index-based livestock insurance for managing snow 543 

disaster risk in Eastern Inner Mongolia, China, International Journal of Disaster Risk Reduction, 23, 544 

160-168, 10.1016/j.ijdrr.2017.04.013, 2017. 545 

 546 

  547 

https://doi.org/10.5194/nhess-2020-74
Preprint. Discussion started: 22 April 2020
c© Author(s) 2020. CC BY 4.0 License.



16 

 

Tables 548 

Centre 
Number of 

members 

Runs per day 
Resolution 

Implementation 

date 

Forecast  

lead time (hr) 

CMA 14 
2 (00, 12 UTC) 

0.5625×0.5625 
20070515 240 

2 (00, 12 UTC) 20140805 360 

ECMWF 50 2 (00, 12 UTC) 0.5625×0.5625 20061001 360 

JMA 

50 1 (12 UTC) 

1.25 × 1.25 

20060301 216 

50 1 (12 UTC) 20130328 264 

26 2 (0, 12 UTC) 20140226 264 

NCEP 20 4 (0, 6, 12, 18 UTC) 1.0 × 1.0 20070327 384 

 549 

Table 1. Information of selected data sources from TIGGE archive. 550 

  551 
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Variables 

Time average of area of cluster 

Time average of longitude of cluster centre 

Time average of latitude of cluster centre 

Time average of maximum extent of cluster 

Time average of mean wind speed 

Time average of standard deviation of wind speed 

Time average of minimum wind speed 

Time average of maximum wind speed 

Time average of longitude of location of maximum wind 

Time average of latitude of location of maximum wind 

Time average of storm severity index (SSI) 

Standard deviation of time series of area of cluster 

Standard deviation of time series of longitude of cluster centre 

Standard deviation of time series of latitude of cluster centre 

Standard deviation of time series of maximum extent of cluster 

Standard deviation of time series of mean wind speed  

Standard deviation of time series of standard deviation of wind speed 

Standard deviation of time series of minimum wind speed 

Standard deviation of time series of maximum wind speed 

Standard deviation of time series of longitude of location of maximum wind 

Standard deviation of time series of latitude of location of maximum wind 

Standard deviation of time series of storm severity index 

Number of 6-hourly time steps 

Area of windstorm event footprint 

Event SSI 

Difference of latitude between the initial and final locations 

Difference of longitude between the initial and final locations 

Total distance travelled 

 552 

Table 2. List of explanatory variables which can be obtained from the WiTRACK output. 553 
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Variable t-value 

Difference of latitude between the initial and final locations 12.5707 

Difference of longitude between the initial and final locations 9.9983 

Time average of standard deviation of wind speed 9.3709 

Time average of minimum wind speed 8.5015 

Time average of maximum extent of cluster 5.1416 

Number of 6-hourly time steps 4.8719 

Standard deviation of times series of latitude of location of maximum wind 3.4302 

Standard deviation of times series of mean wind speed 2.3640 

Standard deviation of times series of area of cluster 2.2447 

Event SSI 1.9621 

Standard deviation of times series of maximum extent of cluster 1.7922 

Time average of latitude of cluster centre 1.4493 

Standard deviation of time series of SSI 0.9980 

Standard deviation of times series of longitude of location of maximum wind 0.9237 

Standard deviation of times series of standard deviation of wind speed 0.7268 

Time average of longitude of location of maximum wind 0.4204 

Standard deviation of time series of minimum wind speed 0.2613 

 555 

Table 3. List of explanatory variables and their associated t-value which are used in the construction of LRC. 556 
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Year IBTrACS CMA ECMWF JMA NCEP JRA-55 

2008 21 19 19 19 17 10 

2009 22 20 20 20 14 10 

2010 13 13 13 13 13 6 

2011 21 19 20 17 19 14 

2012 24 23 23 23 23 16 

2013 29 28 28 27 28 15 

2014 19 12 17 17 17 13 

2015 22 20 21 20 21 17 

2016 26 25 25 24 25 13 

2017 30 28 29 23 29 9 

Total 227 207 215 203 206 123 

Detection 

Rate 
 91.2% 94.7% 89.4% 90.7% 54.2% 

 558 

Table 4. Number of historical TCs identified. 559 
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Centres 
Number of TC 

windstorms 

Number of 

Pure EPS TCs 

% of TC 

windstorms as pure 

EPS TCs 

CMA 39535 13322 33.7 

ECMWF 215737 74091 34.3 

JMA 56537 14964 26.5 

NCEP 203903 96052 47.1 

 561 

Table 5. Statistics of TCs in the selected TIGGE data. 562 
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Intensity Class IBTrACS JRA-55 TPEPS 

