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Reply	to	Referees	
	
We	would	like	to	thank	the	Referee	1	for	the	comments,	recommendation,	and	valuable	
suggestions.	In	this	document,	we	reply	to	each	of	the	comments.	
(Laa-bb	refers	to	line	numbers	aa	to	bb	and	Px	refers	to	page	number	x	in	the	revised	
manuscript).	
	
Referee	1	
No	 Comment	 Reply	
1	 General	Comments:	The	manuscript	

submitted	showed	the	efforts	devoted	to	
predict	drought	impacts	with	lead-times	up	
to	7	months	ahead,	using	the	Logistic	
Regression	and	Random	Forest	machine	
learning	approaches.	The	idea	of	relating	
the	drought	indices	to	the	drought	impacts	
is	relatively	new	and	relevant	to	the	
journal’s	scope	of	understanding	the	
natural	hazards	and	their	consequences.	

We	would	like	to	thank	the	referee	for	the	
acknowledgement	of	the	novelty	of	our	
paper.	

2	 The	machine	learning	approaches	adopted	
are	relatively	old-fashioned.	It	would	be	
nice	if	the	authors	can	provide	better	
justification	for	the	selected	approaches	
over	other	methods	available.	Besides,	
there	are	some	queries	on	some	statement	
made	by	the	authors	to	be	justified.	

We	do	agree	with	the	referee	that	the	Logistic	
Regression	(LR)	and	Random	Forest	(RF)	are	
not	new	techniques,	but	have	proven	value	in	
some	studies	that	linked	drought	hazards	to	
impacts	(e.g.,	Blauhut	et	al.,	2015;	Stagge	et	
al.,	2015;	Blauhut	et	al.,	2016;	Bachmair	et	al.,	
2016;	Bachmair	et	al.,	2017).	Therefore,	we	
decided	to	use	the	LR	and	RF	to	forecast	
drought	impacts	(previous	version	P2L38-
46).	However,	those	studies	reconstructed	
historical	conditions	and	were	not	used	for	
drought	impact	forecasting	using	dynamical	
weather	forecasts,	which	is	the	novelty	of	our	
paper.	The	results	are	promising	and	can	be	
implemented	in	the	forecast	mode.	
Additional	explanation	why	we	chose	the	LR	
and	RF	was	added	in	the	revised	manuscript	
(P2L54-56	and	P3L64-68)	

3	 Abstract:	The	authors	are	advised	to	
include	more	results	in	the	abstract	to	
provide	better	overview	for	the	readers.	

We	would	like	to	thank	the	referee	for	
his/her	suggestion.	More	results	were	added	
in	the	abstract	(P1L3-15).		

4	 Page	1,	Line	3:	Kindly	revise	“with	a	lead-
time	of	7	months	ahead”	to	“with	lead-times	
up	to	7	months	ahead”	as	the	study	
produces	predictions	with	lead-time	of	1-,2-
,3-,4-,5-,6-	and	7-months	ahead,	not	only	7-
month.	

The	text	was	revised	(P1L3).	

5	 Page	2,	Line	40:	Kindly	revise	“Energy	and	
Industry,	Pubic	Water	Supply”	to	“Energy	
and	Industry	Public	Water	Supply”.	

Unfortunately,	we	cannot	follow	up	the	
suggestion	made	by	the	referee	to	combine	
Energy	and	Industry	with	Public	Water	
Supply,	because	they	are	reported	as	
different	impacted	sectors	in	the	key	paper	
on	the	European	Dorught	Impact	Inventory,	
EDII	(see	Stahl	et	al.,	2016).	We	would	like	to	
keep	our	study	consistent	with	this.	

6	 Page	2,	Line	40	–	46:	The	literature	reviews	
show	that	Logistic	Regression	(LR)	and	
Random	Forest	(RF)	are	already	well	
studied	in	different	studies	for	deriving	the	
link	between	drought	hazard	and	their	

The	LR	and	RF	indeed	already	have	been	
used	in	previous	drought	studies	(see	point	
2).	However,	those	studies	tried	to	link	the	
historical	drought	hazards	using	the	
standardized	indices,	such	as	SPI	and	SPEI,	to	
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impact.		
	
