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Abstract. Snow instability tests provide valuable information regarding the stability of the snowpack. Test results are key

data used to prepare public avalanche forecasts. However, to include them into the operational procedures, a quantitative

interpretation scheme is needed. Whereas the interpretation of the Rutschblock test is well established, a similar detailed

classification for the Extended Column Test (ECT) is lacking. Therefore, we develop a 4-class stability interpretation scheme.

Exploring a large data set of 1719 ECTs observed at 1226 sites, often performed together with a Rutschblock (RB) in the same5

snow pit, and corresponding slope stability information, we revisit the existing stability interpretations, explore the potential

of a more detailed classification, and specifically consider the interpretation of cases when two ECTs were performed in the

same snow pit. Our findings confirm previous research, namely that the crack propagation propensity is the most relevant result

and that the loading step required to initiate a crack is of secondary importance for stability assessment. The comparison with

the RB showed that the ECT classifies slope stability less reliably than the RB. In some situations, performing a second ECT10

may be helpful, when the first test did neither indicate rather unstable nor stable conditions. Finally, the data clearly show

that false-unstable predictions of stability tests outnumber the correct-unstable predictions in an environment where overall

unstable locations are rare.

Copyright statement. TEXT

1 Introduction15

Gathering information about current snow instability is crucial when evaluating the avalanche situation. However, direct evi-

dence of instability - as recent avalanches, shooting cracks or whumpf sounds - is often lacking. When such clear indications of

instability are absent, snow instability tests are widely used to obtain information on the stability of the snowpack. Such tests

provide information on failure initiation and subsequent crack propagation - essential components for slab avalanche release

(Schweizer et al., 2008b; van Herwijnen and Jamieson, 2007). However, performing snow instability tests is time-consuming,20

as they require to dig a snow pit. Furthermore, considerable experience in the selection of a representative site is needed, and

the interpretation of test results is challenging (Schweizer and Jamieson, 2010). Alternative approaches such as interpreting

snow micro-penetrometer signals (Reuter et al., 2015; van Herwijnen et al., 2009), are promising, but not sufficiently estab-
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lished yet.

Two commonly used tests to assess snow instability are the Rutschblock test (RB, Föhn, 1987) and the Extended Column Test25

(ECT; Simenhois and Birkeland, 2006, 2009). For both tests, which are described in greater detail in Section 2.1, blocks of

snow are isolated from the surrounding snowpack. According to test specifications, the block is then loaded in several steps.

The loading step leading to a crack in a weak layer (failure initiation) is recorded, and whether crack propagation across the

entire block of snow occurs (crack propagation). For the RB, the interpretation of the test result is well established and involves

combining failure initiation (score) and crack propagation (release type) (e.g. Schweizer, 2002; Winkler and Schweizer, 2009).30

In contrast, the original interpretation of ECT results considers crack propagation propensity only (Simenhois and Birkeland,

2006, 2009; Ross and Jamieson, 2008): if a loading step leads to a crack propagating across the entire column, the result is

considered as unstable, else as stable. However, Winkler and Schweizer (2009) suggested to improve this binary classification

by additionally considering the loading step required to initiate a crack and by considering a minimal failure layer depth leading

to interpretations of ECT results as unstable, intermediate and stable. Moreover, they hypothesized that performing two tests,35

and considering differences in test results, may help to establish an intermediate stability class.

As the properties of the slab as well as the weak layer may vary on a slope (Schweizer et al., 2008a), reliably estimating slope

stability requires many samples (Reuter et al., 2016) and a single test result may not be indicative. Hence, it was suggested

to perform more than one test, either in the same snow pit or in a distance beyond the correlation length, which is often on

the order of ≤ 10 m (Kronholm et al., 2004). For instance, Schweizer and Bellaire (2010) analysed whether performing two40

pairs of Compression Tests (CT) about 10 m apart improves slope stability evaluation. They suggested a sampling strategy that

essentially suggests that in case the first test does not indicate instability, additional tests can reduce the number of false-stable

