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 10 

Abstract 11 

The distance to the surface rupture zone has been commonly regarded as an important 12 

influencing factor in the evaluation of earthquake-triggered landslides susceptibility. 13 

However, the obvious surface rupture zones usually do not occur in some buried-fault 14 

earthquakes cases, which mean lacking of the information about the distance to the 15 

surface rupture. In this study, a new influencing factor named coseismic ground 16 

deformation was added to remedy this shortcoming. The Mid-Niigata prefecture 17 

earthquake was regareded as the study case. In order to select a more suitable model for 18 

generating the landslides susceptibility map, three commonly used models named 19 

Logistic Regression (LR), Artificial Neural Networks (ANN) and Support Vector 20 

Machines (SVM) were also conducted to assess the landslides susceptibility. The 21 

performances of these three models were evaluated with the receiver operating 22 
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characteristic (ROC) curve. The calculated results showed the ANN model has the 23 

highest AUC (area under the curve) value of 0.82. As the earthquake triggered more 24 

landslides in the epicenter area, which makes it more prone to landslides in further 25 

earthquakes, the landslides susceptibility in the epicenter area was also further 26 

evaluated.  27 

Keywords: Earthquake triggered landslides; Landslide susceptibility mapping; 28 

coseismic ground deformation; 29 

 30 

1. Introduction 31 

Earthquake-triggered landslides are commonly seen in the earthquake disaster chain. 32 

The landslides not only bring loss of life and property but also seriously affect the post-33 

earthquake rescue. By summarizing the data of 40 historical earthquakes events in the 34 

world, Keefer discovered that the earthquake-triggered landslide was the main reason 35 

for the loss of life and property (Keefer, 1984). More than 60 people were killed and 36 

nearly 100,000 people were displaced due to the Mid-Niigata earthquake in 2004 37 

(Bandara and Ohtsuka, 2017). In 2008, the Wenchuan earthquake triggered nearly 38 

200,000 landslides, killing about 20,000 people (Xu et al., 2012b). At present, 39 

numerous researchers regarded the susceptibility mapping as an effective way to hazard 40 

mitigation and disaster management, and a number of models have been used to 41 

generate landslide susceptibility maps. 42 

At present, one type of commonly used methods to evaluate the susceptibility of 43 

landslides is the physical-based method. For this type of method, the study area is 44 
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usually divided into slopes units and then LEM or FEM are applied to calculate the 45 

safety factor (FS) of each slope unit (Saade et al., 2016). However, the physical 46 

mechanism of the landslide is often very complicated, especially for the landslides 47 

caused by earthquakes. Due to the difficulty of obtaining enough parameters for slope 48 

dynamic analysis, it still is a tough job to assess the landslide susceptibility with 49 

physical-based models in large-scale areas. 50 

The statistical learning method was the another important method for landslide 51 

susceptibility assessment. This type of method is based on the assumption that future 52 

landslides would be easily to occur under similar conditions to those of the previous 53 

landslides. By analyzing the characteristics of the current landslides, a set of influencing 54 

factors are usually selected to implement statistical learning and evaluate the landslide 55 

susceptibility map (Pham et al., 2017; Ali et al., 2019; Lin et al., 2019). At present, 56 

many statistical learning methods have been used successfully to calculate the 57 

landslides susceptibility index (LSI) and generate the earthquake-triggered landslide 58 

susceptibility maps (Hong et al., 2017; Pham et al., 2016; Xu et al., 2012a; Yi et al., 59 

2019). For example, Yang et al., (2015) established the susceptibility map of seismic 60 

landslides for the Lushan earthquake in Sichuan Province with an artificial weighting 61 

method. Shrestha and Kang (2019) used a maximum entropy model to produc the 62 

landslide susceptibility map of the central region of the Nepal Himalaya. However, the 63 

relatively good performance of these methods highly relies on the local geo-64 

environment factors and self-features of the methods. For different study areas, the most 65 

accurate method is also different. Thus, it is necessary to make comparisons between 66 
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various methods for selecting a more suitable method which produces a more reliable 67 

landslide susceptibility map (Bui et al., 2016). 68 

Gorum et al. (2011) pointed out that the influencing factors of seismic landslide should 69 

include seismic correlation parameters, geology parameters, and topography 70 

parameters. Ding and Hu (2014) conducted the cluster analysis and the maximum 71 

possible classification method to study seismic landslides susceptibility of Beichuan 72 

County in the Wenchuan earthquake. Influencing factors contain land-use type, seismic 73 

intensity, and annual rainfall were selected to produce a reasonable susceptibility map. 74 