	
	
	
	
	
	
	
-	May	I	know	why	are	these	two	methods	
selected	as	the	approaches	in	this	study?	As	
there	are	many	other	approaches	available	
to	be	further	investigated,	such	as	Artificial	
Neural	Network	and	etc.		
	
-	Besides,	the	methods	compared	have	
different	nature	LR	(Linear)	and	RF	
(Nonlinear).	Shouldn’t	we	test	the	data’s	
linearity	before	adopting	either	of	these	
methods?	As	it	will	be	unfair	to	the	LR	(RF)	
if	the	nature	of	the	data	is	nonlinear	
(linear)?		
	
	
	
	
	
	
-	Recommended	recent	paper:	Drought	
forecasting:	A	review	of	modelling	
approaches	2007–2017.	Journal	of	Water	
and	Climate	Change.	2019	

drought	impacts	using	LR	and	RF.	Thus	we	
decided	to	move	one	step	forward	by	linking	
the	forecasted	drought	hazards	(SPI,	SPEI,	
and	SRI)	using	dynamical	forecasts	to	
drought	impacts	using	the	same	methods	
with	different	combinations	of	spatial	
aggregations	and	impact	categories	(previous	
version	P2L54-55).		
	
	
As	mentioned	above,	we	selected	the	LR	and	
RF	methods	because	these	were	used	in	
previous	studies	that	connected	drought	
hazard	to	impacts.	The	use	of	other	methods	
is	foreseen	for	future	study.		
	
The	referee	makes	a	good	point	here.	The	
input	data	for	the	RF	and	LR	are	not	linear.	
The	drought	severity	obtained	from	the	
standardized	indices	(i.e.	SPI,	SPEI,	and	SRI),	
i.e.	input	data,	was	derived	from	functions	
which	were	developed	by	fitting	the	gamma	
distribution	and	later	were	transformed	to	
normal	distribution	(previous	version	
P4L122-125).	We	added	text	on	this	topic	in	
the	Discussion	as	the	main	advantage	of	RF	
method,	which	can	handle	non	linear	data	
better	(P10L294-298).	
	
The	suggested	paper	was	added	in	the	
revised	manuscript	(P10L294).	

7	 Page	2,	Line	58:	the	symbol	“box	1”	is	
confusing,	kindly	revise	as	“box	i"	(similar	
correction	for	the	caption	in	Figure	1).	

The	word	on	page	2	line	58	writes	as	box	l	
(BOX	L)	and	not	i.	We	are	sorry	that	we	
created	confusion	about	the	letter.	We	
revised	the	letters	using	capital	(e.g.,	A,	B,	C,	
and	so	on)	(P2L70-74,	and	throughout	the	
text).	

8	 Page	3,	Line	64:	Kindly	state	the	full-form	of	
every	abbreviation	when	it	is	first	used,	e.g.	
SRI-x.	

The	full-form	of	the	standardized	indices	was	
already	mentioned	in	the	previous	paragraph	
(e.g.,	previous	version	P2L34	for	SPI	and	
P2L48	for	SPEI).	We	provided	the	full-form	
of	SRI	in	the	revised	manuscript	(P2L58).	We	
thank	the	reviewer	for	noticing	this.	

9	 Page	5,	Line	153:	It	is	stated	that	the	RF	is	
able	to	avoid	overfitting.	To	my	best	
knowledge,	this	statement	is	wrong	as	RF	
does	overfit	although	the	generalization	
error	does	not	increase	when	the	tree	size	
increases.	Kindly	justify	how	do	the	authors	
avoid	overfitting	in	the	current	study?	How	
significance	is	the	difference	if	the	cross-
validation	was	adopted?	

The	referee	is	correct	that	the	RF	is	not	
completely	able	to	avoid	overfitting.	The	RF	
produces	randomly	numerous	independent	
trees	as	an	ensemble	to	reduce	the	chance	of	
overfitting.	The	text	was	revised	(P6L170).	
	
One	possible	way	to	counteract	overfitting	is	
by	using	cross-validation.	In	our	study,	we	
did	not	do	cross	validation	(CV).	However,	we	
did	OOB	(out	of	bag)	performance	analysis	
for	the	development	of	our	RF	model,	which	
is	not	exactly	the	same,	but	has	connections	
with	CV.	We	think	that	the	calculation	of	the	
OOB	error	in	the	model	training	phase	is	
sufficient	to	test	the	performance	of	the	
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model.	We	added	a	remark	about	cross	
validation	in	the	revised	manuscript	
(P6L175-178).	
	