predictions. Moreover, they reported that in 61–75% of the cases the two tests in the same pit provided consistent results, in the

remaining cases either the CT score or the fracture type varied. For the ECT, several authors also noted that two tests performed

adjacent to each other in the same snow pit or at several meters distance within the same small slope frequently lead to different45

results (Winkler and Schweizer, 2009; Hendrikx et al., 2009; Techel et al., 2016). For instance, Techel et al. (2016) reported

that in 21% of the cases the ECT fracture propagation result differed between two tests in the same snow pit. Moreover, they

explored differences in the performance between the ECT and the RB with regard to slope stability evaluation and found that

the RB detected more stable and unstable slopes correctly than a single ECT or two adjacent ECTs.

Both, ECT and RB provide information relating to slab avalanche release. While the Rutschblock provides reliable results, the50

ECT is quicker to perform in the field, which probably explains why it has quickly become the most widely used instability

test in North America (Birkeland and Chabot, 2012). Given the popularity of the ECT as a test to obtain snow instability

information and the lack of a quantitative interpretation scheme that includes more than just two classes, our objective is to

revisit the originally suggested stability interpretations and to specifically consider cases when two ECTs were performed in

the same snow pit. Building on our findings, we propose a new stability classification differentiating between cases when just55

a single ECT and when two adjacent ECTs were performed in the same snow pit with the goal to minimize false-stable and

false-unstable predictions. Additionally, we empirically explore the influence of the base rate, the frequency of unstable lo-

cations, on stability test interpretation, which - if neglected - may lead to false interpretations (Ebert, 2018). We address this
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Table 1. Data overview with the number (N) and proportion of unstable rated slopes.

stability tests N unstable

single ECT 279 15%

two ECT 208 30%

single ECT and a RB 454 20%

two ECT and a RB 285 20%

topic by exploring a large set of ECT with observations of slope stability collected in Switzerland. Furthermore, ECT results

are compared with concurrent RB test results.60

2 Data

Data were collected in 13 winters from 2006-2007 to 2018-2019 in the Swiss Alps. We explored a data set of stability test

results (Sect. 2.1 and 2.2) in combination with information on slope stability (Sect. 2.3) and avalanche hazard (Sect. 2.4).

At 1226 sites, for which slope stability information was available, 1719 ECT were performed (Tab. 1). At 487 out of the 1226

sites either one (279) or two ECTs (208) were performed (695 ECTs in total). At the other 739 sites, a RB test was conducted65

in addition to either one (484) or two ECTs (285) in the same snow pit (1024 ECTs in total).

2.1 Extended Column Test (ECT) and Rutschblock test (RB)

At sites where ECT and RB were realized in the same snow pit, one or two ECTs were generally performed directly down-

slope from the RB (e.g. as described in detail in Winkler and Schweizer (2009)). If no RB was performed but two ECTs were

performed, it is not known whether the ECTs were performed side-by-side, or whether the second ECT was located directly70

up-slope from the first ECT.

Test procedure followed observational guidelines (Greene et al., 2016). For the ECT, loading is by tapping on the shovel blade

positioned on the snow surface on one side of the column of snow isolated from the surrounding snowpack (30 loading steps,

Fig. 1a). For the RB, a person on skis stands or jumps on the block (6 loading steps, Fig. 1b). When a crack initiates and

propagates within the same weak layer across the entire column within one tap of crack initiation, it is called ECTP for the75

ECT; for the RB this corresponds to the release type whole block. If the crack does not propagate within the same layer across

the entire column or within one tap of crack initiation, ECTN is recorded for the ECT. Similarly, if the fracture does not

propagate through the entire block, part of block or edge only are recorded as RB release type. If no failure can be initiated

including loading step 30 (ECT) or 6 (RB), these are recorded as ECTX or RB7, respectively.
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2.2 Stability classification of ECT and RB80

To facilitate the distinction between the result of an instability test and the stability of a slope, we refer to test stability using

four classes 1 to 4, with class 1 being the lowest stability (poor or less) and class 4 the highest stability (good or better). In

contrast, for slope stability, we use the terms unstable and stable. We chose four classes as a similar number of classes has been

used for RB stability interpretation, as outlined below.