Since the earthquake-triggered landslides tend to occur frequently near the surface 75 

rupture zone (Xu et al., 2012b; Xu, 2014). Numerous scholars took the distance to the 76 

surface rupture zone as an influencing factor in the evaluation of landslides 77 

susceptibility (Xu et al., 2012b; Xu, 2014). However, it is worth noting that some 78 

buried- rupture earthquakes often do not have obvious surface rupture zones, the buried 79 

rupture earthquakes can also trigger abundant landslides (Xu, 2014). The evaluation 80 

accuracy of landslide susceptibility for buried rupture earthquake is affected by a lack 81 

of the factor of the distance to rupture (Regmi et al., 2016). Therefore, it is necessary 82 

to improve the accuracy of landslides susceptibility assessment for buried rupture 83 

earthquakes by introducing new influencing factors.  84 

The Mid-Niigata Earthquake, which occurred in 2004, has become an important case 85 

for studying landslides due to good seismography and rich collection of seismic 86 

landslides. Wang et al., (2007) detected the relationship between landslide occurrence 87 

with geological, geomorphological conditions, slope geometry, and earthquake 88 
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parameters for the Mid-Niigata earthquake. Bandara and Ohtsuka (2017) used landslide 89 

occurrence ratio (LOR) to determine the correlation between the occurrence of 90 

earthquakes triggered landslides and geological attributes for the Mid-Niigata 91 

earthquake.  92 

In this paper, based on GIS technology, three statistical methods and two different scales 93 

are evaluated to assess the landslides susceptibility caused by the Mid-Niigata 94 

earthquake. First of all, we selected lithology, elevation, slope, slope aspect, surface 95 

curvature, distance from the road and the peak value of earthquake acceleration as the 96 

influencing factors to evaluates the susceptibility of seismic landslides in the whole 97 

affected zone (large-scale area). For large-scale area, three different statistical learning 98 

methods (logical regression (LR), Support Vector Machine (SVM), and artificial neural 99 

network (ANN)) are utilized and compared to make reasonable seismic landslides 100 

susceptibility map. As the epicenter area that has higher landslide frequency more prone 101 

to earthquake-triggered landslides, the seismic landslides susceptibility in this area is 102 

further evaluated. Finally, given the fact of very short surface ruptures, the Mid-Niigata 103 

earthquake was regarded as a buried rupture earthquake (Maruyama et al., 2007). The 104 

coseismic ground deformation decomposed from high-resolution DEM is added as an 105 

influencing factor in order to improve the evaluation accuracy of the seismic landslide 106 

susceptibility for the epicenter area. 107 

2. Study area 108 

The Mid-Niigata earthquake occurred on October 23, 2004, The Japan Meteorological 109 
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Agency (JMA) measured the magnitude of the mainshock is 6.8, the epicenter is located 110 

at 37°18'16. 56"N, 138°50'10. 32"E, the focal depth is about 13.1 km (Chigira and Yagi, 111 

2006; Kokusho et al., 2011). Within three days after the mainshock, more than 900 112 

landslides were induced by the earthquake(Chigira and Yagi, 2006；Kokusho et al., 113 

2014). After the earthquake sequences, a very small surface rupture was found along a 114 

previously unmapped northern extension fault zone. The length of the surface rupture 115 

was about 1 km (Maruyama et al., 2007). The surface slip of the Mid-Niigata 116 

earthquake event was also very small (< 20 cm of vertical displacement). In addition, 117 

the surface rupture zone is also far away from the epicenter zone, where the seismic 118 

landslides have concentrated distribution (Sato et al., 2005), i.e., the study area of 119 

seismic landslides susceptibility did not contain the surface rupture zone. So in this 120 

study, we consider the surface rupture zone has little effect on the formation of seismic 121 

landslides and regard the earthquake as a buried-rupture earthquake. 122 

3. Datasets collection 123 

3.1 landslide inventory  124 

In this study, the assessment of seismic landslides susceptibility is performed on two 125 

scales, the large area, and the epicenter area. As shown in Fig. 1, the large-scale area is 126 

22 km wide (east to west), and 40 km long (north to south). The total area of the large-127 

scale area is about 880 km2. The epicenter area is 7 km long (north to south), and 9 km 128 

wide (west to east). The total area is about 56 km2. The epicenter area is located in the 129 

bordering area between Nagaoka City and Ojiya City. 130 
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Many methods have been utilized to set up landslide inventory maps, including satellite 131 

image interpretation, aerial photography, field survey and historical landslide records 132 

(Vařilová et al., 2015). In this research, the landslide inventory map was interpreted 133 

from satellite image data and then checked by field survey data (Kokusho et al., 2009; 134 