10	 Discussion:	The	RF	showed	better	
performance	and	the	authors	claimed	that	it	
was	due	to	the	longer	memory	of	RF	
compared	to	LR.	However,	the	authors	
never	mention	about	the	linearity	of	the	
data.	Could	it	be	due	to	the	linear/nonlinear	
nature	of	the	data?	Based	on	the	results	
available,	it	seems	that	nonlinear	models	
are	favourable,	have	the	authors	compare	
the	performance	of	RF	with	other	nonlinear	
models?	e.g.	ANN,	Deep	learning,	and	etc.	

The	referee	has	a	point	about	the	linearity	of	
the	data.	Drought	indices	used	as	input	in	the	
machine	learning	models	are	not	linear	(see	
point	6	above).	We	discussed	the	non-
linearity	of	our	data	in	the	revised	
manuscript	(P10L294-298).	We	did	not	
compare	the	results	with	another	machine	
learning	models.	However,	some	previous	
studies	concluded	that	RF	produces	better	
performance	compared	to	other	Machine	
Learning	approaches	(e.g.,	Boosted	
regression	trees,	cubist,	decision	trees,	
Hurdle,	and	logistic	regression;	Park	et	al.,	
2016;	Rhee	and	Im,	2017;	Bachmair	et	al.,	
2017)	(previous	version	P9L264-266).		
	
	

11	 Supporting	information,	Figure	S2:	The	y-
label	of	histogram	for	Log	Regression	is	
wrong,	kindly	revise.	Besides,	may	I	know	
how	do	the	authors	summarize	the	
predictor	importance	of	few	counties	into	
one	histogram?	

We	thank	the	referee	for	his/her	carefully	
reading	of	our	manuscript.	The	figure	was	
revised	accordingly.	We	plotted	the	
histograms	based	on	the	average	of	predictor	
of	importance	for	each	county.	Explanation	
was	added	in	the	revised	Supplementary	
Material.	
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Referee	2	
No	 Comment	 Reply	
1	 The	manuscript	is	well	written	and	

structured.	The	results	are	sound	and	
discussions	(incomplete	though)	support	
the	results	clearly.	I	have,	however,	some	
comments/suggestions	that	I	would	like	the	
authors	to	address.	

We	thank	the	referee	for	his/her	positive	
response	and	support	in	improving	our	
manuscript.	

2	 Based	on	McKee	et	al.	(1993),	the	length	of	
precipitation	record	for	SPI	calculation	
should	be	ideally	a	continuous	period	of	at	
least	30	years.	The	same	criterion	is	valid	
for	SPEI.	A	short	record	of	28	years	was	
however	used	to	quantify	drought	hazards	
in	this	study.	How	would	this	short	record	
length	of	the	data	affect	the	results?	
Specifically,	how	would	the	results	be	
affected	by	natural	climate	variability	
(laying	on	oscillation	high	or	low	period)?	

The	referee	has	a	point	here	that	indeed	the	
standardized	indices	require	preferably	30	
years	record.	However,	we	could	only	use	28	
years	observational	record	(proxy)	from	
1990	to	2017	due	to	data	availability.	EFAS	
data	before	1990	are	not	available	and	we	
only	had	data	up	to	2017.	The	length	of	the	
observational	data	might	have	some	
implications	on	the	calculation	of	parameters	
of	the	monthly	distributions,	which	affects	
the	calculation	of	the	drought	severity	index.	
For	example,	if	the	records	(<	30	years)	do	
not	include	extreme	low/high	events,	then	
the	calculation	of	drought	indices	will	
overestimate	these	low/high	severities,	if	
these	would	occur,	due	to	lack	of	outliers	in	
the	low/high	of	normal	distribution.	For	our	
study,	we	argue	that	2	years	missing	in	the	
record	do	not	significantly	influence	our	
results	for	following	reasons:	1)	years	1988	
and	1989	were	not	recorded	as	extreme	
drought	years,	2)	we	included	drought	years	
in	parts	of	Europe,	e.g.	1991-1992,	1995,	
1996-1997,	2003,	2006,	2008,	and	2015	
(Spinoni	et	al.,	2015).	We	added	information	
about	the	influence	of	data	length	in	the	
revised	manuscript	(P9L266-274).	