85

Extended Column Test (ECT): The stability classification originally introduced by Simenhois and Birkeland (2009) (ECTorig)

suggested two stability classes: ECTN or ECTX are considered to indicate high stability (class 4), while ECTP indicates low

stability (class 1).

The classification suggested by Winkler and Schweizer (2009) (ECTw09) uses three classes:

– ECTP≤21: low stability (class 1)90

– ECTP>21: intermediate stability (class 2-3)

– ECTN or ECTX: high stability (class 4)

Rutschblock test: We classified the RB in four classes (classes 1 to 4; Fig. 2). We followed largely the RB stability classi-

fication by Techel and Pielmeier (2014), who used a simplified version of the classification used operationally by the Swiss

avalanche warning service (Schweizer and Wiesinger, 2001; Schweizer, 2007). Schweizer (2007) defined five stability classes95

for the RB, based on the score and the release type in combination with snowpack structure, while Techel and Pielmeier (2014)

relied exclusively on RB score and release type. In contrast to both these approaches, we combined the two highest classes

(good or very good) to one class (class 4).

Shallow weak layers (≤ 15 cm) are rarely associated with skier-triggered avalanches (Schweizer and Lütschg, 2001; van Her-

wijnen and Jamieson, 2007), which is, for instance, reflected in the threshold sum approach (Schweizer and Jamieson, 2007),100

a method to detect structural weaknesses in the snowpack. Schweizer and Jamieson (2007) reported the critical range for weak

layers particularly susceptible to human triggering as 18-94 cm below the snow surface. Minimal depth criteria were also taken

into account by Winkler and Schweizer (2009) in their comparison of different instability tests or by Techel and Pielmeier

(2014), when classifying snow profiles according to snowpack structure. We addressed this, by assigning the next higher sta-

bility class if the weak layer was between 6 and 10 cm below the surface, and class 4 if the failure layer was less than 5 cm105

below the snow surface. If there were several failure planes in the same test, we searched for the ECT and RB failure plane

with the lowest stability class.

2.3 Slope stability classification

We classified stability tests according to observations relating to snow instability in similar slopes as the test on the day of

observation, such as recent avalanche activity or signs of instability (whumpfs or shooting cracks). This information was man-110

ually extracted from the text accompanying a snow profile and/or stability test. This text contains - among other information -
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RB

ECT

200 cm 90 cm

Figure 1. ECT and RB according to observational guidelines. At the back, the block of snow is isolated by either cutting with a cord or a

snow saw. The lightblue area indicates the approximate area, where the skis or the shovel blade is placed. This area corresponds to the area

loaded for the ECT, while the main load under the skis is exerted over a length of about 1 m (Schweizer and Camponovo, 2001). Loading is

from above (arrows).
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Figure 2. Classification of RB into four stability classes. *combines release type part of block and edge only.

details regarding recent avalanche activity or signs of instability.

A slope was considered unstable if any signs of instability or recent avalanche activity - natural or skier-triggered avalanches

from the day of observation or the previous day - were noted on the slope where the test was carried out or on neighbouring

slopes (Simenhois and Birkeland, 2006, 2009; Moner et al., 2008; Winkler and Schweizer, 2009; Techel et al., 2016).115

We considered a slope only as stable, if it was clearly stated that on the day of observation none of the before-mentioned signs

were observed in the surroundings. In most cases, surroundings relates to observations made in the terrain covered or observed

during a day of back-country touring (estimated to be approximately 10 to 25 km2, Meister, 1995; Jamieson et al., 2008).

In the following, we denote slope stability simply as stable or unstable, although this strict binary classification is not entirely

correct. For instance, many tests were performed on slopes that were actually rated as unstable, though did not fail.120

If it was not clearly indicated, when and where signs of instabilities or fresh avalanches were observed, or if this information

was lacking entirely, these data had not been included in our dataset.