Kokusho 2008). As shown in Figure 1a, a totally of 957 landslides locations were 135 

recorded in the large-scale area, most of which are distributed in the mountainous area 136 

around the epicenter area and spread to the northeastern mountainous area. There are 137 

also some landslides located in the eastern and southern mountain areas. The landslides 138 

inventory map of the epicenter area is also shown in Fig. 1b.  139 

 140 
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 141 

Fig.1 Locations of landslides in the study area (a) Large- scale area (b) epicenter area 142 

3.2 Landslide influencing factors  143 

The factors that affected the occurrence of earthquake-triggered landslide usually 144 

include geology, topography, hydrology, climate, human activities, earthquake-related 145 

parameters and etc. Based on the availability of data and impacted factors used in 146 

previous studies (Reichenbach et al., 2018), seven landslide factors influencing 147 

(lithology, elevation, slope, slope aspect, surface curvature, peak ground acceleration 148 

and the distance from the road) are take into consideration for landslide susceptibility 149 

analysis for the large-scale area. In the later analysis in the epicenter area, coseismic 150 

ground deformation was added as an influencing factor. 151 

Lithology directly determines the physical and mechanical properties of the slope, 152 

which have a direct impact on slope stability. The lithology data used in this paper is 153 

redrawn from the 1: 50000 geological map of Nagaoka and Ojiya by the Geological 154 
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Survey of Japan's Ministry of International Trade and Industry. There are ten different 155 

lithology groups in the large-scale area (Table 1) and eleven different lithology groups 156 

in the epicenter area (Table 2). The lithology maps in the large-area and epicenter area 157 

are shown in Fig. 2a and Fig. 3a. 158 

Table 1 Lithological distribution in the large-scale area. 159 

Category Lithology 

S Gonglomerate with mudstone  

G Gonglomerate with sandstone 

SM Sandstone with silt 

M Sandstone with mudstone 

Vs Volcanic rock 

Ms Mudstone 

Shs Shale 

A Residual soil 

Ss Sandstone 

Gs Gonglomerate 

Table 2 Lithological distribution in the epicenter area area. 160 

Category Lithology 

QHd Accumulation of Holocene  

QPt Accumulation of Pleistocene 

QPl Ancient landslide deposits of Pleistocene 

QPu Gonglomerate of Pleistocene 

NPw Gonglomerate of Pliocene 

NPs Sandy mudstone of Pliocene 

NPu Mudstone of Pliocene 

NPk Mudstone with sandstone of Pliocene 

Nv Volcanic rock of Pliocene 

NMs Shale of Miocene 

 161 

The elevation also affects the occurrence of seismic landslides (Hasegawa et al., 2009). 162 

The elevation has bee regarded as a key factor determining gravitational potential 163 

https://doi.org/10.5194/nhess-2020-63
Preprint. Discussion started: 16 March 2020
c© Author(s) 2020. CC BY 4.0 License.



10 
 

energy of terrain. The elevation data used in this paper is generated from the 30 m 164 

resolution DEM data obtained from ASTER Global Digital Elevation Model (ASTER 165 

GDEM). The elevations maps of the large-scale area and the epicenter area are shown 166 

in Fig. 2b and Fig. 3b, respectively. 167 

The slope angle has a direct impact on slope stability that determines the ratio of anti-168 

sliding force to sliding force. The slope angle in the study area ranges from 0° to 57.82° 169 

as shown in Fig.2c for the large-area. The Fig.3c shows the distribution of slope angle 170 

in epicenter area. The 0° slope angle means a flat area. The west part of the large-scale 171 

area is almost flat area, whereas the mountains mainly spread from NE direction to SW 172 

direction. 173 

The influence of slope aspect on the stability of slope is multifaceted. Different slope 174 

directions have different influences of solar radiation and rainfall on the slopes that 175 

control the moisture of terrain that affects landslide occurrences. According to previous 176 

studies (Hong et al., 2017; Pham et al., 2016; Xu et al., 2012a), the slope aspect is 177 

divided into nine groups. The slope aspect maps of the large study area and the epicenter 178 

area are shown in Fig. 2d and Fig. 3d, respectively and the P and FL means the flat area.. 179 

Surface curvature determines the pooling and dispersion of surface water and affects 180 

the strength and stability of rocks and soils. In addition, there is a strong correlation 181 

between soil thickness and surface curvature due to soil sedimentation caused by the 182 

water flow. The surface curvature distributions in large-scale and epicenter area are 183 

shown in Fig. 2e and Fig. 3e, respectively. 184 

The peak ground acceleration (PGA) of the earthquakes is the maximum absolute value 185 
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of the acceleration of the surface soil in an earthquake. Since the inertia forces generated 186 

by the earthquakes are important causes of the earthquake-triggered landslides, the PGA 187 

is generally chosen as the impact factor of landslides susceptibility. The distribution of 188 

peak accelerations in the large-scale area and the epicenter area is shown in Fig. 2f and 189 