3	 The	Standardized	Precipitation	Index	(SPI)	
and	the	Standardized	Precipitation	Evap-	
oration	Index	(SPEI)	were	applied	to	
quantify	meteorological	droughts	and	the	
Standardized	Runoff	Index	(SRI)	for	
hydrological	droughts,	all	of	them	for	
accumulation	periods	of	1,	3,	6,	and	12	
months.	While	there	exist	many	drought	
indices,	the	choice	of	the	SPI,	SPEI	and	SRI	
indices	might	be	justified.	An	explanation	
might	also	be	added	on	why	the	authors	
limited	the	accumulation	periods	to	12	

The	SPI,	SPEI,	and	SRI	were	chosen	in	our	
study,	because	first	these	indices	are	widely	
used	both	in	the	scientific	community	and	by	
end-users,	such	as	water	agencies.	Second,	
these	indices	were	used	in	previous	studies	
to	link	the	historical	drought	hazards	with	its	
impacts	and	showed	promising	results	to	
develop	the	drought	impact	functions	
(previous	version	P2L47-52).	We	decided	to	
use	the	standardized	indices	with	
accumulation	periods	of	1,	3,	6,	and	12	
months	because	higher	accumulation	
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months	and	didn’t	try	longer	periods	(e.g.,	
24	months)?	

periods,	e.g.	beyond	12	months,	consist	of	
longer	series	of	observation	data	relative	to	
the	lead	time,	which	is	a	caveat	for	
forecasting	skill	assessment.	Higher	
proportion	of	observed	data	will	artificially	
inflate	forecast	scores	(Sutanto	et	al.,	2020).	
For	example,	SPI-12	with	a	lead-time	of	1-
month	consists	of	11	months	observed	data	
and	1	month	forecast	data.	SPI-12	with	a	
lead-time	of	7-month	consists	of	5	months	
observed	data	and	7	months	forecasts.	We	
added	this	information	in	the	revised	
manuscript	(P11L337-342).	

4	 There	are	many	methods	for	calculation	of	
potential	evapotranspiration,	ranging	from	
simple	temperature-based	method	to	the	
standard	Penman-Monteith	method.	It	is	
not	mentioned	in	the	paper	which	method	
was	used	for	the	potential	
evapotranspiration	calculation	for	the	SPEI	
index	and	to	simulate	gridded	runoff?	

Potential	evapotranspiration	is	calculated	
through	the	offline	LISVAP	pre-processor	
based	on	the	Penman-Monteith	equation	
(Van	Der	Knijff,	2008).	This	information	was	
added	in	the	revised	manuscript,	including	
the	reference	(P4L119-120).	

5	 Simulated	runoff	was	used	as	gridded	
observed	runoff	was	not	available.	Is	the	
bias	of	runoff	simulations	available	to	be	
added	to	the	paper?	

Observed	runoff	data	are	not	available,	these	
cannot	be	measured	by	definition.	
Streamflow	can	be	measured,	but	runoff	
cannot.	Thus,	we	could	not	calculate	the	bias	
of	simulated	runoff.	Streamflow	data	in	some	
rivers	are	available	(>250	catchments	across	
Europe)	and	these	were	used	in	previous	
studies	to	calibrate	and	validate	the	
hydrological	model,	LISFLOOD,	from	which	
outcome	has	been	applied	in	this	study	(e.g.,	
Feyen	and	Dankers,	2009;	Forzieri	et	al.	
2014).	LISFLOOD	obtained	a	median	Nash	
Sutcliffe	Efficiency	(NSE)	of	0.57	over	the	
validation	period.	We	added	this	information	
in	the	revised	manuscript	(P4L122-125).	

6	 It	was	found	that	the	SPEI	index	shows	
higher	skill	than	the	SPI	for	short	accumula-	
tion	periods.	Can	it	be	because	of	a	longer	
memory	of	drought	hazard	calculated	from	
SPEI	which	is	based	on	water	balance	
(precipitation	minus	potential	
evapotranspiration)	compared	to	SPI	which	
is	based	on	only	precipitation?	

