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Abstract. To study high impact tropical cyclone (TC) is of crucial importance due to its extraordinary destruction 7 

potential that leads to major losses in many coastal areas in the Western North Pacific (WNP). Nevertheless, 8 

because of the rarity of high-impact TCs, it is difficult to construct a robust hazard assessment based on the 9 

historical best track records.  This paper aims to address this issue by introducing a computationally simple and 10 

efficient approach to build a physically consistent, high impact TC event set with non-realised TC events in the 11 

THORPEX Interactive Grand Global Ensemble (TIGGE) archive.  This event set contains more than 10,000 years 12 

of TC events.  The temporal and spatial characteristics of the new event set are consistent to the historical TC 13 

climatology in the WNP.  It is shown that this TC event set contains ~100 and ~77 times more Very Severe 14 

Typhoons and Violent Typhoons than the historical records, respectively.  Furthermore, this approach can be used 15 

to improve the return period estimation of TC-associated extreme wind.  Consequently, a robust extreme TC 16 

hazard assessment, reflective of the current long-term climate variability phase, can be achieved using this 17 

approach.    18 

1 Introduction 19 

Increasing frequency and intensity of extreme meteorological events in the recent decades (IPCC, 2012) and 20 

increasing number of human population and assets located in risk-prone regions (Desai et al., 2015) lead to an 21 

increase of risk to humans and economic loss potentials from natural hazards  e.g.,  tropical cyclones, with 22 

potentially disastrous consequences. For example, in the period between 1st January and 18th October  2018, total 23 

typhoon-related direct economic losses in China is evaluated to exceed  67 billion RMB (roughly 8.3 billion Euros) 24 

(Chinese Meteorological Administration, CMA, 2018).  While natural hazards impact on all society stakeholders, 25 

governments are crucial in disaster risk reduction (DRR) because of their ability to implement necessary DRR-26 

related policy and ability to allocate resources to appropriate parties (Shi, 2012).  Governments have various 27 

options for DRR investments, for example, post-disaster relief and risk financing.  Using cost-benefit analysis for 28 

a case study of typhoon disasters in China, Ye et al. (2016) showed insurance premium subsidies has the highest 29 

benefit-cost ratio.  This is because premium subsidies increases penetration rate of an insurance program, i.e. more 30 

protection is offered by the private sector and the risk is transferred to the private sector (Glauber, 2004).  Thus, 31 

development and application of effective financial instruments for risk transfer is important. 32 

Other than classical (re-)insurance solutions, parametric insurance solutions have been developed for test 33 

cases in areas of corn yield (Sun et al., 2014) and livestock (Ye et al., 2017) for Southeast Asia and China in recent 34 
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years.  Swiss Reinsurance Company Ltd. (Swiss Re) insured several municipal governments in Guangdong 35 

Province, China, through parametric insurance solution (Lemcke, 2017).  Parametric insurance requires no 36 

physical damage assessment after an event.  As soon as a certain threshold (i.e. trigger point) is exceeded, the 37 

insured party receives the agreed compensation from the insurer.  Thus it has low administrative cost and quick 38 

disbursement.  However, it is a challenge to determine a robust trigger point.  It is because it would require a 39 

reliable typhoon hazard assessment for the region of interest.  A current common approach is to generate a large 40 

typhoon event set (e.g. equivalent to 7,000 years of real world data) based on historical track data using stochastic 41 

approach (e.g. Vickery et al., 2000; Emanuel, 2006; Emanuel et al., 2006; Rumpf et al., 2007, 2009; Lee et al., 42 

2018; Jing and Lin, 2020).  There are two potential downsides with the stochastic approach: (i) such typhoon 43 

event set would be biased toward the past events, and the frequency-intensity distribution of the event set might 44 

not be the same as the underlying frequency-intensity distribution, and (ii) the storms in the typhoon event set 45 

which are created by stochastic approach are not necessarily physically consistent.  As just surface footprints are 46 

stochastically modelled from existing tracks, there is no check whether those stochastically modelled events are 47 

physically possible and how they could be realised in a fully dynamical consistent view, i.e. fulfilling all known 48 

physical relations and derived constraints by the means of physical laws.  Consequently, the amount of unrealistic 49 

physical properties due to the oversimplified stochastic simulation is unknown and laws of physical interactions 50 

are potentially ignored.  Consequently, the trigger point derived from the common approach may not be optimal.  51 

This means insurees could be either over- or under-compensated by the insurer. 52 

 A method to increase number of extreme weather events is to make use of ensemble prediction system 53 

(EPS).  Osinski et al. (2016) used European Centre for Medium-Range Weather Forecasts (ECMWF) EPS to build 54 

an event set of European windstorms.  Osinski et al. (2016) pointed out there are two types of storm events 55 

produced by EPS: (i) modified EPS storm (MEPS), and (ii) pure EPS storm (PEPS).  MEPSs are storms with 56 

modifications in the EPS which have real-world counterpart.  PEPSs are storms in the EPS which have no real-57 

world counterpart, i.e. unrealised.  PEPSs are independent events and the number of PEPSs increases as the lead 58 

time increase until the model has no memory of the initial conditions.  Thus one can form an event set of extreme 59 

weather event by using TC related PEPSs.  Osinski et al. (2016) demonstrated that reliable statistics of storms 60 

under the observed climate conditions can be produced based on EPS forecasts. 61 

 Building upon the results of Osinski et al. (2016), a new approach to construct a large data volume, 62 

physically consistent TC event set is presented in this study.  This event set is constructed by applying an impact-63 

oriented windstorm tracking algorithm (WiTRACK; e.g. Leckebusch et al., 2008) to a multi-model global 64 

operational ensemble forecast data archive, the THORPEX Interactive Grand Global Ensemble (TIGGE) 65 

(Bougeault et al., 2010; Swinbank et al., 2015).  The data volume of TIGGE is about 40,000 to 50,000 years.  The 66 

event set consists of all non-realised TC events which were forecasted by EPS of different centres, this event set 67 

is referred to as the TIGGE PEPS (TPEPS) event set.  In this study, we show the TPEPS event set has much higher 68 

information content: more TC events and more extremely high impact TC events than historical or reanalysis-69 

based TC event set.  The TPEPS event set can be used to produce a robust TC hazard assessment and to determine 70 

a robust trigger point for parametric typhoon insurance. 71 

 In this paper, we first present a computationally simple, inexpensive and efficient method to construct a 72 

physically consistent, high information content TC event set using only the 6-hourly surface wind speed field of 73 
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EPS forecast model outputs.  Then we analyse the characteristics of the TPEPS event set.  Validation of the new 74 

method is done by comparing with the event set which is constructed using reanalysis data.  The added values of 75 

this new approach are also discussed and presented.  The paper is organised as follows: data sets which are used 76 

in this study are described in Section 2.  Section 3 outlined the method that has been used to construct the TPEPS 77 

event set.  Results and discussions including validation and investigate the characteristic of the TPEPS event set 78 

are presented in Section 4.  A summary and conclusions can be found in Section 5.  79 