Fig. 3f, respectively. 190 

Human activities have also greatly impacted the topography features. Road 191 

construction not only produced a new steep cutting slope but also caused a great 192 

disturbance to the original slope. Therefore, the distance to the road is taken into 193 

account in the assessment of landslides susceptibility. In this study, the locations of 194 

high-grade roads like expressway were interpreted from the satellite image. The 195 

distances to road map were divided into seven classes (0–50, 50–100, 100–200, 200–196 

300, 300–400, 400-500 and >500 m). The distances to road maps of the large-scale area 197 

and the epicenter area are shown in Fig. 2g and Fig. 3g, respectively. 198 

 199 
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 201 
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 202 

Fig.2 Landslide controlling factors of the large area, (a) lithology; (b) elevation; (c) slope 203 

degree; (d) aspect; (e) profile curvature; (f)PGA; (g) distance to roads 204 

 205 

 206 
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 211 

 212 

Fig. 3 Landslide controlling factors of the epicenter area, (a) lithology; (b) elevation; (c) 213 

slope degree; (d) aspect; (e) profile curvature; (f) PGA; (g) distance to roads 214 

For the earthquakes with surface ruptures, the previous researches show that there is a 215 

clear connection between the landslide distribution and the distance to the rupture zone 216 

(Xu et., al 2012b; Xu, 2014), which means the distance to the surface rupture could be 217 

used as an influencing factor. However, for the buried-rupture earthquakes, as the very 218 
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short or no surface rupture is exposed, it is difficult to establish the relationship between 219 

the distribution of landslides and surface rupture. Therefore, it is necessary to introduce 220 

new influencing factors to improve the accuracy of landslides susceptibility analysis 221 

for buried rupture earthquakes.  222 

The coseismic ground deformation characterizes the absolute permanent ground 223 

deformation before and after the earthquake and it has been demonstrated tha there is  224 

a good correlation between landslides distribution and the values of coseismic ground 225 

deformation(Chang et al., 2005; Zhao et., al 2014). Therefore, the coseismic ground 226 

deformation could make up for the disadvantage of the losing surface rupture in the 227 

assessment of seismic landslide susceptibility to a certain extent. The coseismic ground 228 

deformation can be obtained by decomposed high-resolution DEM before and after the 229 

earthquake (Zhang et al., 2010; Zhao et al., 2014). Fig. 4 illustrates the description of 230 

landform changes in Lagrangian and Eulerian manners. Supposing that a small patch i 231 

of the ground surface with one particular node mapped on it is inclined in East-West (x) 232 

and North-South (y) directions, Δzi
e is expressed in terms of the Lagrangian vector {Δxi

l 233 

Δyi
l Δzi

l} of the movement of the patch as: 234 

          
(1) 235 

where tx,i and ty,i are tangents of the patch plane in x and y directions, respectively. 236 

Taking three adjacent patches, i1, i2 and i3 in a triangle, and using the displacement of 237 

its center {Δxi
l Δyi

l Δzi
l} as the representative displacement vector of the triangle, the 238 

following simultaneous equations are to be satisfied 239 

, ,{ 1} { } .e l l l T

i x i y i i i iz t t x y z =    
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(2) 240 

An assumption that the triangle undergoes a rigid body translation is used in the 241 

formulation above. The inclination of the moving plane (plane i1) is essential for 242 

calculating tx,i and ty,i. Suppose the equation of the moving plane is expressed as:  243 

 (3) 244 

where a= tx,,i1=tanθx,,i1, b= ty,i1=tanθy,i1 245 

 246 
 247 

Fig.4 Description of landform change in the Lagrangian and Eurlaian manners, (a)scheme of one 248 

point (b) scheme of three-point   249 

Zhao et al., (2012) provides a more rigorous solution method, including the definition 250 

of a nominal plane, the improvement of DEM comparability and matrix condition test. 251 

In this study, we used the method that is proposed by Zhao et al., (2012) to calculate 252 

the vacoseismic ground deformation. Note that the decomposition algorithm requires 253 

high resolution (2m) DEM. In this study, only the epicenter area was scanned via 254 

airborne LiDAR in 2003 and 2007, respectively. Thus, the coseismic ground 255 

deformation is added as an influencing factor for the epicenter area only. The 256 
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distribution of coseismic ground deformation in the epicenter area is shown in Fig. 5. 257 

 258 

Fig. 5 The distribution of coseismic ground deformation in the epicenter area. 259 

