
Response to Review Comments 

 

Title: The assessment of earthquake-triggered landslides susceptibility 

with considering coseismic ground deformation 

 

First of all, the authors are grateful to the reviewer, who offered many constructive 

suggestions to enhance the manuscript. With this reply we hope to provide adequate 

answers to the comments of the reviewers. This is done in a point-by-point fashion 

below. 

 

Responses to the Comments Raised by Reviewer #1 

1. In the manuscript “The assessment of earthquake-triggered landslides susceptibility 

with considering coseismic ground deformation”, the authors try to improve 

earthquake-triggered landslide susceptibility maps by introducing a new parameter that 

they call “coseismic ground deformation” Assuming as a study case the October 23, 

2004, Mw 6.8 Niigata earthquake, the authors provide several landslide susceptibility 

maps at two different scales, using three different statistical methods, namely, the 

logical regression (LR), the Support Vector Machine (SVM), and the Artificial Neural 

Network (ANN). The authors conclude their study, saying that the “coseismic ground 

deformation” parameter is an “important” factor to evaluate the susceptibility of 

landslides. In my opinion, the small increase of the area under the receiver operating 

characteristic (ROC) curve, i.e., from approximately 0.72 to 0.77, obtained by 

introducing the “coseismic ground deformation” parameter, does not support the 

conclusion stated by the authors. Such a small improvement is primarily affected by the 

generally low resolution of the other parameters introduced in the analysis. 

 

Authors’ reply:  

Many thanks for your comments. In this study, we aim to show the importance of 



“coseismic ground deformation” in landslides mapping by comparing the values of 

AUC in the condition of considering and without considering coseismic ground 

deformation. The only difference between the two conditions was adding the coseismic 

ground deformation. It means the resolution of the other parameters in the two condition 

are exactly the same. So, the authors considered that the effects of other parameters 

resolution on the calculated results should be very small. 

In addition, in order to evaluate the effects of the coseismic ground deformation on the 

assessment of landslides susceptibility, the Analysis of Variance method (ANOVA) has 

been utilized to evaluate the predictive capability of used conditional factors. The 

factors with higher variance values indicate a higher contribution to landslide models 

and vice versa. The predictive capability of eight landslide affecting factors was shown 

in Table 1. 

Table 1. the predictive importance of different influencing factors 

Number Influencing factor Predictive importance 

1 Lithology 0.213 

2 Slope 0.207 

3 PGA 0.169 

4 Curvature 0.125 

5 
Coseismic ground 

deformation 
0.093 

6 Elevation 0.086 

7 Slope aspect 0.057 

8 Distance to roads 0.048 

 

From Table 1, it could be found the coseismic ground deformation ranked the fifth 

among eight factors. The importance of coseismic surface deformation is higher than 

the elevation, aspect and distance from the road. Reichenbach et al., (2018) critically 

review the statistically-based landslide susceptibility assessment literature by 

systematically searching for and then compiling an extensive database of 565 peer-

review articles from 1983 to 2016. The results showed that elevation, aspect and 

distance from the road are commonly chosen as influencing factors in the assessment 

of landslides susceptibility. It means the coseismic ground deformation should be 



regarded as an important factor in the assessment of landslides susceptibility.  

The AUC is a commonly used indices to evaluate the model prediction performance. 

At present, there are no unanimous standards to assess the increment of AUC. This 

means it is still debated that how much increment of AUC will be regarded as significant 

improvement. Most studies just considered the larger value of AUC means the better 

performances of the model. For example, Pham et al., (2016) conducted a comparative 

study of five different machine learning methods for landslide susceptibility assessment. 

The increment of AUC value for different models was about 0.045 (0.910-0.955). 

Yilmaz (2010) made a comparison of landslide susceptibility mapping methods. The 

increment AUC value for different models was 0.019 (0.827-0.846). Pham et al., (2017a) 

made a comparative study of sequential minimal optimization-based support vector 

machines, vote feature intervals, and logistic regression in landslide susceptibility 

assessment. The increment of AUC value for different models was 0.044 (0.812-0.856). 