 80 

2 Data 81 

6-hourly instantaneous 10-m wind speed data in different data archives mentioned below are used in this study 82 

because it is highly related to TC wind damages.  The domain of this study covers the Western North Pacific 83 

(WNP), east and south-east Asia spanning from 90 E to 180 E and 0 N to 70 N.  The Japanese 55-year 84 

Reanalysis (JRA-55) (Kobayashi et al., 2015) from 1979 until 2017 (resolution of 1.25×1.25) is used for 85 

validation of the TPEPS event set.  JRA-55 (1979-2014) is also used in parameter selection in TC identification 86 

algorithm, construction of Logistic Regression Classifier (LRC) (Sect. 3.2.2), and the data in 2015-2017 are used 87 

for validation of LRC.  ERA-Interim (ERA-I) (Dee et al., 2011) is also used in the construction of LRC.   88 

The TIGGE data archive (Bougeault et al., 2010; Swinbank et al., 2015) is used in the construction of 89 

the PEPS TC event set.  The TIGGE data archive has been used extensively in the study of TC activity forecast 90 

(e.g. Vitart et al., 2012; Belanger et al., 2012; Halperin et al., 2013; Majumdar and Torn, 2014; Leonardo and 91 

Colle, 2017; Luitel et al., 2018).  TIGGE data archive consists of ~8-15-day ensemble forecast data from 10 92 

numerical weather prediction centres with about 11-50 members each.  In this study, only perturbed forecast 93 

outputs of EPS from selected centres are used and they are CMA, ECMWF, Japanese Meteorological Agency 94 

(JMA), and National Centers for Environmental Prediction (NCEP) (cf. Table 1).  These four data sets are chosen 95 

because they are the state-of-the-art NWP models, which is used by four leading synoptic weather forecast centres, 96 

and they are the most complete dataset in the archive for the study period 2008-2017.  Model configurations and 97 

model updates are documented online at https://confluence.ecmwf.int/display/TIGGE/Models.  ECMWF EPS is 98 

a variable resolution EPS, i.e. days 1-10 were run at a higher resolution than days 11-15.  For computational 99 

efficiency, ECMWF EPS outputs are regridded into a lower resolution grid of 0.5625 × 0.5625.  The resolution 100 

of the selected data sets ranges from 0.5625×0.5625 to 1.25×1.25.  Forecast lead time of each forecast outputs 101 

ranges from 216 to 384 hours.  Only forecast outputs, which are initialised during the main typhoon season, i.e. 102 

15 May-30 November, are considered.  The resultant TPEPS TC event set has data equivalent to more than 10,000 103 

years of TC model data of the current climate state. 104 

Many studies have evaluated the performance of these EPSs in forecasting TC activities in various ocean 105 

basins.  In general, EPSs underestimate TC intensity especially for coarse resolution models (Hamill et al., 106 

2010; Magnusson et al., 2014). TC track and genesis forecast error exists in EPS and these errors increase as lead 107 

time increases (Buckingham et al., 2010; Yamaguchi et al., 2015; Zhang et al., 2015; Xu et al., 2016).  While 108 

ECMWF EPS forecast would occasionally have abnormal TC track forecast errors (i.e. track forecast error that is 109 

extremely large) and might struggled with developing a warm core in the short range forecast (Majumdar and 110 

Torn, 2014; Xu et al., 2016), ECMWF EPS appears to have better performance in TC track forecast than other 111 
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EPSs (Yamaguchi et al., 2015; Zhang et al., 2015; Xu et al., 2016).  Yet, a full assessment of the respective skill 112 

in models is not in the scope of this study.  For the dedicated purpose of this study, an examination for biases in 113 

the underlying climatological features as provided by a time- and ensemble-aggregated view of the data set is 114 

presented in Sect. 4.1. 115 

The International Best Track Archive for Climate Stewardship (IBTrACS) v03r10 (Knapp et al., 2010) 116 

is used for validation and identification of TC events in reanalysis and TIGGE data archive.  It contains all of the 117 

available best track records from different centres around the globe up to year 2017.  Since only part of the best 118 

track records of year 2017 are archived in this version of IBTrACS, best track data from Joint Typhoon Warning 119 

Centre (JTWC) is used for year 2017.   120 

 121 

3 Methods 122 

3.1 Identification and characterisation of TC-related windstorms 123 

For identification and characterisation of TC-related windstorms, an impact-oriented tracking algorithm is used – 124 

WiTRACK (Leckebusch et al., 2008; Kruschke, 2015). Befort et al. (2020) adapted the algorithm to TCs and 125 

showed WiTRACK is well capable to identify high impact TC events in WNP, using coarse resolution reanalysis  126 

product, with comparable quality to more data intensive algorithms.  A brief description of the general procedure 127 

to track a windstorm using WiTRACK is as follows: (i) clusters with wind speed above the local threshold are 128 

identified for each of the 6-hourly time step of the input dataset, (ii) clusters with size smaller than a predefined 129 

threshold (minarea) are excluded, (iii) clusters identified in each 6-hourly time step are connected to a track using 130 

a nearest-neighbour criterion with consideration of the size of the cluster, and (iv) events with lifetime less than 8 131 

6-hourly time steps are removed.  Majority of the settings of WiTRACK are identical to Befort et al. (2020), 132 

including the use of local 98th percentile wind speed as local wind threshold, except in this study minarea is chosen 133 

to be 15,000 km2.  The 98th percentile wind speed is chosen because over 90% of loss events with losses above 134 

3,000 million RMB can be identified by WiTRACK as demonstrated by Befort et al. (2020).  The value for 135 

minarea is chosen based on a series of sensitivity studies for parameter selection.  The output of WiTRACK 136 

contains information about the characteristics of all identified windstorm events, including size of the windstorm 137 

at any given 6-hourly time step, the overall footprint of extreme wind associated with the windstorm events, and 138 

storm severity index (SSI; Leckebusch et al., 2008).  These information are used in the identification of TC-related 139 

pure EPS windstorm events (Sect. 3.2).  As discussed in Sect. 2, TC intensity is generally underestimated by EPS 140 

and model resolution is known to be a limiting factor (Bengtsson et al., 2007; Hamill et al., 2010; Magnusson et 141 

al., 2014).  One of the advantages of using WiTRACK is that it does not use raw wind speeds, instead, it uses 98th 142 

percentile relative exceedance for tracking.  This means that even if the simulation wind speed of TC is 143 

systematically weaker than historical observations, the 98th percentile climatological wind in the models should 144 

also be lower than the observed 98th percentile climatological wind.  A TC will still be tracked by WiTRACK as 145 

long as there exists a 98th percentile exceedance wind cluster.  Consequently, a bias due to resolution does not 146 

have significant impact on WiTRACK as the tracking algorithm serves as a bias correction in this sense (detailed 147 

discussion on the impact of weaker wind speed in model outputs on WiTRACK can be found in Osinski et al. 148 