 260 

3.3 Landslides data preparation 261 

In this study, the numbers of landslide points and non-landslide points are sampled at a 262 

ratio of 1:1.2 for the large-scale area. A total of 1117 non-landslide points data were 263 

randomly selected in the non-landslide area. Subsequently, 70% of the landslide points 264 

and non-landslide points were selected randomly from the landslide inventory map as 265 

the training dataset, with the rest as the testing dataset. In order to get optimum results, 266 

we randomly selected the sample points (landslides points and non-landslide points) for 267 

10 times respectively. For different selection, the training and testing samples are 268 

different, but the numbers of sample points are the same. In the epicenter area, as the 269 

used the method to calculate the coseismic ground deformation needs high-resolution 270 

DEM, the whole epicenter areas were converted into 2 m pixels. The total number of 271 
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the pixels is 555324, and the number of seismic landslide pixels is 45852. Similarly, 272 

70% of the landslide pixels and non-landslide pixels were selected randomly as the 273 

training dataset, with the rest 30% as the testing dataset. 274 

4 Methodology 275 

4.1 Logistic regression  276 

Logistic regression is suitable for describing the relationship between categorical 277 

outcome (landslide or non-landslide) and input variables (landslide affecting factors). 278 

The principle of the LR is to analyze the spatial relationship between the landslides 279 

affecting factors and the occurrence of a landslide. The results of the regression usually 280 

can be interpreted as the probability which is constrained in the interval between 0 and 281 

1.  282 

The LR is indicated by an equation of the form: 283 

 (4) 284 

where Y represents outcome variables (landslide or non-landslide), X = X1, X2…Xn 285 

represents input variables, n is the n th landslide affecting factor, β0 is the intercept 286 

condition, β1, β2…β n are the regression coefficients (Tu, 1996). 287 

The SPSS 10.0 was used to conduct the LR analysis to predict the correlation between 288 

the occurrence of landslide and landslide affecting factors. The regression coefficients 289 

were then obtained. 290 

The probability of a landslide event (P) can be determined from the following equation: 291 

0 1 1 2 2( ) ln( )
1

n n

P
Y f P X X X

P
   = = = + + + +

−
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  (5) 292 

The probability values change from 0 to 1, with 0 indicating a 0% probability of 293 

landslide occurrences and 1 indicating a 100% probability. 294 

4.2 Artificial neural networks (ANN) 295 

ANN model has many advantages by comparing with other models (Yi̇lmaz, 2009a). 296 

ANN could process the imprecise and fuzzy data without any assumptions. The ANN 297 

model with the most frequently used back-propagation BP algorithm (Pradhan and Lee, 298 

2010b) is used in this paper. 299 

The model mainly consists of one input layer, several hidden layers and an output layer. 300 

There are usually two stages for using ANN, the training stage and classifying stage. 301 

During the training stage, the hidden and the input layer neurons handle their inputs by 302 

a corresponding weight, sum the product, and then deal with the sum using a nonlinear 303 

transfer function to generate a result. During the classification period, the ANN predicts 304 

a target value by adjusting the weights in accordance with the errors between the actual 305 

output values and the target output ones and make the difference minimum.  306 

In this study, the number of hidden layer nodes is calculated by Eq 6. (Yi̇lmaz, 2009a). 307 

𝑁ℎ = 2𝑁𝑖 + 1                                                        (6) 308 

Where Ni is the number of input nodes and Nh is the number of hidden nodes. 309 

Then, a three-layer network with one input layer (7 neurons), one hidden layer (15 310 

neurons) and one output layer was used in the large-scale area. In the epicenter area, a 311 

three-layer network consisting of one input layer (8 neurons), one hidden layer (17 312 
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neurons) and one output layer was utilized. It is important to decide the initial weight 313 

range as influencing the convergence of the model. In this study, the initial weights 314 

were randomly selected from a small range of [-0.25 to 0.25] as proposed by Yi̇lmaz, 315 

(2009b). 316 

4.3 Support vector machine (SVM) 317 

The SVM model employs nonlinear transformations of the covariates into a higher 318 

dimensional feature space. The two main principles of SVM are the optimal 319 

classification hyperplane and the use of a kernel function. (Yao et al., 2008).  320 

The detailed of a two-class SVM model is described as follows. Given a set of linear 321 

separable training vectors xi (i=1,2…n) that consist of two categorical outcomes 322 

(landslide or non-landslide denoted as y= ±1), the purpose of the SVM is to find an n-323 

dimensional hyperplane differentiating the two categories by the maximum gap. 324 

Mathematically, the gap could be minimized subject to the following constraints 325 

                                                           (7) 326 

where ||w|| is the norm of the normal of the hyperplane, b is a scalar base, and (·) 327 

denotes the scalar product operation. Using the Lagrangian multiplier, the cost function 328 

can be defined as: 329 

        