2.4 Forecast avalanche danger level

For each day and location of the snow instability test, we extracted the forecast avalanche danger level related to dry-snow125

conditions from the public bulletin issued at 17.00 CET, and valid for the following 24 hours.
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3 Methods

3.1 Criteria to define ECT stability classes

We consider the following criteria as relevant when testing existing or defining new ECT stability classes:

– (i) Stability classes should be distinctly different from each other. The criteria we rely on is the proportion of unsta-130

ble slopes. Therefore, a higher stability class should have a significantly lower proportion of unstable slopes than the

neighboring lower stability class.

– (ii) The lowest and highest stability classes should be defined such that the rate of correctly detecting unstable and stable

conditions is high, respectively; hence, the rate of false-stable and false-unstable predictions should be low, respectively.

Stability classes in-between these two classes may represent intermediate conditions, or lean towards more frequently135

unstable and stable conditions, permitting a higher false-stable and false-unstable rate than the rates of the two extreme

stability classes.

– (iii) The extreme classes should occur as often as possible, as the test should discriminate well between stable and

unstable conditions in most cases.

To define classes based on crack propagation propensity and crack initiation (number of taps), we proceeded as follows:140

1. We calculated the mean proportion of unstable slopes for moving windows of 3, 5 and 7 consecutive number of taps, for

ECTP and ECTN separately. ECTX was included in ECTN, treating ECTX as ECTN31.

2. We obtained thresholds for class intervals by applying unsupervised kmeans-clustering (R-function kmeans with settings

max.iter = 100, nstart = 100; R Core Team (2017); Hastie et al. (2009)) on the proportion of unstable slopes of the three

running means (step 1). The number of clusters k tested were 3, 4 and 5.145

3. We repeated clustering 100 times using 90% of the data, which were randomly selected without replacement. For each

of these repetitions, the cluster boundaries were noted. Based on the 100 repetitions, we report the respective most

frequently observed k-1 boundaries, together with the second most frequent boundary.

4. To verify whether the classes found by the clustering algorithm were distinctly different (criteria i), we compared the

proportion of unstable slopes between clusters using a two-proportions z-test (prop.test, R Core Team (2017)). We150

considered p-values ≤ 0.05 as significant.

In almost all cases, we used a one-sided test with the null hypothesis H0 being either H0: prop(A) ≤ prop(B) (or its

inverse), where prop is the proportion unstable slopes in the respective cluster A or B. The alternative hypothesis Ha

would then be Ha: prop(A) > prop(B) (or its inverse).

5. For clusters not leading to a significant reduction in the proportion of unstable slopes, we tested a range of thresholds (±155

3 taps within the threshold indicated by the clustering algorithm) to find a threshold maximizing the difference between
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cluster centers and leading to significant differences (p ≤ 0.05) in the proportion of unstable slopes (criteria ii). If no

such threshold could be found, clusters were merged.

Throughout this manuscript, we report p-values in four classes (p > 0.05, p ≤ 0.05 when p = [0.05,0.01[ , p ≤ 0.01 when p =

[0.01,0.001[ and p ≤ 0.001).160

3.2 Assessing the performance of stability tests and their classification

When the predictive power or predictive validity of a test is assessed, it is compared to a reference standard, here the slope

stability classified as either unstable or stable. The usefulness of instability test results is generally assessed by considering

only two categories related to unstable and stable conditions (Schweizer and Jamieson, 2010). We refer to these two outcomes

as low or high stability.165

There are two different contexts a test’s adequacy is looked at: the first explores whether the foundations of a test are satisfactory

(i), the second its practical usefulness (ii) (Trevethan, 2017):

(i) Most often the performance of a snow stability test is assessed from the perspective of the reference group (Schweizer and

Jamieson, 2010), i.e. what proportion of unstable slopes are detected by the stability test. The two relevant measures addressing

this context are the sensitivity and specificity, which are considered as the benchmark for the performance:170

– The sensitivity of a test is the probability of correctly identifying an unstable slope from the slopes that are known to

be unstable. Considering a frequency table (Tab. 2) the sensitivity, or probability of detection (POD), is calculated as

(Trevethan, 2017):

Sensitivity (POD) =
a

a+ c
175

– The specificity of a test is the probability of correctly identifying a stable slope from the slopes that are known to be

stable. It is also referred to as probability of non-detection (PON).