(2016)).  Furthermore, it can be shown that, within the study area, the 98th percentile relative exceedance of the 149 
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4 models, which we used to construct the TPEPS TC event set, have similar behaviour (i.e. similar to Figure 2 of 150 

Osinski et al. (2016)).  Consequently, individual PEPS TC event set can be combined to form a large PEPS TC 151 

event set, i.e. TPEPS TC event set. 152 

3.2 Identifying TC-related pure EPS windstorm events 153 

WiTRACK identifies windstorm events of all kind, including MEPS TCs, PEPS TCs, MEPS extratropical 154 

cyclones and PEPS extratropical cyclones.  Therefore additional requirements are needed to identify typhoon-155 

related PEPS TC events.  Four post-processing procedures are used: (i) Geographic Filter (GF), (ii) Logistic 156 

Regression Classifier (LRC), (iii) MEPS TC Identifier (MTI), and (iv) Detection at Initialisation Filter (DIF). 157 

3.2.1 Geographic Filter (GF) 158 

GF was first introduced by Befort et al. (2020).  It aims to remove non-TC-related windstorms, e.g. extratropical 159 

cyclones, cold surge outbreaks during the winter monsoon, and equatorial disturbances, from the event set by 160 

excluding windstorm events which solely identified north of 26 N and east of 100 E, and latitudinal position 161 

exclusively south of 10 N.  Befort et al. (2020) found this filter can reduce the false alarm rate (i.e. the ratio 162 

between number of identified non-TC related windstorms and total number of detected windstorms) of TC 163 

identification in JRA-55. 164 

3.2.2 Logistic Regression Classifier (LRC) 165 

In order to reduce computational cost and increase computational efficiency, the classical methods to determine 166 

whether the atmospheric disturbance is a TC or non-TC via cold/warm core determination (e.g. Hart, 167 

2003; Strachan et al., 2013) are not used because these methods require multiple variable fields which increase 168 

computational cost significantly.  Instead, a statistical learning approach, logistic regression classifier (LRC), is 169 

used to determine whether the windstorm event is related to a TC or not.  Details and background information of 170 

LRC can be found in Hastie et al. (2009) and the caret package in R is used for LRC training (Kuhn et al., 2018; 171 

available online at https://github.com/topepo/caret/).  LRC is trained using the track characteristics of the event in 172 

the JRA-55 and ERA-Interim event set (1979-2014) as explanatory variables (Table 2).  This combination of 173 

training set is chosen based on preliminary studies of constructing an optimal classifier using different 174 

combination of training set.  In order to avoid issues that are associated with collinearity, a stepwise Variance 175 

Inflation Factor (VIF) selection method is used to identify independent variables.  Variables with VIF value larger 176 

than 5 are excluded.  17 variables have been chosen to use in the construction of LRC (Table 3).  Variables that 177 

relate to changes in storm position, lifetime of a storm, and mean wind field structure appear to be the most 178 

important variables in the LRC.  This is expected as the typical trajectory, duration, and structure of TCs and other 179 

windstorms are very different.  Validation using JRA-55 event set (2015-2017), which has 49 TC events and 47 180 

non-TC events, have shown that the accuracy of the LRC is about 90% with low rate of false positives and false 181 

negatives. 182 

3.2.3 MEPS TC Identifier (MTI) 183 

Since there are many replicated events of forecasted historical TCs (i.e. MEPS) in the operational forecast archive, 184 

it is necessary to remove these events from our event set to avoid biases toward historical events.  Instead of using 185 
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the criteria suggested by Osinski et al. (2016), a set of strict criteria (MTI) is used in this study.  This can ensure 186 

the statistics and climatology of TPEPS event set is not biased toward historical events.  The MTI eliminates 187 

forecast of MPES TC events where the forecasts of those MPES TCs were initialised (i) before, and (ii) after the 188 

time of MPES TC genesis (hereinafter type 1 and type 2 forecast events respectively).  A similarity index (SI) (Eq. 189 

1) is used to eliminate type 1 forecast events: 190 

𝑑𝑖 = {
𝑑thres − 𝑑 𝑑 < 𝑑thres

0 𝑑 ≥ 𝑑thres
,         (1a) 191 

𝑆𝐼 =
∑ 𝑑𝑖

𝑡overlap
𝑖

𝑑thres × 𝑡overlap
,          (1b) 192 

where d is the great circle distance between position of historical TC and position of TIGGE TC at the overlap 193 

time step i, dthres is the maximum tolerance of d, toverlap is the number of overlap time steps in which both historical 194 

TC and TIGGE TC existed and it must be larger than 4.    Events with SI larger than SIthres are considered as MPES 195 

TC events. A series of sensitivity study have been done for determining the optimal choice of parameters (not 196 

shown) and the most optimal setting is dthres=900 km and SIthres = 0.1.  Type 2 forecast events are found if the 197 

separation distance between the position of historical TC and the TIGGE TC at any point of their overlap time is 198 

less than 400 km.  This threshold is determined by the minimum separation between historical TCs and TC in 199 

JRA-55 event set.  200 

3.2.4 Detection at Initialisation Filter (DIF) 201 

Any events that are detected at the time of model initialisation are removed following Osinski et al. (2016).  It is 202 

because these events are likely to be related to pre-existing disturbances or structures that leads to their 203 

development.  The removal of these events ensures the TPEPS event set is independent of any pre-existing weather 204 

patterns. 205 

3.3 Adjustment procedure 206 

More than one windstorm event could be found within a close proximity of each other over the WNP.  Since the 207 

clustering algorithm in WiTRACK does not have a maximum size restriction on the cluster, multiple windstorm 208 

events in close proximity could be identified as one windstorm event by WiTRACK.  An additional procedure is 209 

used to separate these merged windstorm events.  This is an iterative procedure which would check whether all 210 

of the grid boxes at each 6-hourly time step of the windstorm are within 1,000 km radius from the centre of the 211 

windstorm cluster.  If any of the event grid boxes are outside the 1,000 km radius, it will first remove these grid 212 

boxes and recalculate the centre of event cluster.  This procedure is repeated until there is no change in the centre 213 

of cluster.  This procedure addresses windstorm event with unrealistically large impact area and event SSI (ESSI).  214 

The event SSI (ESSI) is defined as  215 

ESSI = ∑ ∑ [(max (0,
𝑣𝑘,𝑡

𝑣98,𝑘
− 1))