2

1

1
( (( ) )) 1

2

n

i i

i

L w y w x b
=

= − • + 
                      

（8）
 330 

where λi is the Lagrangian multiplier. The solution can be obtained by the dual 331 

minimization of Eq. (8) with respect to w and b.  332 

In this study, the two-class SVM method was used due to its good performance in 333 

21

2
w
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landslide susceptibility analysis (Yao et al. 2008; Yi̇lmaz 2010)  334 

5. Model performance validation for large-scale area 335 

5.1 Training and validating the statistical models 336 

In this study, the performances of three models (LR, ANN and SVM) for the large-scale 337 

area were validated using receiver operating characteristic (ROC) curve. The area under 338 

the curve (AUC) indicates how good the statistical model is. It means the model has a 339 

perfect performance when the AUC value equals to 1. A higher AUC value indicates 340 

better performance of the statistical model. 341 

Because each sample datasets are selected randomly, the landslides susceptibility 342 

calculated by the same model is not the same. In order to determine the best model, the 343 

models are utilized for ten times analyses of randomly selected datasets, respectively. 344 

For different analyses, the training and testing samples are different. For the same 345 

analyses, the training samples and testing samples are the same for all three models. 346 

The area under the ROC curve (AUC) of each analysis was compared to explore the 347 

difference of three methods. The results are shown in Table 3. 348 

 349 

 350 

 351 

 352 

 353 

 354 
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Table 3 The AUC value of different models in large-scale area 355 

Numbe

r 

1 2 3 4 5 6 7 8 9 10 Statistical value 

Model % % % % % % % % % % Averag

e value 

Varianc

e value 

LR 82.

0 

81.

6 

82.

3 

80.

2 

81.

4 

80.

2 

81.

4 

80.

7 

81.

6 

82.

0 
81.3 0.49 

ANN 83.

3 

82.

4 

83.

6 

81.

3 

82.

1 

82.

0 

82.

1 

82.

3 

82.

8 

83.

1 
82.5 0.44 

SVM 80.

8 

80.

9 

81.

8 

80.

1 

80.

7 

79.

4 

80.

4 

80.

5 

80.

5 

81.

8 
80.7 0.47 

 356 

Table 3 shown as the ANN model performed the best among the three models with the 357 

highest AUC value, and the accuracy of the SVM model was worst. Based on the 358 

maximum AUC values of ten simulations, the ANN simulation result was also the best 359 

(83.6%). The average value and variance of the ANN model were 82.5% and 0.44%, 360 

which was better than the LR and SVM models. It means the robustness of the ANN 361 

model is better than LR and SVM models.  362 

Yilmaz (2009a) used three models including frequency ratio (FR), ANN and LR to 363 

generate the landslide susceptibility maps of Kat County (Tokat–Turkey). The result 364 

showed the ANN model performed better than other models. In Yilmaz (2010), four 365 

different models including conditional probability (CP), LR, ANN, and SVM models 366 

were utilized to assess the landslide susceptibility of Koyulhisar (Sivas, Turkey). The 367 

results also showed the performance of the ANN model was best. Some other research 368 

also showed the ANN model performed more accurate than other models (Yesilnacar 369 

and Topal 2005; Pradhan and Lee 2010c; Gómez and Kavalgu 2005). We consider the 370 
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ANN model performed better than the other models because it has a good global 371 

searching ability and can learn the near-optimum solution without the gradient 372 

information of error functions. As there about a total of 2000 samples in the calibration 373 

and validation set. Large numbers of samples in the calibration stage will lead to 374 

sufficient training of the model and establish an appropriate structure of ANN model. 375 

So the ANN model performs well on the condition those large numbers of samples were 376 

available. For any algorithm, the quantity and quality of samples have key impacts on 377 

the accuracy of the predicted results the algorithm makes. 378 

5.2 Development of landslide susceptibility maps 379 

In this study, all three models have been used to calculate the landslide susceptibility 380 

index (LSI) of each point, then generating the landslide susceptibility maps. There are 381 

several mathematical methods including quantiles, natural breaks, standard deviation, 382 

equal intervals, and descending area percentage to be reclassified the LSI (Ayalew et 383 

al., 2004). Among the above methods, the descending area percentage technique is the 384 

most widely used. In this study, the descending area percentage technique was used. 385 

The landslide susceptibility maps were constructed into four classes: low (40%), 386 

moderate (30%), high (20%), and very high (10%). The landslide density was used to 387 

assess the performance of landslide susceptibility maps. The landslide density (LD) is 388 

defined as the ratio of the numbers of landslide and the area of each susceptible class.  389 

The calculated landslide densities by using the three different models are shown in 390 