Pham et al., (2017b) used the hybrid integration of multilayer perceptron neural 

networks and machine learning ensembles for landslide susceptibility assessment. The 

increment of AUC value for different models was 0.01 (0.876-0.886). Aghdam et al., 

2017 conducted the landslide susceptibility assessment using a novel hybrid model of 

statistical bivariate methods (FR and WOE) and adaptive neuro-fuzzy inference system 

(ANFIS). The increment of AUC value for different models was 0.03 (0.82-0.85). 

Tsangaratos and Ilia (2016) conducted the landslide susceptibility mapping using the 

certainty factor method, the Iterative Dichotomizer version 3 algorithm, the J48 

algorithm and the modified Iterative Dichotomizer version 3 model. The validation 

results showed that the AUC values for these models varied from 0.7766 to 0.8035. Xu 

et al., (2012) made a comparison of different models for susceptibility mapping of 

earthquake triggered landslides related with the 2008 Wenchuan earthquake in China. 

The results showed that the AUC values for the models varied from 0.7253 to 0.801. 

So, comparing the increment of AUC values in this study with above mentioned studies, 

it may be concluded that the increasing of AUC is relatively significant. Furthermore, 

the AUC of the analysis in this study is relatively low, which badly requires adding 

more contribution factors to improve the performance.  



In addition, the coseismic ground deformation will help to reveal the hidden subsurface 

damage. It should be noted that not all deformation will direct lead the landslides. 

However, the area with large coseismic surface deformation often indicates that the 

movement of the rock mass may be further developed and the integrity of rock mass is 

reduced, which renders slopes prone to landslip in future earthquakes again. Zhao et al., 

(2012) explored the localized coseismic deformation in Kizawa (a small village), Japan 

after the earthquake. The results showed the calculated coseismic deformation in 

Kizawa is relatively large but the landslides are sparse. However, after a detail 

investigation, it found that the underground structures such as tunnels and wells were 

severely damaged. The road alignment of the Kizawa tunnel, which was buried 30 m 

beneath the ground surface, was shifted sideways 1-1.5 m to east-to-southeast direction. 

Furthermore, two irrigation well were dislocated at 30 m and 20 m, beneath the ground, 

respectively. Therefore, it is highly possible that the ground underwent some subsurface 

damage at locations where the large coseismic deformation. Although the deformation 

did not form the landslides at these locations in the 2004 Mid-Niigata earthquake, as 

there were accumulated deformation within the rock and soil, the landslide will easily 

occur in the next earthquake event. According to the comments above, the coseismic 

ground deformation should be regarded as a useful influencing factor in the assessment 

of landslides susceptibility. 

 

Reference  

1. Pham, B.T., Pradhan, B., Bui, D.T., Prakash, I., Dholakia, M.B. 2016. A comparative study of 

different machine learning methods for landslide susceptibility assessment: A case study of 

Uttarakhand area (India). Environmental Modelling & Software. 84, 240-250 

2. Yi̇lmaz, I., 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, 

Turkey: conditional probability, logistic regression, artificial neural networks, and support 

vector machine. Environmental Earth Sciences, 61(4): 821-836. 

3. Pham, B.T., Bui, D.T., Prakash, I., Long, H.N. and Dholakia, M.B., 2017a. A comparative study 

of sequential minimal optimization-based support vector machines, vote feature intervals, and 

logistic regression in landslide susceptibility assessment using GIS. Environmental Earth 

Sciences, 76(10): 371. 

4. Pham, B.T., Bui, D.T., Prakash, I., Prakash, I. and Dholakia, M.B., 2017b. Hybrid integration 



of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide 

susceptibility assessment at Himalayan area (India) using GIS. Catena 149, 52–63 

5. Aghdam, I.N., Pradhan, B., Panahi, M., 2017. Landslide susceptibility assessment using a novel 

hybrid model of statistical bivariate methods (FR and WOE) and adaptive neuro-fuzzy inference 

system (ANFIS) at southern Zagros Mountains in Iran. Environmental Earth Sciences, 76: 237. 