3

× 𝐴𝑘]𝐾
𝑘

𝑇
𝑡         (2) 216 

where vk,t is the wind speed at grid box k and time step t,  v98,k is the climatological 98th percentile wind speed at 217 

grid box k, Ak is the area-dependent weight.  Summation is done over all time steps and all grid boxes affected by 218 
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the windstorm.  The threshold radius is chosen to be 1,000 km because typical size of TC wind field is smaller 219 

than a circle of 1,000 km radius (Lee et al., 2010; Chan and Chan, 2011). 220 

4 Results and discussions 221 

4.1 Statistics and Validations 222 

In this section, we present validation of our TPEPS TC event set by comparing the climatological features as 223 

provided by a time- and ensemble-aggregated view of the TPEPS TC event set to the historical/reanalysis based 224 

event set.  A historical TC is said to be detected in a forecast model if there exists a TC counterpart in the forecast 225 

model, which is similar to the historical TC as identified by the MTI (c.f. Sect. 3.2.3).  The detection rates of 226 

historical TCs which are detected in different forecast outputs, i.e. CMA, ECMWF, JMA, and NCEP, are 91.2%, 227 

94.7%, 89.4%, and 90.7%, respectively, whereas only 54.2% of historical TCs in the period of 2008-2017 are 228 

detected in JRA-55 (Table 4).  Since WiTRACK is a wind threshold exceedance based detection scheme and the 229 

98th percentile wind speed value of JRA-55 within the tropical WNP is similar to these selected TIGGE data (Fig. 230 

1), this implies JRA-55 underestimates the wind speed of wind field of TCs, which is in agreement with Murakami 231 

(2014).  This also shows these selected TIGGE outputs provide a better representation of the atmosphere.  Total 232 

515,712 TC related windstorm events are detected in the selected TIGGE data set.  ~38.5% of the all TPEPS 233 

events are PEPS TC events (Table 5).  Percentage of total TC windstorms as PEPS TCs can be treated as a proxy 234 

to quantify the forecast skill of the model.  For example, NCEP has 47.1% of TC windstorms as PEPS TCs 235 

whereas JMA has 26.5%.  This indicates the NCEP model generates more “wrong” forecast than JMA however 236 

these “wrong” forecasts are physically possible.  Yet, examining the forecast skill of models is not the focus of 237 

this study and the rest of the discussion focuses on the TPEPS TC event set. 238 

Figures 2 and 3 show the spatial pattern and temporal variability of the number of TC which are first 239 

detected for each day, respectively, of the TPEPS and JRA-55 event sets.  While individual model might have 240 

bias in certain spatial and temporal domain, for example the region with the highest track density of JMA is at the 241 

eastern WNP in Fig. 2d in comparison to other models, and NCEP failed to capture the peak activity prior 2012 242 

in Fig. 3, the overall patterns of the TPEPS event set match the JRA-55 event set.  This is expected because (i) 243 

TC formation depends on the environmental conditions and initial disturbance (Gray, 1977; Ritchie and Holland, 244 

1997; Nolan, 2007).  During the period of active TC season, environmental conditions over WNP are usually 245 

favourable for TC formation but often there is no suitable disturbance in the region.  Since EPS simulates the 246 

chaotic behaviour of the atmosphere, it would forecast disturbances which would be possible to form but not 247 

realised in the real atmosphere.  Hence PEPS TCs can be formed in those period of time over WNP. And (ii) the 248 

trajectory of TCs depends mainly on the large scale environmental flow of the region (Chan, 2010).  This implies 249 

PEPS TCs would also follow the typical trajectory of real TCs given that the large scale flow is correctly 250 

represented in the forecast models.  Thus, in general the spatial and temporal patterns of the TPEPS event set 251 

match the patterns of JRA-55 event set.  There are several possible reasons which lead to the differences in spatial 252 

pattern between TPEPS event set and JRA-55 event set. The eastward bias in the track density appears to be a 253 

common feature in many GCMs (e.g. Camargo et al., 2005; Bell et al., 2013; Roberts et al., 2020), this has also 254 

been observed in seasonal forecast output (Camp et al., 2015).  Finite simulation time has also contributed to this 255 

bias as TC that forms in the region east of 150 E would not have sufficient time to move into the western part of 256 
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WNP before the end of simulation time.  Differences in number of tracks could also contribute to the differences 257 

in spatial pattern as more diverse tracks would be captured in larger event set. 258 

Some TPEPS events appear in locations where no historical TC event is observed (Figs. 2c and 2f).  259 

While there is no historical TC event in some locations, this does not imply TC cannot occur in those regions.  260 

The historical data, which cover 39 years of observations, may not have enough samples to construct a distribution 261 

that can correctly represent the basic population (i.e. all possible TCs in the given climate).  For example, the 262 

occurrence of Tropical Storm Vamei that formed close to the equator (~1.4 N) does not satisfy the classical 263 

“necessary but insufficient” conditions of TC formation, which are identified by Gray (1977) based on historical 264 

observations.  This shows TC can appear in historically “TC-free” region.  Furthermore, from the statistical 265 

perspective, the JRA-55 event set can be viewed as a subset which is randomly selected from the TPEPS event 266 

set.  To provide more evidence to support this view, we have conducted bootstrap resampling on the TPEPS event 267 

set to obtain 10,000 sets of subsamples.  Each set of subsamples has 668 events to mimic the number of events in 268 

the JRA-55 event set.  Uncentred pattern correlation between the track density of the JRA-55 event set and the 269 

track density of each set of subsamples are calculated.  In order to focus on the relevant entries, if the values of 270 

track density of a grid box for a resampling set and the JRA-55 event set are both less than 1, such grid box is 271 

neglected in the pattern correlation calculation.  The mean, standard deviation, minimum and maximum of the 272 

uncentred pattern correlation of the 10,000 set of subsamples are 0.9380, 0.0107, 0.8961, and 0.9697, respectively.  273 

This suggests the spatial pattern of the JRA-55 event set is highly similar to some small random subsets of the 274 

TPEPS event set.  Thus, the JRA-55 event set can been seen as a subset which is randomly selected from the 275 

TPEPS event set.  On the other hand, it is not be possible to deduce the basic population (e.g. the TPEPS event 276 

set) from a small sample set (e.g. the JRA-55 event set).  Although the spatial distribution of the small set sample 277 

is similar to the subsamples of the basic population and thus usable as one possible realisation of the basic 278 

population, the small sample set does not contain all of the information of the underlying population.  Furthermore, 279 

the statistical estimate of extremes would also be different for the small sample set and the basic population.   280 