Specificity (PON) =
d

b+ d

Ideally, both sensitivity and specificity are high, which means that most unstable and most stable slopes are detected. However,180

missing unstable situations can have more severe consequences and therefore it is assumed that first of all the sensitivity

should be high. Nonetheless, a comparably low specificity will decrease a test’s credibility. Sensitivity and specificity are

generally considered to be insensitive to the distribution of reference standard - in our case the respective proportions of

unstable and stable slopes. However, this is only true when the distribution of the reference classes is approximately balanced

and misclassifications in the estimated reference classes are rare (Brenner and Gefeller, 1997).185

(ii) The second context focuses on the ability of a test to correctly indicate slope stability, i.e. if the test result indicates low

stability, how often is the slope in fact unstable. This aspect has only rarely been explored for snow instability tests (e.g by

Ebert (2018) from a Bayesian viewpoint), and is generally assessed using two metrics:
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– The positive predictive value (PPV) is the proportion of unstable slopes, given that a test result indicates instability (a

low stability class).190

PPV =
a

a+ b

= proportion unstable slopes

is the statistic we refer to most in this manuscript, generally termed the proportion of unstable slopes.

– The negative predictive value (NPV) is the proportion of stable slopes, given that a test result indicates stability (a high195

stability class).

NPV =
d

c+ d

= proportion stable slopes

PPV and NPV are correlated to the distribution of unstable and stable slopes in the data set. Thus keeping the base rate the200

same when making comparisons across tests and stability classifications is essential.

However, to demonstrate the effect of a varying base rate, we highlight differences in PPV and NPV by considering the

proportion of unstable slopes stratified by the forecast danger level for 1-Low to 3-Considerable.

Finally, a test result should provide interpretable evidence in favour of instability or stability. To address this point, we use the

likelihood ratio as a measure of the strength of evidence for one hypothesis or the other. According to Brenner and Gefeller205

(1997), and applied to our study, the positive likelihood ratio LR+ is the ratio of the probability of a positive test (low stability)

in an unstable slope to the probability of a positive test in a stable slope:

LR+ =
a/(a+ c)
b/(b+ d)

=
POD

1−PON

The likelihood ratio is the factor that describes the shift from the prior probabilities to the posterior probabilities, and is therefore210

an indicator of the strength of evidence the observed data have (Blume, 2002).

3.3 Base rate of unstable and stable slopes

As outlined before, the proportion of unstable slopes varied within our data set: We noted a bias towards more frequently

observing two ECTs when the slope stability was considered as unstable (30%), compared to single ECT with only 15% of the

tests observed in unstable slopes (Table 1). To balance out this mismatch when comparing two ECT results to single ECT or215

RB (20% unstable), we created equivalent data sets for single ECT and RB containing the same proportion of tests collected

on unstable and stable slopes as the data set of two ECT. For this, we randomly sampled an appropriate number of single
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Table 2. 2×2 frequency table cross-tabulating slope stability and test results. A positive test result indicates low stability, a negative test

result high stability.

slope stability

unstable stable

test result (stability)
positive (low) a b

negative (high) c d

ECT and RB observed on stable slopes, and combined these with all the tests observed on unstable slopes. We repeated this

procedure 100 times. We report only the mean values of these 100 repetitions. P-values (prop.test) were calculated for these

mean proportions and the original number of cases in the data set.220

The base rate with 30% tests on unstable and 70% on stable slopes was used throughout this manuscript, except in Sect. 4.5,

where we evaluate the effect of different base rates.