6. Tsangaratos, P., Ilia, L., 2016. Landslide susceptibility mapping using a modified decision tree 

classifier in the Xanthi Perfection, Greece. Landslides, 13:305–320.  

7. Xu, C., Xu, X., Dai, F. and Saraf, A.K., 2012. Comparison of different models for susceptibility 

mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in 

China. Computers & Geosciences, 46(3): 317-329. 

8. Zhao, Y., Konagai, K. and Fujita. T., 2012. Multi-scale Decomposition of Co-seismic 

Deformation from High Resolution DEMs: a Case Study of the 2004 Mid-Niigata Earthquake. 

Acta Geologica Sinica(English Edition), 86(4): 1013-1021. 

9. Reichenbach, P., Rossi, M., Malamud, D.B., Mihir, M. and Guzzetti, F., 2018. A review of 

statistically-based landslide susceptibility models. Earth-Scienc Reviews, 180: 60-91. 

 

2. In particular, one of the most critical parameters, i.e., the lithological map, present a 

spatial resolution that could be not acceptable for a small scale analysis of the epicentral 

area. 

Authors’ reply:  

Many thanks for your comments. The used lithological map is the highest resolution 

map that the author could get. Even so, in the used lithological map, there are totally 

eleven different types of lithology. Bandara and Ohtsuka (2017) explored the spatial 

distribution of landslides induced by 2004 Mid-Niigata prefecture earthquake and only 

seven different lithology types were distinguished. In addition, comparing with other 

similar studies (Yi et al., 2019; Xu et al., 2012; Yang et al., 2014), the common number 

of lithology types in earthquake induced landslide susceptibility mapping were ten to 

fifteen. So, the authors considered the spatial resolution of the lithological map was 

acceptable to generate the landslides susceptibility mapping.  
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3. Another critical factor, i.e., the peak ground acceleration, is strongly scattered over 

the study area, and it presents an unacceptable resolution for the small scale study of 

the epicentral area. 

Authors’ reply:  

Many thanks for your comments. The authors fully agree that the spatial resolution of 

PGA map is low. The PGA map of epicenter area is the result of back-analysis for the 

seismic station data. So, the resolution is relatively low. However, the used PGA map 

is also the highest resolution map that the authors could get and most back-analyses can 

offer. The authors inferred that the low resolution of PGA map is also a main reason to 

lead relatively lower values of AUC (0.72), as the values of AUC in large-scale is 0.82 

for ANN model. However, in the other words, the low values of AUC also demonstrated 

the urge demand of introducing new factors to improve the assessment of landslides 

susceptibility. As the low resolution of PGA map is a main limitation, the authors will 

also discuss this in the revised manuscript. 

 

4. Even the “coseismic ground deformation” parameter and its definition are not explicit. 

The authors provide a map (Figure 5) given by the difference of two Lidar surveys 

performed in 2003 and 2007. The authors do not specify the orientation of the computed 

ground deformation (subsidence? Uplift?....) nor describe the “expected” coseismic 

ground deformation concerning the faulting mechanism. Moreover, the map shown in 

Figure 5 covers approximately four years; thus, it could be affected by ground 

movements that are not related to the earthquake. 



Authors’ reply:  

Many thanks for the comments. The authors felt very sorry that make a mistake about 

the DEM collected time. The DEMs before the earthquake were derived from aerial 

photographs shot by the Geospatial Information Authority of Japan in 1975 and 1976. 

Aero Asahi (2004) then used the triangulation points prepared for road construction in 

1986 to orthogonalize and digitize these photos. The post-earthquake DEMs were 

prepared from airborne LiDAR scanning conducted by the Nakanihon Air Service on 

Oct 28th, 2004, the second day of the main shock and the three major aftershocks. Both 

sets of DEMs have a resolution of 2 m × 2 m. Since the two sets of DEMs were prepared 

in different ways, it is not appropriate to compare them directly in the calculation. 