Some of the examples of TPEPS TC tracks and impact footprints are shown in Fig. 4.  The trajectory of 281 

these TPEPS TC tracks is indistinguishable to historical TC trajectories in WNP.  This shows these TPEPS TC 282 

events are realistic and physically possible events.  Figure 5 shows the climatological daily number distributions 283 

of TC first detection for TPEPS TC event set and JRA-55 event set.  Although the peak activities period of JMA 284 

is slightly lagged behind and the over- and under-estimation of the peak of activity for CMA and NCEP are 285 

observed, respectively, the seasonal cycle of TPEPS TC event set is well captured and this matches to the seasonal 286 

cycle of the JRA-55 event set.  This shows our new approach is capable to produce spatially and temporally 287 

realistic events. 288 

 In general, the temporal evolutions of the number of first storm detections of TPEPS event set during the 289 

integration time has an increasing trend in the short lead time followed by a roughly constant behaviour (Fig. 6).  290 

In short lead time (i.e. close to initialisation of forecast), the true state of the atmosphere is well simulated by 291 

forecast models, thus EPSs are likely to produce storms that actually occurred (i.e. MEPS storms) and less likely 292 

to produce PEPS storms (Osinski et al., 2016).  As lead time increases, more PEPS storms are produced due to 293 

increasing uncertainty of the state and the chaotic behaviour of the atmosphere in EPSs.  When EPS has no 294 

memory of the initialisation state of the atmosphere, the probability distribution of formation of PEPS TCs 295 

becomes a uniform distribution. 296 
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 The overall impact of any storm is related to the many factors for example lifetime of the storm, the size 297 

of the storm, and the intensity (or strength) of the storm (e.g. Vickery et al., 2000; Mori and Takemi, 2016; Kim 298 

and Lee, 2019).  Here we investigate whether there are systematic biases in the TPEPS TC event set which would 299 

affect these quantities.  The lifetime distribution of TPEPS TCs matches to the JRA-55 event set but proportionally 300 

overestimates for short-lived TCs and underestimates for long-lived TCs (Fig. 7a).  These differences are the 301 

consequence of the finite simulation time in forecast models.  If the same restriction (i.e. finite simulation time 302 

window) is applied to the JRA-55 TC event set (grey shaded areas in Fig. 7), the lifetime distribution of TPEPS 303 

TCs would be in good agreement to the JRA-55 TCs.  Similar conclusion can be reached in the comparison of the 304 

distribution of time required to reach lifetime maximum intensity (LMI) (Fig. 7b).  However, finite simulation 305 

time of EPSs cannot explain the difference in the distribution of impact area, which is the total area that has 306 

experienced TC-associated extreme wind (i.e. larger than local climatological 98th percentile wind speed), between 307 

TPEPS and JRA-55 event sets despite they have the same type of distribution (Fig. 7c).  The difference in the 308 

distributions of impact area maybe due to the fact that wind speed of the TC wind fields is underestimated in JRA-309 

55 as discussed above.  Consequently, many weaker TCs, which would have small impact areas, are not detected 310 

and thus they are not necessarily included in the JRA-55 TC event set.  311 

4.2 Robust TC hazard assessment 312 

To demonstrate the benefit of our approach, TC records in IBTrACS, JRA-55 TC event set, and TPEPS TC event 313 

set are stratified into intensity classes according to their lifetime maximum intensity (c.f. Table 6).  Since 314 

WiTRACK is an impact-oriented, wind speed percentile based tracking scheme which tracks TCs with potential 315 

impact (Befort et al., 2020), many of the low impact TCs (i.e. TCs in the Tropical Depression and Tropical Storm 316 

(TD&TS) category) are not detected and thus not included in the TPEPS TC event set.  Focusing onto the 317 

categories of high impact TC, i.e. Typhoon (TY), Very Strong Typhoon (VST), and Violent Typhoon (VTY), the 318 

TPEPS event set contains 302.14, 102.54, and 77.02 times more TY, VST, and VTY than the IBTrACS records, 319 

respectively.  This means our new approach can capture much more extremely high impact events such that a 320 

more robust analysis of extreme TC events can be done. 321 

 The key advantage of this new approach is that it constructs a physically consistent and high information 322 

content TC event set with good and realistic representation of the current climate state using a computationally 323 

inexpensive algorithm.  Since more physically consistent and physically possible TCs are included, more extreme 324 

events can be captured in the TPEPS event set.  Consequently, a robust TC hazard assessment can be obtained.  325 

Some of the examples are presented in this subsection. 326 

 Figure 8 shows the location of first detection of TCs with LMI at least typhoon strength, which made 327 

landfall within the given domain (105-180 E, 0-30 N) for TPEPS and JRA-55 TC event set.  The spatial pattern 328 

of the TPEPS TC event set (Fig. 8f) matches the spatial pattern of the JRA-55 TC event set.  The data in the JRA-329 

55 TC event set are sparse and it does not provide sufficient information about whether TCs, which made landfall 330 

in this region, are typically first identified in the WNP or in the South China Sea (SCS).  The TPEPS TC event 331 

set, on the other hand, provides a clearer picture and suggests events, which made landfall in this domain, are 332 

typically first identified in the SCS and western WNP.  This is consistent with the known climatology.  As TCs 333 
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within the SCS and western WNP usually follow the western and northwestern trajectory and subsequently made 334 

landfall over the Vietnam, south and southeast mainland China, Taiwan, and the Philippines.   335 

 Figure 9 shows the number of TC landfall events, which made landfall with at least typhoon strength, 336 

with the focus of southern and southeast mainland China, and Taiwan.  Much more landfall events have been 337 

captured by TPEPS TC event set (11449) than the JRA-55 TC event set (100).  The spatial distribution of TPEPS 338 

TCs is in good agreement with the JRA-55 TCs with uncentred pattern correlation of 0.8345.  TCs, which made 339 

landfall with at least typhoon strength, are more likely to made landfall along the coast of the southern Fujian 340 

Province and the eastern Guangdong Province than any other coastal area of South and Southeast mainland China.  341 

Furthermore, higher TC landfall frequency is observed on the side of islands (i.e. Hainan Island and Taiwan) 342 

which faces the open ocean than the other side of islands.  This is consistent with observations.  The TPEPS TC 343 

event set also provides information about the frequency of TC landfall at locations where no landfall events had 344 

observed in the JRA-55 TC event set, e.g. locations along the coastline of Guangdong Province.  Furthermore, the 345 

distribution of landfall intensity for TCs, which made landfall with at least typhoon strength, for the TPEPS TC 346 

event set is very similar to the JRA-55 TC event set (the null hypothesis, i.e. the distributions are the same, is not 347 

rejected at the 0.05 significance level of the two-sample Kolmogorov-Smirnov test). 348 

4.3 Application 349 

The TPEPS TC event set is constructed based on physical models, i.e. GCMs, which provide a good representation 350 

of the atmosphere of the real world.  The wind field associates to a TPEPS TC event is realistic and local effects, 351 

such as local topography, have been taken into account.  This implies the wind information of the TPEPS TC 352 

event set can be used for estimates return periods of local extreme wind events associated with typhoon with high 353 

confidence.  Figure 10 shows the number of TC-related 6-hourly extreme wind (i.e. wind speed higher than the 354 

local 98th percentile climatological wind speed) data entries in each of the grid box within Guangdong Province 355 

in the Southern China.  The JRA-55 TC event set can only construct a TC-related 6-hourly extreme distribution 356 

with ~25 (inland) and ~325 (coastal) data entries whereas such distribution can be constructed with at least 500 357 

to over 28,000 data entries using the TPEPS TC event set.  This implies the estimated return period using the 358 