Table 4. It can be observed that all maps present good spatial predictions of landslides 391 
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as landslide density is ascending from very low to very high class (Yilmaz, 2009b). The 392 

results using the ANN model show that the very high class contains 42.01% of the total 393 

landslides, however, it only covers 9.95% of the total study area and the LD of the very 394 

high class was 4.59. In comparison, the low classes only contain 3.34% landslides, 395 

however, it covers 40.15% area and the LD of the low class was 0.09. This indicates 396 

that the ANN model performed well in susceptibility classification as it fits well with 397 

the landslide inventories. 398 

Table 4 The distribution of different classes area obtained by different methods 399 

Model Class Area 

(km2) 

Times of 

landslides 

occurrence 

Percentage of 

each 

susceptible 

class area (%) 

Percentage of 

landslides in 

each 

susceptible 

class (%) 

Landslides 

density 

（times/km2） 

LR Very high 87.61 387 9.95 40.44 4.42 

high 175.55 350 19.95 36.57 1.99 

moderate 263.60 171 29.95 17.87 0.65 

low 353.35 49 40.15 5.12 0.14 

SVM Very high 87.71 473 9.97 49.43 5.39 

high 175.95 286 19.99 29.89 1.63 

moderate 264.16 126 30.01 13.17 0.48 

low 352.28 72 40.03 7.52 0.20 

ANN Very high 87.60 402 9.95 42.01 4.59 

high 175.54 352 19.95 36.78 2.01 

moderate 263.60 171 29.95 17.87 0.65 

low 353.37 32 40.15 3.34 0.09 

 400 

The landslides susceptibility maps of different methods are shown as Fig. 6. The 401 

analyses result of LR, SVM and ANN models are very close. The epicenter area is a 402 

very high susceptible area, the northeast and the southwest mountain area are high and 403 
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very high susceptible areas respectively, and the northern plains area is basically 404 

distributed with low susceptible class. The susceptibility map of the ANN model shows 405 

the high susceptible areas and low susceptible areas are more concentrated into blocks, 406 

and zonation produced by the SVM and LR are more dispersed. Overall, all three 407 

models could generate reasonable landslides susceptibility maps.  408 

  409 

 410 

Fig. 6 Landslide susceptibility maps using different models for the large area. (a) LR model (b) 411 

SVM model (c) ANN model 412 
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6. Model performance validation for epicenter area 413 

From the landslide susceptibility map of the large-scale area, it is known that the 414 

susceptibility level in the epicenter area is generally high. Since it is still too costly to 415 

remediate all slopes in the approximately 60 km2 area, it is necessary to further evaluate 416 

the landslides susceptibility of the epicenter area. It can be seen in Section 5 that the 417 

ANN model is the most suitable model for landslides susceptibility assessment in this 418 

area. Therefore, we only use the ANN model to analyze and evaluate the landslides 419 

susceptibility in the epicenter area. 420 

Firstly, in order to evaluate the significance of landslides susceptibility analysis with 421 

considering different scales. The values of AUC for the epicenter area are calculated in 422 

two different conditions. Firstly, we calculate the values of AUC based on the 423 

corresponding calculated LSI of the epicenter area from the large-scale (whole affected 424 

area) datasets. Then, the values of AUC are calculated based on the calculated LSI from 425 

the epicenter area datasets. The values of AUC of the two different conditions are shown 426 

as Fig. 7. The results show the AUC is 56.2% based on the calculated LSI from the 427 

large-scale datasets, on the contrast the AUC is 72.3% based on the calculated LSI from 428 

the epicenter area solely. The results show it is necessary to assess the landslides 429 

susceptibility under different scales. 430 
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 431 

Fig.7 Analysis of the ROC curve under different scales 432 

Then, in order to evaluate the effects of the new factor coseismic ground deformation 433 

on the assessment of landslides susceptibility, two different situations are considered. 434 

One situation regards the coseismic deformation as an influencing factor, whereas the 435 

other does not. Fig.8 shows the values of AUC with considering coseismic surface 436 

deformation or not. From Fig. 8, it could be known that the AUC is 72.3% without 437 

considering the coseismic surface deformation, on the contrast the AUC is 76.5% with 438 

considering the coseismic surface deformation. It means the coseismic surface 439 

deformation has a positive effect on the assessment of landslides susceptibility.  440 
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 441 

Fig.8 Analysis of the ROC curve with considering coseismic surface deformation or not 442 

 443 

Influencing factors including lithology, elevation, slope, slope aspect, surface curvature, 444 

peak ground acceleration, the distance from the road and coseismic ground deformation 445 

were considered in the present study. Since the contribution of these factors to landslide 446 

models might be different, it is necessary to quantify the effects of influential factors 447 

on the assessment of landslides susceptibility. The Analysis of Variance method 448 