Therefore, we used the smoothed elevations instead of the original ones for the 2004 

DEMs by substituting x and y coordinates of each point into the equation of its nominal 

plane. The properly defined of nominal plane could also fully or partially eliminated 

terrain changes owing to human activities during the time gap between two sets of 

DEMs, since the size of the smooth window is larger than all manmade changes. In 

addition, in order to verify the accuracy of the calculated cosesmic ground deformation, 

the calculated displacements were also compared with those at points of triangulations. 

Totally 11 available triangulation points which buried on roads were used. The 

comparing results showed the difference between observed displacement and calculated 

displacement was small, which demonstrated the calculated cosesmic ground 

deformation is accurate. The detailed illustration also can be found from Konagai et al., 

(2009) and Zhao et al, (2012).  

The orientation of the computed cosesimic ground deformation could be divided into 

two direction: lateral components and vertical components. Zhao et al., (2012) 

compared the location of earthquake-trigger landslides with the displacement field of 

lateral components and vertical components, respectively. The results showed that 

landslides clusters were found within large lateral deformation region, while the 

landslides seem to be off where the vertical displacement is large. So, in this study, only 

the lateral deformation is used. The Fig. 5 also showed the distribution of the absolute 

value of the lateral ground deformation. The direction of the ground deformation is 



shown in Fig. R1, as only the absolute values of ground deformation were used, the 

direction was not considered in this analysis.  

 

 

Fig. R1 Direction of ground deformation (a) lateral deformation (b) vertical 

deformation (adopted from Zhao et al., 2012) 

Actually, the calculated ground deformation also could reflect the corresponding 

faulting mechanism. In the calculation process of cosesimic ground deformation, a cut-

off window could be selected according to the regional geology to ease the tectonic 

displacement calculation. Zhao et al., (2012) explored the spatial distribution of lateral 

deformation and vertical deformation near Kajigane syncline, Japan (Fig. R1). The 



results showed a 1.5-2 km band of large eastward vectors are pointing to the Kajigane 

syncline from the west side whereas the vectors on the east side of Kajigane syncline 

decreased abruptly to 0.1 m. At the same time, the vertical deformation on the west side 

of Kajigane syncline is upward, while the vertical deformation changed to downward 

on the east side of Kajigane sysncline (Fig. R1). Both the changing trend of lateral 

deformation and vertical deformation indicated there was a hidden reverse fault beneath 

the Kajigane syncline as the west side was the hanging wall.   
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5. It is widely acknowledged that the most critical factors that affect earthquake-

triggered landslides are the lithology, the slope, and the PGA. Regarding the latter, slope 

stability is affected not only by the PGA of the mainshock but also by the PGA of the 

several aftershocks, which always follow the main event. This aspect is neither 

introduced not discussed in the analysis. 

Authors’ reply:  

Many thanks for your comments. The authors fully agreed with reviewer that slope 

stability is affected not only by the PGA of the mainshock but also by the PGA of the 

several aftershocks. Unfortunately, due to the limitation of data, the authors only have 

the PGA map of mainshock when preparing the manuscript. So, it may be difficult to 

explore the effects of aftershocks on the landslides susceptibility. This is a main 

limitation of this study and should be conducted. The authors will also discuss this 

limitation in the revised manuscript.     

However, in other words, it should be noted that too many same types of influencing 



factors will also lead the overfitting problems. So, at present, almost all studies only 

considered the PGA map of mainshock as influencing factors and neglected the effect 

of aftershock on the assessment of landslides susceptibility (Cao et al., 2019; Sangeeta 

et al., 2020; Bai et al., 2012; Tian et al., 2019; Xu and Xu, 2013; Xu et al., 2013; Li et 

al., 2013; Umar et al., 2014; Xu et al., 2012) and the concluded landslide susceptibility 

mappings were also reliable. Even so, the comments of reviewer are very useful and 

should be explored in further works.  
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