TPEPS TC event set would be more reliable than using the JRA-55 TC event set and similarly the observation 359 

data alone.  This is of importance from the DRR perspective as wind speed values are used in practice to decide 360 

on payments out of parametric insurance products (Swiss Re, 2016).  Consequently, reliable wind-based trigger 361 

points of typhoon parametric insurance can be determined.  This will further improve the suitability and flexibility 362 

of parametric insurance for DRR applications.  Ultimately, this will improve the speed of post-disaster recovery.  363 

A demonstration for such application is given below. 364 

Four surface observation stations are chosen for this demonstration, they are Baiyun International Airport 365 

(BAIYUN INTL; 23.392 N, 113.299 E; from 1945-2019), Baoan International Airport (BAOAN INTL; 22.639 366 

N, 113.811 E; from 1957-2019), Shanwei (22.783 N, 115.367 E; from 1956-2019), and Shangchuan Dao 367 

(21.733 N, 112.767 E; from 1959-2019).  For each selected surface station, the grid box of each EPS that 368 

corresponds to the surface station is identified (Fig.11).  Resolution of models is known to be a factor to limit the 369 

wind speed of TCs (Bengtsson et al., 2007).  This means for the same TC, the associated wind speed would be 370 

lower in low resolution model and higher for high resolution model.  In order to utilise the extreme wind 371 
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information from EPSs with different resolution, the cube of 98th percentile relative exceedance of wind speed 372 

(EXCE) is used.  Since EXCE is a ratio, it is a resolution independent quantity and the tail behaviours of the 373 

EXCE distribution for these models are similar, which is in agreement with Osinski et al. (2016).  Information 374 

from different models can be combined using EXCE.  EXCE entries, which correspond to TC in the TPEPS TC 375 

event set, are extracted for those grid boxes.  This forms a set of “observations” of the impacts of high impact TCs 376 

at those grid boxes in the model space.  We assume all of the EXCE entries are independent and identically 377 

distributed (iid) random variables.  This is a reasonable assumption, due to the fast moving nature of TCs, diverse 378 

possible direction of the movement of wind field, and rapid decay of wind field over land for a 6-hour interval, 379 

local observations often have only one extreme wind observation for a TC event.  In order to translate this 380 

information to the physical world, quantile mapping is used for mapping EXCE to the observed surface wind 381 

speed which exceeded local climatological 98th percentile.  Historical in situ surface wind data are obtained from 382 

the Integrated Surface Database (ISD) (Smith et al., 2011).  Quantile mapping is done using the R package qmap 383 

(Gudmundsson et al., 2012; Gudmundsson, 2016).  Due to different geographic configuration and climatology of 384 

each in situ observation station, different quantile mapping strategies have been employed.  The optimal strategy 385 

is chosen based on minimisation of the root-mean-square-error (RMSE) of the quantile mapping output (see 386 

Gudmundsson (2016) for more details).  Using above information, the return period-return level plot (using 387 

threshold exceedance approach) is constructed using the R package extRemes (Gilleland and Katz, 2016).  For 388 

detail discussion of calculation of return period and return level, readers are referred to Elsner et al. (2006), Jagger 389 

and Elsner (2006), and Gilleland and Katz (2016).  Figure 12 shows the return period-return level plot of four 390 

selected stations which are derived using our proposed approach with the TPEPS TC event set and using in situ 391 

observational data.  The width of the 95% confidence interval which is calculated using our proposed approach is 392 

much sharper than the 95% confidence interval which is calculated using in situ observational data.  In other 393 

words, the uncertainty can be reduced by using the TPEPS TC event set because more observations are used in 394 

the calculation.  395 

The above application of the TPEPS TC event set can provide crucial information for the DRR 396 

community.  As discussed in the introduction, typhoon parametric insurance can be an effective financial 397 

instrument for typhoon risk transfer.  However, an effective typhoon parametric insurance requires a robust trigger 398 

point, which is determined by the meteorological information, e.g. wind speed.  If the trigger point is too high, 399 

disbursements would not be made even if a catastrophic meteorological disaster has occurred, i.e. under-400 

compensation; If the trigger point is too low, disbursements would be made even if no catastrophic event has 401 

occurred.  Using the TPEPS TC event set, the estimated return period has smaller uncertainty than the estimation 402 

made by in situ observational data, such that an optimal trigger point for typhoon parametric insurance can be 403 

determined. 404 

5 Summary and Conclusions 405 

In this study, a new and efficient method, which addresses the critical issue in typhoon risk assessments – a robust 406 

methodology to determine the real frequency of TC occurrence with high socioeconomic impact potential by 407 

constructing a physically consistent TC event set, is presented.  This is achieved by applying an objective impact-408 

oriented windstorm identification algorithm – WiTRACK, on 6-hourly 10-m horizontal wind field of selected 409 

ensemble data set from a multi-centre grand ensemble data archive – TIGGE.  While WiTRACK identifies major 410 
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events based on one meteorological variable only, it is capable of identifying events of general loss relevance as 411 

demonstrated by Befort et al. (2020).  This implies the event set generated by our approach is in principle suitable 412 

for general TC risk assessments, as well as for an assessment of the hazards frequency-intensity distribution 413 

specifically.  Several sensitivity tests with different parameter settings are done using JRA-55 data to obtain the 414 

optimal setup for WiTRACK.  Since WiTRACK can identify all types of windstorm events, four post-processing 415 

procedures are used to identify PEPS TCs, these procedures include a geographic filter and logistics regression 416 

classifier.  The TPEPS event set has the climatological spatial and temporal pattern of TCs which match to the 417 

historical climatological pattern of TC in WNP.  More than 302, 102, and 77 times of TY, VSTY, and VTY, 418 

respectively, are found in the TPEPS TC event set in comparison to the IBTrACS record.  A robust representation 419 

of extreme TC events in WNP can be obtained using the TPEPS TC event set because of the high number of 420 

physically consistent extreme events.  Consequently, a robust hazard assessment of land-affecting TCs in the 421 

WNP can be produced using the event set constructed by this new method.  Furthermore, the return-period of 422 

typhoon-related extreme wind events e.g. Typhoon Haiyan (2013) and Typhoon Mangkhut (2018), can be 423 

determined with sharper confidence intervals in a similar manner as Walz and Leckebusch (2019).  As a result, 424 

policymakers and related stakeholders can improve the current typhoon related disaster reduction and mitigation 425 

strategy.  Furthermore, a robust trigger point for parametric typhoon hazard insurance can be determined using 426 

our proposed approach by reducing the uncertainty of estimated return period of a meteorological extreme event.  427 

