
Response to Review Comments 

 

Title: The assessment of earthquake-triggered landslides susceptibility 

with considering coseismic ground deformation 

 

First of all, the authors are grateful to the reviewer, who offered many constructive 

suggestions to enhance the manuscript. With this reply we hope to provide detail 

answers to the comments of the reviewers. This is done in a point-by-point fashion 

below. 

 

Responses to the Comments Raised by Reviewer #2 

1. In this manuscript, authors present the results of statistical analyses done to the 

distribution of landslides induced by the Mid-Niigata earthquake (2004), Mw 6.8. Three 

different statistical methods (logistic regression, Artificial Neural Network and Support 

Vector Machine) are applied to landslide inventory at two different scales: regional and 

near field. In this last case, coseismic ground deformation is considered as an 

influencing factor in the susceptibility analysis. From the analyses, the ANN method 

gives the best results. The objective of the paper is to analyze the importance of the 

coseismic ground deformation to explain landslide distribution and the benefits of using 

it when preparing susceptibility maps. 

The paper is properly organized and most of figures and tables are of interest. 

Authors’ reply:  

 

Many thanks for your positive comments and valuable time to improve the manuscript. 

 

2. Regarding the main objective of the paper, I miss a reflection by the authors about 

the true usefulness of the parameter in question in the preparation of susceptibility maps. 

As the authors point out in the Introduction, these maps constitute the main tool that 



our society has to establish the areas prone to suffer seismic-induced landslides, and 

thus define an appropriate use (or restrict their occupation) of the territory. However, 

the parameter that constitutes the center of the article, the coseismic ground deformation, 

is a parameter that can only be evaluated afterwards, that is, once the earthquake has 

occurred. So what real use does it have? Personally, I see this parameter, as well as the 

distance to the surface of rupture, useful for subsequent studies, to explain why 

instabilities have occurred in certain contexts or areas, but not to predict their 

occurrence. In fact, the difference in AUC when considering/not considering this 

parameter is less than 5%. 

Authors’ reply:  

Many thanks for your useful comments. The landslide susceptibility is defined as the 

likelihood of a landslide occurring in an area on the basis of the local terrain and 

environmental conditions (Reichenbach et al., (2018). Susceptibility measures the 

degree to which a local terrain can affect the future slope movements. In other words, 

it is an estimate of “where” landslides are likely to occur. So, the main objective of 

landslide susceptibility in this study is to provide planners or decision makers with the 

foreknowledge of landslides regions and reducing the effects of landslides which trigger 

by future earthquake. The foundation of landslides susceptibility is based on the 

assumption that future landslides would be more likely to occur under similar 

conditions to those of the existed landslides. It means the influencing factors should be 

derived afterwards the earthquake occurrence (landslides occurrence), especially like 

the influencing factors concerning the seismology. As the seismic influencing factors 

only could be obtained after the earthquake. For example, the PGA is the maximum 

change of ground shaking velocity recorded by seismometers during an earthquake and 

it has been commonly used in the assessment of landslide susceptibility ((Cao et al., 

2019; Sangeeta et al., 2020; Bai et al., 2012; Tian et al., 2019; Xu and Xu, 2013; Xu et 

al., 2013; Li et al., 2013; Umar et al., 2014; Xu et al., 2012). The coseismic ground 

deformation is also a kind of seismic influencing factors.  

In addition, the coseismic ground deformation will help to reveal the hidden subsurface 

damage. It should be noted that not all deformation will direct lead the landslides. 



However, the area with large coseismic surface deformation often indicates that the 

movement of the rock mass may be further developed and the integrity of rock mass is 

reduced, which renders slopes prone to landslip in future earthquakes again. Zhao et al., 

(2012) explored the localized coseismic deformation in Kizawa (a small village), Japan 

after the earthquake. The results showed the calculated coseismic deformation in 

Kizawa is relatively larger, but the landslides are sparse. However, after a detail 

investigation, it found that the underground structures such as tunnels and wells were 

severely damaged. The road alignment of the Kizawa tunnel, which was buried 30 m 

beneath the ground surface, was shifted sideways 1-1.5 m to east-to-southeast direction. 