3.4 Selecting ECT from snow pits with two ECT

For snow pits with two adjacent ECTs, we randomly selected one ECT, when exploring single ECT data or the relationship

between the number of taps and slope stability (Sect. 4.2). As before, this procedure was repeated 100 times. The respective225

statistics, generally the mean proportion of unstable slopes, was calculated based on the 100 repetitions.

4 Results

4.1 Comparing existing stability classifications

We first consider the results for a single ECT.

The original stability classification ECTorig led to significantly different proportions of unstable slopes for the two stability230

classes (0.47 vs. 0.18, p< 0.001, Fig. 3a). The ECTw09-classification, with three different classes, showed significantly different

proportions of unstable slopes between the lowest and the intermediate classes (0.53 vs. 0.23, p ≤ 0.001), but not between the

intermediate and the highest classes (0.23 and 0.18, p> 0.05). Although ECTw09-class 1 had a larger proportion unstable slopes

than ECTorig-class 1, the difference was not significant (p > 0.05).

Considering the results obtained from two adjacent ECTs resulting in the same stability class 1, between 0.52 (ECTorig) and235

0.61 (ECTw09) of the slopes were unstable. Although the proportion of unstable slopes was higher by 0.05 to 0.08 than for a

single ECT, this difference was not significant (p > 0.05). When both ECT indicated the highest stability class, the proportion

of unstable slopes was 0.15, not significantly different than for a single ECT resulting in this stability class (0.18, p > 0.05).

When one test resulted in the lowest and the other in the intermediate ECTw09-class, 0.25 of the slopes were unstable. While

this was clearly less than when both resulted in ECTw09-class 1 (p < 0.05), it was not significantly different than two ECT with240
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ECTw09-class 4 (0.15, p > 0.05)

Regardless whether a single ECT or two ECTs were considered, the ECTw09-classification had a 0.06-0.09 larger proportion of

unstable slopes for stability class 1 than the ECTorig-classification. For stability class 4 there was no difference, as the definition

for this class was identical.

The sensitivity was higher for ECTorig (0.64) than for ECTw09 (class 1: 0.57, Fig. 4a and b). However, this comes at the cost of245

a high false alarm rate (1-specificity) for ECTorig (0.31), considerably higher than for ECTw09 (0.21).

The optimal balance between achieving a high sensitivity and a low false alarm rate was found to be at ECTP≤21 (R-library

pROC (Robin et al., 2011)), exactly the threshold suggested by Winkler and Schweizer (2009).
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Figure 3. Proportion of unstable slopes (y-axes) for a) the two existing ECT stability classifications (ECTorig, ECTw09) and the RB, b) the

number of taps stratified by propagation, and c) the classification using the ECTnew together with the RB as in a). In a) and c): single ECT are

indicated by the respective text labels, two ECTs resulting in the same stability class by points. In b): The lines represent the mean proportion

of unstable slopes calculated for moving windows including five or seven consecutive number of taps. a) to c) 30% unstable and 70% stable

slopes were used.

4.2 Clustering ECT results by accounting for failure initiation and crack propagation

So far, we explored existing classifications. Now, we focus on the respective lowest number of taps stratified by propagating250

(ECTP) and non-propagating (ECTN) results. If in the same test for different weak layers ECTN and ECTP were observed,

only ECTP with the lowest number of taps was considered.

As can be seen in Fig. 3b, the proportion of unstable slopes was higher for ECTP compared to ECTN, regardless of the number

of taps and in line with the original stability classification ECTorig. However, a notable drop in the proportion of unstable slopes

between about 10 and 25 taps is obvious (ECTP, from about 0.6 to almost 0.25).255

Clustering the ECT results shown in Figure 3b with the number of clusters k set to 3, 4 and 5, and repeating the clustering

100 times, each time with 90% of the data, split the data at similar thresholds. In the following, we show the results for the
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Figure 4. Distribution of stability classes by slope stability for the different stability test and classification approaches: a) with two classes