This will improve the suitability and flexibility of parametric insurance for DRR applications.  Consequently, this 428 

will improve the speed of post-disaster recovery. 429 

The TC event set constructed using the method described in this study has several unique properties in 430 

comparison to the TC event set constructed by other methods (Vickery et al., 2000; Emanuel et al., 2006; Rumpf 431 

et al., 2009; Kim and Lee, 2019):  432 

(i) Many methods in the literature (e.g. Emanuel et al., 2006; Rumpf et al., 2009) use historical best track data to 433 

construct a spatial probability function that determine the genesis location of synthetic TCs and a parametric track 434 

model, that matches to the historical observations, to determine the movement of synthetic TCs.  Consequently, 435 

these synthetic tracks are highly likely to be identified in the region where TCs were identified from the historical 436 

observations and highly rare in the region where TCs were never identified but physically possible.  In contrast, 437 

TPEPS TCs are detected at any physically possible locations over the WNP.  This means, besides the events, 438 

which are similar to the historical observations, the TPEPS TC event set also includes events that occur in the 439 

region where no historical event was observed.  Consequently, the TPEPS TC event set provides an important and 440 

unique advantage for typhoon hazard assessment.  In comparison to other methods to generate large TC event sets, 441 

our specific approach is limited mainly by the source of data used.  The current TC event set constructed using 442 

medium range forecasts archived in TIGGE, is strictly spoken representative only for the current climate state. 443 

Any longer-term climate variability (e.g. multi-decadal fluctuations like the Pacific Decadal Oscillation (PDO)) 444 

and their impacts on any TC frequency-intensity distribution are not accounted for in this setting. Nevertheless, 445 

the presented approach would be equally applicable to data sets representing that kind of variability on longer 446 

time scales (e.g. decadal predictions or transient climate model simulations). 447 

(ii) In the literature, the structure of wind field of synthetic TCs follows a predefined, analytical model, e.g. 448 

parametric vortex structure developed by Holland (1980) or modified Rankine vortex.  For the TPEPS TC event 449 
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set, complex physical processes in GCMs determine the structure of wind field of TCs, therefore the structure of 450 

wind field of TCs is realistic.  This is an advantage for robust wind hazard assessment of land-affecting TCs 451 

because the resultant wind field includes the complex atmosphere-land interaction which depends on the local 452 

topography.  Consequently, the TPEPS TC event set can be used as addition observations for the estimation of 453 

return period of TC-related extreme wind as demonstrated above. 454 

(iii) Many of the TC risk assessments are done based on wind risk, and/or wind-induced coastal risk but not TC-455 

related precipitation risk (Vickery et al., 2000; Emanuel et al., 2006; Rumpf et al., 2009; Mendelsohn et al., 456 

2012; Mori and Takemi, 2016; Marsooli et al., 2019; Kim and Lee, 2019).  A reason is that historical damages 457 

due to TC-related wind are much better documented than TC-related precipitation damages (Emanuel et al., 2006).  458 

However, damages due to TC-related precipitation, e.g. flooding, should not be ignored.  Based on the pay-out of 459 

the National Flood Insurance Program of the United States for the flood event of Hurricane Ike (2008), Smith and 460 

Katz (2013) estimated the insured flood damage as 5.4 billion USD.  Furthermore, some of the high impact TCs 461 

in WNP have typical typhoon intensity but the amount of rainfall is extremely high, e.g. Typhoon Morakot (2009) 462 

(Wu, 2012).  Since precipitation is one of the output variables of these medium range ensemble forecasts, 463 

precipitation-related impact can be examine by integrating the realistic precipitation information from forecast 464 

outputs into the TPEPS TC event set.  Furthermore a spatial distribution of TC related hazard, e.g. extreme wind 465 

and extreme precipitation, of the TPEPS TC event set can be constructed using the notion of TC hazard footprint 466 

(Chen et al., 2018).  Consequently, a more thorough typhoon risk assessment can be achieved.  This is currently 467 

under our investigation. 468 

In conclusion, the event set that we have constructed contains all necessary information for applications 469 

in the DRR context.  This event set can improve the hazard component in an overall assessment of integrated TC 470 

risks (e.g. Sajjad and Chan, 2019) by providing a robust probability of occurrence of extreme TC event.  471 

Furthermore, using this event set, a robust trigger points of parametric insurance for the local hazard can be 472 

determined.  Once such trigger points for the local hazard are available (including their uncertainty), the targeted 473 

application of parametric insurance products in disaster relief application is possible.  Especially, when it comes 474 

to the evaluation of the basis risk.  This study is merely the first step toward a statistically robust, full physical 475 

model based TC hazard assessment.  The impact of TC-related extreme precipitation and storm surges can be 476 

integrated following the approach developed by Befort et al. (2015). 477 

 478 

 479 
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Tables 685 

Centre 
Number of 

members 

Runs per day 
Resolution 

Implementation 

date 

Forecast  

lead time (hr) 

CMA 14 
2 (00, 12 UTC) 

0.5625×0.5625 
20070515 240 

2 (00, 12 UTC) 20140805 360 

ECMWF 50 2 (00, 12 UTC) 0.5625×0.5625 20061001 360 

JMA 

50 1 (12 UTC) 

1.25 × 1.25 

20060301 216 

50 1 (12 UTC) 20130328 264 

26 2 (0, 12 UTC) 20140226 264 

NCEP 20 4 (0, 6, 12, 18 UTC) 1.0 × 1.0 20070327 384 

 686 

Table 1. Information of selected data sources from TIGGE archive. 687 
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Variables 

Time average of area of cluster 

Time average of longitude of cluster centre 

Time average of latitude of cluster centre 

Time average of maximum extent of cluster 

Time average of mean wind speed 

Time average of standard deviation of wind speed 

Time average of minimum wind speed 

Time average of maximum wind speed 

Time average of longitude of location of maximum wind 

Time average of latitude of location of maximum wind 

Time average of storm severity index (SSI) 

Standard deviation of time series of area of cluster 

Standard deviation of time series of longitude of cluster centre 

Standard deviation of time series of latitude of cluster centre 

Standard deviation of time series of maximum extent of cluster 

Standard deviation of time series of mean wind speed  

Standard deviation of time series of standard deviation of wind speed 

Standard deviation of time series of minimum wind speed 

Standard deviation of time series of maximum wind speed 

Standard deviation of time series of longitude of location of maximum wind 

Standard deviation of time series of latitude of location of maximum wind 

Standard deviation of time series of storm severity index 

Number of 6-hourly time steps 

Area of windstorm event footprint 

Event SSI 

Difference of latitude between the initial and final locations 

Difference of longitude between the initial and final locations 

Total distance travelled 

 689 

Table 2. List of explanatory variables which are initially considered in the LRC model. 690 
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Variable t-value 