Furthermore, two irrigation well were dislocated at 30 m and 20 m, beneath the ground, 

respectively. Therefore, it is highly possible that the ground underwent some subsurface 

damage at locations where the large coseismic deformation. Although the deformation 

did not form the landslides at these locations in the 2004 Mid-Niigata earthquake, as 

there were accumulated deformation within the rock and soil, the landslide will easily 

occur in the next earthquake event. According to the comments above, the coseismic 

ground deformation should be regarded as a useful influencing factor in the assessment 

of landslides susceptibility. 

Then, in order to evaluate the effects of the coseismic ground deformation on the 

assessment of landslides susceptibility, the Analysis of Variance method (ANOVA) has 

been utilized to evaluate the predictive capability of used conditional factors. The 

factors with higher variance values indicate a higher contribution to landslide models 

and vice versa. The predictive capability of eight landslide affecting factors was shown 

in Table 1. 

Table 1. Predictive importance of different influencing factors 

Number Influencing factor Predictive importance 

1 Lithology 0.213 

2 Slope 0.207 

3 PGA 0.169 

4 Curvature 0.125 

5 
Coseismic ground 

deformation 
0.093 



6 Elevation 0.086 

7 Slope aspect 0.057 

8 Distance to roads 0.048 

 

From Table1, it could be found the coseismic ground deformation ranked fifth place 

among the eight factors. The importance of coseismic surface deformation is higher 

than the elevation, aspect and distance from the road. Reichenbach et al., (2018) 

critically review the statistically based landslide susceptibility assessment literature by 

systematically searching for and then compiling an extensive database of 565 peer-

review articles from 1983 to 2016. The results showed that elevation, aspect and 

distance from the road are commonly chosen as influencing factors in the assessment 

of landslides susceptibility. It means the coseismic ground deformation should be 

regarded as an important factor in the assessment of landslides susceptibility.  

The AUC is a commonly used indices to evaluate the model prediction performance. 

At present, there are no unanimous standards to assess the increment of AUC. This 

means it is still debated that how much increment of AUC will be regarded as significant 

improvement. Most studies just considered the larger value of AUC means the better 

performances of the model. For example, Pham et al., (2016) conducted a comparative 

study of five different machine learning methods for landslide susceptibility assessment. 

The increment of AUC value for different models was about 0.045 (0.910-0.955). 

Yilmaz (2010) made a comparison of landslide susceptibility mapping methods. The 

increment AUC value for different models was 0.019 (0.827-0.846). Pham et al., (2017a) 

made a comparative study of sequential minimal optimization-based support vector 

machines, vote feature intervals, and logistic regression in landslide susceptibility 

assessment. The increment of AUC value for different models was 0.044 (0.812-0.856). 

Pham et al., (2017b) used the hybrid integration of multilayer perceptron neural 

networks and machine learning ensembles for landslide susceptibility assessment. The 

increment of AUC value for different models was 0.01 (0.876-0.886). Aghdam et al., 

2017 conducted the landslide susceptibility assessment using a novel hybrid model of 

statistical bivariate methods (FR and WOE) and adaptive neuro-fuzzy inference system 



(ANFIS). The increment of AUC value for different models was 0.03 (0.82-0.85). 

Tsangaratos and Ilia (2016) conducted the landslide susceptibility mapping using the 

certainty factor method, the Iterative Dichotomizer version 3 algorithm, the J48 

algorithm and the modified Iterative Dichotomizer version 3 model. The validation 

results showed that AUC values for these models varied from 0.7766 to 0.8035. Xu et 

al., 2012 made a comparison of different models for susceptibility mapping of 

earthquake triggered landslides related with the 2008 Wenchuan earthquake in China. 

The results showed that the AUC values for the models varied from 0.7253 to 0.801. 

So, comparing the increment of AUC values in this study with above mentioned similar 

studies, it may be concluded that the increasing of AUC is relatively significant. 
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