TD&TS 252 32 27643 

STS 208 126 70759 

TY 231 254 69794 

VSTY 231 193 23686 

VTY 85 63 6547 

Total 1007 668 198429 

 564 

Table 6.  Number of TC records in IBTrACS, JRA-55 TC event set, and TPEPS TC event set, for different 565 

intensity classes.  The classes are Tropical Depression (TD) and Tropical Storm (TS), Severe Tropical Storm 566 

(STS), Typhoon (TY), Very Strong Typhoon (VST), and Violent Typhoon (VTY).  The intensity classes for 567 

IBTrACS are defined according to WMO (2019).  The intensity classes for JRA-55 TC and TPEPS TC are derived 568 

from the WMO (2019) intensity classes by using quantile mapping of intensity records of JRA-55 TC and 569 

IBTrACS records.    570 
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Figures 571 

 572 

Figure 1. Local 98th percentile wind speed for each grid box in the region for TIGGE: (a) CMA, (b) ECMWF, (d) 573 

JMA, (e) NCEP, and (c) JRA-55. 574 
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 576 

Figure 2. Ranked feature scaled track density (%) of different data sets: (a) CMA, (b) ECMWF, (c) JRA-55, (d) 577 

JMA, (e) NCEP, and (f) TIGGE total.  Number of TCs in the corresponding event set is stated on the top right of 578 

each panel. 579 
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 581 

Figure 3. Feature scaled time series of number of TCs formation of TPEPS TC event set (CMA: red, ECMWF: 582 

blue, JMA: green, NCEP: purple) and JRA-55 event set (black).  For visual convenience, the time series of CMA, 583 

ECMWF, JMA, and NCPE are shifted by 1, 2, 3, 4, respectively. 584 
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 586 

Figure 4. Some of the PEPS TC impact footprint (colour contours) and tracks (black line within the colour 587 

contours) of the TPEPS TC event sets.  The colour contours show the cumulative SSI of the PEPS TCs over their 588 

respective lifetime at individual grid box.  ESSI of each PEPS TC is shown on the top right of each panel. 589 
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 591 

Figure 5. Climatological daily number distribution of TC for TPEPS TC event set (CMA: red, ECMWF: blue, 592 

JMA: green, NCEP: purple) and JRA-55 event set (black).  30-day moving average is used in order to remove 593 

high frequency signal. 594 
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 596 

Figure 6. Temporal evolution of frequency of first storm detections of TPEPS event set (CMA: red, ECMWF: 597 

blue, JMA: green, NCEP: purple).    598 
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 599 

Figure 7. The distribution of (a) lifetime, (b) time required to reach LMI, and (c) impact area of TCs in TPEPS 600 

TC event set (red lines) and JRA-55 event set (black line).  The grey area indicates the spread of the lifetime 601 

distribution of JRA-55 if finite simulation windows are applied to the JRA-55 event set. 602 
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 604 

Figure 8. The spatial distribution of location of first detection of TCs (with LMI at least typhoon strength) which 605 

made landfall within the domain 105-180 E, 0-30 N for TPEPS TC event set and JRA-55 event set. 606 
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 608 

Figure 9. Spatial distribution of number of landfall events (landfall with at least typhoon strength) for TPEPS TC 609 

event sets and JRA-55 event set (colours).  The total number of landfall events in each panel is shown on the top 610 

right of each panel. 611 
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 613 

Figure 10. Number of TC-related 6-hourly data entries in each of the grid box in Guangdong Province, China, 614 

for TPEPS TC event sets and JRA-55 event set. 615 
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 617 

Figure 11.  Locations of the selected surface observation stations (red dots) in Guangdong, China with 618 

corresponding grid boxes from 4 EPS outputs: CMA (green), ECMWF (blue), JMA (cyan), and NCEP (magenta). 619 

Information of prefectural boundaries is obtained from GADM version 3.6 Level 2 (available at 620 

https://gadm.org/data.html)  621 
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 623 

Figure 12.  Return period-return level plot for 4 selected surface observation stations: Baiyun International Airport, 624 

Baoan Internation Airport, Shanwei, and Shangchuan Dao.  Black lines indicate the best estimate of return period-625 

return level.  Blue lines indicate the 95% confidence interval calculated using TIGGE PEPS event set.  Grey lines 626 

indicate the 95% confidence interval calculated using in situ observations. 627 
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