Difference of latitude between the initial and final locations 12.5707 

Difference of longitude between the initial and final locations 9.9983 

Time average of standard deviation of wind speed 9.3709 

Time average of minimum wind speed 8.5015 

Time average of maximum extent of cluster 5.1416 

Number of 6-hourly time steps 4.8719 

Standard deviation of times series of latitude of location of maximum wind 3.4302 

Standard deviation of times series of mean wind speed 2.3640 

Standard deviation of times series of area of cluster 2.2447 

Event SSI 1.9621 

Standard deviation of times series of maximum extent of cluster 1.7922 

Time average of latitude of cluster centre 1.4493 

Standard deviation of time series of SSI 0.9980 

Standard deviation of times series of longitude of location of maximum wind 0.9237 

Standard deviation of times series of standard deviation of wind speed 0.7268 

Time average of longitude of location of maximum wind 0.4204 

Standard deviation of time series of minimum wind speed 0.2613 

 692 

Table 3. List of explanatory variables and their associated t-value which are used in the construction of LRC. 693 
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Year IBTrACS CMA ECMWF JMA NCEP JRA-55 

2008 21 19 19 19 17 10 

2009 22 20 20 20 14 10 

2010 13 13 13 13 13 6 

2011 21 19 20 17 19 14 

2012 24 23 23 23 23 16 

2013 29 28 28 27 28 15 

2014 19 12 17 17 17 13 

2015 22 20 21 20 21 17 

2016 26 25 25 24 25 13 

2017 30 28 29 23 29 9 

Total 227 207 215 203 206 123 

Detection 

Rate 
 91.2% 94.7% 89.4% 90.7% 54.2% 

 695 

Table 4. (From the left) Annual number of historical TCs in IBTrACS (second column); Annual number of 696 

historical TCs detected in the respective forecast models (third to sixth columns); Annual number of historical 697 

TCs detected in JRA-55 (seventh column). 698 
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Centres 
Number of TC 

windstorms 

Number of 

Pure EPS TCs 

% of TC 

windstorms as pure 

EPS TCs 

CMA 39535 13322 33.7 

ECMWF 215737 74091 34.3 

JMA 56537 14964 26.5 

NCEP 203903 96052 47.1 

 700 

Table 5. Statistics of TCs in the selected TIGGE data. 701 
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Intensity Class IBTrACS JRA-55 TPEPS 

TD&TS 252 32 27643 

STS 208 126 70759 

TY 231 254 69794 

VSTY 231 193 23686 

VTY 85 63 6547 

Total 1007 668 198429 

 703 

Table 6.  Number of TC records in IBTrACS, JRA-55 TC event set, and TPEPS TC event set, for different 704 

intensity classes.  The classes are Tropical Depression (TD) and Tropical Storm (TS), Severe Tropical Storm 705 

(STS), Typhoon (TY), Very Strong Typhoon (VST), and Violent Typhoon (VTY).  The intensity classes for 706 

IBTrACS are defined according to WMO (2019).  The intensity classes for JRA-55 TC and TPEPS TC are derived 707 

from the WMO (2019) intensity classes by using quantile mapping of intensity records of JRA-55 TC and 708 

IBTrACS records.    709 
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Figures 710 

 711 

Figure 1. Local 98th percentile wind speed for each grid box in the region for TIGGE: (a) CMA, (b) ECMWF, (d) 712 

JMA, (e) NCEP, and (c) JRA-55. 713 
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 715 

Figure 2. Ranked feature scaled track density (%) of different data sets: (a) CMA, (b) ECMWF, (c) JRA-55, (d) 716 

JMA, (e) NCEP, and (f) TIGGE total.  Number of TCs in the corresponding event set is stated on the top right of 717 

each panel. 718 
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 720 

Figure 3. Feature scaled time series of number of TCs which are first identified in each day in the TPEPS TC 721 

event set (CMA: red, ECMWF: blue, JMA: green, NCEP: purple) and JRA-55 event set (black).  For visual 722 

convenience, the time series of CMA, ECMWF, JMA, and NCPE are shifted by 1, 2, 3, 4, respectively. 723 
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 725 

Figure 4. Some of the PEPS TC impact footprint (colour contours) and tracks (black line within the colour 726 

contours) of the TPEPS TC event sets.  The colour contours show the cumulative SSI of the PEPS TCs over their 727 

respective lifetime at individual grid box.  ESSI of each PEPS TC is shown on the top right of each panel. 728 
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 730 

Figure 5. Climatological daily number distribution of TC first detection for TPEPS TC event set (CMA: red, 731 

ECMWF: blue, JMA: green, NCEP: purple) and JRA-55 event set (black), i.e. the probability of TC being first 732 

detected at a given day in the model.  30-day moving average is used in order to remove high frequency signal. 733 
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 735 

Figure 6. Temporal evolution of frequency of first storm detections of TPEPS event set (CMA: red, ECMWF: 736 

blue, JMA: green, NCEP: purple).    737 
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 738 

Figure 7. The distribution of (a) lifetime, (b) time required to reach LMI, and (c) impact area of TCs in TPEPS 739 

TC event set (red lines) and JRA-55 event set (black line).  The grey area indicates the spread of the lifetime 740 

distribution of JRA-55 if finite simulation windows are applied to the JRA-55 event set. 741 
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 743 

 744 

Figure 8. The spatial distribution of location of first detection of TCs (with LMI at least typhoon strength) which 745 

made landfall within the domain 105-180 E, 0-30 N for TPEPS TC event set and JRA-55 event set. 746 
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 748 

Figure 9. Spatial distribution of number of landfall events (landfall with at least typhoon strength) for TPEPS TC 749 

event sets and JRA-55 event set (colours).  The total number of landfall events in each panel is shown on the top 750 

right of each panel. 751 
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 753 

Figure 10. Number of TC-related 6-hourly data entries in each of the grid box in Guangdong Province, China, 754 

for TPEPS TC event sets and JRA-55 event set. 755 
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 757 

Figure 11.  Locations of the selected surface observation stations (red dots) in Guangdong, China with 758 

corresponding grid boxes from 4 EPS outputs: CMA (green), ECMWF (blue), JMA (cyan), and NCEP (magenta). 759 

Information of prefectural boundaries is obtained from GADM version 3.6 Level 2 (available at 760 

https://gadm.org/data.html)  761 
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 763 

Figure 12.  Return period-return level plot for 4 selected surface observation stations: Baiyun International Airport, 764 

Baoan International Airport, Shanwei, and Shangchuan Dao.  Black lines indicate the best estimate of return 765 

period-return level.  Blue lines indicate the 95% confidence interval calculated using TIGGE PEPS event set.  766 

Grey lines indicate the 95% confidence interval calculated using in situ observations. 767 