(ANOVA) has been utilized to evaluate the predictive capability of these factors. The 449 

factors with higher variance values indicate a higher contribution to landslide models 450 

and vice versa. The predictive capability of eight landslide affecting factors was shown 451 

in Table 5. 452 

 453 

 454 

 455 

 456 
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Table 5 the predictive importance of different influencing factors 457 

Number Influencing factor Predictive importance 

1 Lithology 0.213 

2 Slope 0.207 

3 PGA 0.169 

4 Curvature 0.125 

5 
Coseismic ground 

deformation 
0.093 

6 Elevation 0.086 

7 Slope aspect 0.057 

8 Distance to roads 0.048 

 458 

As Table 5 shown, lithology has the greatest impact on the occurrence of earthquake 459 

landslides and the impact of other factors is in order of slope, peak earthquake 460 

acceleration, curvature, coseismic ground deformation, elevation, aspect and distance 461 

from the road. The importance of coseismic surface deformation is higher than the 462 

elevation, aspect and distance from the road that are commonly chosen as influencing 463 

factors in the assessment of landslides susceptibility (Reichenbach et al., 2018). 464 

Although the earthquakes do not produce obvious ground rupture, the area with large 465 

coseismic surface deformation indicates that the movement of the rock mass may be 466 

further developed and the integrity of rock mass is reduced, which renders slopes prone 467 

to landslip in future earthquakes again. Therefore, especially in the case of buried fault 468 

earthquakes, coseismic surface deformation can be considered as an important 469 

influencing factor in the assessment of earthquake landslides susceptibility. 470 

Subsequently, the landslides density and landslides susceptibility map of the epicenter 471 

area were obtained as shown in Table 6 and Fig 9. The results show that the very high 472 

class contains 40.44% of the total landslides, however, it only covers 8.6% of the 473 
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epicenter area and the LD of the very high class was 26.54. In comparison, the low 474 

classes contain only 5.12% landslides, however, it covers 40.15% area and the LD of 475 

the low class was only 0.73. The landslide density is increasing gradually between low 476 

class and very high class. This indicates that the landslide susceptibility map fits well 477 

with the landslide inventories. 478 

Table 6 The distribution of different classes area in the epicenter area 479 

 Class Area 

(km2) 

Landslides 

occurrence 

Percentage 

of each 

susceptible 

class area 

(%) 

Percentage of 

landslides in 

each  

susceptible 

class (%) 

Landslides 

density 

（times/km2） 

ANN Very high 4.7853 127 8.6 40.44 26.54 

 high 10.8605 115 19.51 36.57 10.57 

 moderate 18.089 56 32.5 17.87 3.10 

 low 21.9236 16 39.39 5.12 0.73 

 480 

 481 

Fig. 9 Landslides susceptibility map of epicenter area 482 

As shown in Figure 9, the very high-class area is mainly distributed along the long axis 483 

of the ellipse in the east of the study area, and a large amount of deep-seated landslide 484 

occurred in this area. The high susceptibility area is also distributed in the northwestern 485 
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area. The occurrence possibility of landslides in the central area and southwest plain 486 

area is relatively low. Compared with the epicenter area parts in the landslides 487 

susceptibility map of large-scale, the landslides susceptibility maps obtained by the 488 

epicenter area research have a better discrimination degree, which can meet the key 489 

prevention and control requirements in the small area.  490 

7. Conclusion 491 

In this paper, the LR, ANN, and SVM models are applied to generate landslide 492 

susceptibility maps based on the 2004 Mid-Niigata earthquake-triggered landslide 493 

inventories. Seven impact factors, such as lithology, elevation, slope, aspect, surface 494 

curvature, peak acceleration and the distance from the road are selected as the 495 

influenced factors. The ROC curve evaluation results clearly demonstrate that the map 496 

obtained from the ANN model performed the best among the three models. The 497 

variance of AUC for randomly selected datasets by ANN is also the smallest, which 498 

means the ANN model has excellent robustness.  499 

Therefore, the ANN model can be used for the assessment and the development of 500 

landslide susceptibility map. Then, the significance of landslides susceptibility analysis 501 

with considering different scales is also evaluated. The results show the AUC is 56.2% 502 

based on the datasets from the large-scale, on the contrast the AUC is 72.3% based on 503 

the datasets from the epicenter area solely. The results show it is necessary to assess the 504 

landslides susceptibility under different scales. At the same time, we included the 505 

coseismic ground deformation as the influencing factor for landslides susceptibility in 506 
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the epicenter area. The AUC increased from 0.723 to 0.765 after considering the newly 507 

added factor. Therefore, for the buried rupture earthquake, the coseismic surface 508 

deformation can be considered as an important factor to evaluate the susceptibility of 509 

landslides. 510 
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