The	SPEI	drought	forecasts	have	slightly	
higher	skill	than	the	SPI	(Fig.	2),	especially	in	
autumn	and	winter.	In	general,	the	source	of	
predictability	of	SPEI	comes	from	the	higher	
temperature	predictability	due	to	NAO	in	
Europe	than	precipitation.	Temperature	is	
one	of	the	weather	variables	that	controls	
potential	evapotranspiration.	We	added	this	
information	in	the	revised	manuscript	
(P7L212-214).	Longer	memory	of	drought	
hazard	is	only	found	for	the	hydrological	
drought	(here	runoff,	SRI	approach),	
associated	with	memory	represented	in	
initial	hydrological	conditions	and	storage	in	
the	hydrological	system	(previous	version	
P10L302).	

7	 It	was	found	that	“drought	indices	with	
longer	accumulation	periods	perform	better	
than	the	ones	with	short	accumulation	
periods”.	Isn’t	it	trivial	as	shorter	drought	
indices	with	short	(long)	accumulation	
periods	have	more	(less)	fluctuations/noise	
and	more	difficult	(easier)	to	forecast?	

The	score	of	meteorological	drought	
forecasts	improves	with	the	increase	of	the	
accumulation	periods	of	the	SPI	and	SPEI	
because	of	a	higher	proportion	of	observed	
data,	which	artificially	inflates	forecast	scores	
(Sutanto	et	al.,	2020)	(see	point	3).	Likely,	
forecast	skill	of	drought	indices	with	longer	
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accumulation	periods	(long	drought	indices)	
also	is	positively	affected	by	the	lower	
fluctuation/noise	in	the	index	compared	to	
shorter	accumulation	periods.	However,	we	
cannot	attribute	the	higher	skill	of	the	longer	
drought	indices	either	to	longer	period	of	
observations	in	the	forecast,	or	to	the	
smoother	time	series.	We	added	this	
information	in	the	revised	manuscript	
(P11L337-342).	

8	 Figures	2-4:	The	black	dashed	line	in	the	
figures	indicates	the	threshold.	It	was	
explained	in	the	caption	of	Figures	3	and	4,	
while	it	was	defined	as	“Thes”	in	the	legend	
of	Figure	2.	The	same	format	might	be	used	
throughout	the	paper	to	keep	consistency.	

We	agree	with	the	referee.	We	revised	the	
Figure	2	accordingly	(P19).	

9	 Figures	3	and	4:	“ROC”	can	be	added	as	y-
axis	label	in	Figures	3	and	4	and	removed	
from	the	top.	

We	moved	the	ROC	legend	to	the	y-axis	in	
Figures	3	and	4	in	the	revised	manuscript	
(P20-21).	

10	 Legends	of	Figures	3	and	4:	The	legend	can	
be	moved	to	the	bottom	of	the	plot	with	the	
explanation	of	each	case	in	the	front	of	it.	

We	moved	the	legend	in	Figures	3	and	4	
accordingly	(P20-21).	
	

11	 Caption	of	Figures	3	and	4:	“The	
performance	is	measured	using	ROC”	
should	be	removed	from	the	caption	of	
Figure	3	as	the	plot	and	the	other	sentences	
in	the	caption	clearly	show	it.	Same	
comment	goes	for	the	caption	of	Figure	4.	
Revise	the	sentence	in	the	caption	of	Figure	
4	as	“The	boxes	indicate	the	spread	of	ROC	
values	for	drought	impact	functions	(15	
ensemble	members)	for	a)	short	lead-times	
(1-3	months),	and	b)	long	lead-times	(4-7	
months).”	

It	is	a	good	suggestion.	We	revised	the	Figure	
captions	accordingly	(P20-21).		

12	 Caption	of	Figure	5:	In	the	statement	"four	
different	impact	groups"	-	the	word	differ-	
ent	is	not	needed.	By	stating	that	they	are	
plural,	i.e.,	four	impact	groups,	the	logical	
syntax	of	the	statement	means	that	they	
must	be	different.	

We	removed	the	word	different	in	the	
caption	(P22).		

13	 Figure	S2:	Text	on	the	plots	is	very	small	
and	not	readable.	

We	revised	the	Figure	by	placing	figures	S2a	
(now	S2)	at	the	top	and	S2b	(now	S3)	at	the	
bottom	to	increase	the	readability	(SM	P2-3).	
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