(ECTorig); b) with three classes (ECTw09); and c) and d) with four classes (ECTnew, Rutschblock, respectively). The vertical dashed lines

indicate the thresholds when the primary slope stability associated with a test result changed from one slope stability to the other. - Reading

subfigures row-wise provides an indication of POD and PON. Comparing proportions column-wise corresponds to a base rate of 0.5. If no

clear prevalence (values between 40 and 60%) was observed, the stability class is considered as intermediate (light yellow colour).

two most frequent cluster thresholds obtained for k = 4. The frequency, the respective cluster threshold was selected in the 100

repetitions, is shown in brackets:

– ECTP≤15 (48%), ECTP≤14 (36%)260

– ECTP≤20 (37%), ECTP≤18 (36%)

– ECTN≤10 (29%), ECTN≤9 (22%)

Setting k to 3 resulted in clusters being divided at ECTP≤14 and at ECTP≤21, k = 5 resulted in cluster thresholds ECTP≤9,

ECTP≤14, ECTP≤20 and ECTN≤10. The second most frequent threshold was almost always within±1 tap of those indicated

before.265

To maximize the difference in the proportion of unstable slopes between classes (Fig. 3c), we varied the thresholds defining
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clusters by testing ±3 taps. The following four stability classes for single ECT (ECTnew) were obtained (p-values indicate

whether the proportion of unstable slopes differed in relation to the previously described group):

1. ECTP≤13 - capturing test results with the largest proportion of unstable slopes. The proportion of unstable slopes (0.57)

was about double the base rate (0.3).270

2. ECTP>13 and ECTP≤22 (proportion of unstable slopes = 0.4, p≤ 0.05) - transitioning from a high (0.57, for ECTP≤13)

to a lower proportion of unstable slopes (0.23, for ECTP>22). However, the mean proportion of unstable slopes was

still higher than the base rate.

3. ECTP>22 or ECTN≤10 (0.23, p ≤ 0.01) - the proportion of unstable slopes was lower than the base rate.

4. ECTN>10 or ECTX (0.15, p ≤ 0.05) - capturing test results corresponding to the lowest proportions of unstable slopes275

(about half the base rate).

In the following, we apply these thresholds in combination with the depth of the failure plane.

4.3 Evaluating the new ECT stability classification

4.3.1 Stability classification for single ECT

The new classification with four stability classes (ECTnew) showed continually and significantly decreasing proportions of280

unstable slopes with increasing stability class (0.57, 0.39, 0.25, 0.16 for classes 1 to 4, respectively, p ≤ 0.01, Fig. 3c).

The lowest ECTnew-class had a larger proportion unstable slopes (0.57) than the lowest classes for ECTw09 (0.53) or ECTorig

(0.47), though this was only significant compared to ECTorig (p ≤ 0.05). In contrast, only marginal differences were noted

when comparing stability classes 4 (ECTnew 0.16, ECTorig 0.18).

Considering class 1 as an indicator of instability, the sensitivity was 0.44 with ECTnew (0.58 when considering classes 1 and 2285

together, Fig. 4c).

4.3.2 Stability classification for two adjacent ECTs

70% of the time two ECTs indicated the same ECTnew class, in 19% they differed by one class and in 11% by two (or more)

classes.

Two ECTs resulting in the same ECTnew class resulted in pronounced differences in the proportion of unstable slopes for classes290

1 to 4 (0.61, 0.48, 0.20 and 0.13, respectively; Fig. 3c).

Randomly picking one of the two ECTs as the first ECT yielded the proportion unstable slopes as shown in Table 3. Addition-

ally considering the outcome of a second ECT could increase or decrease the proportion unstable slopes for some combinations.

For instance, if a first ECT resulted in either ECTnew class 1 or 4, the second test would often indicate a similar result: class ≤
2 in 85% of the cases, when the first ECT was class 1, and class≥ 3 in 93% of the cases, when the first ECT was class 4. How-295

ever, if the first ECT would either be ECTnew class 2 or 3, a large range of proportion unstable slopes could result depending
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Table 3. Proportion unstable slopes when randomly selecting one of two ECTs as the first test (ECTnew(1st)) (prop unstable 1st) and the

number of cases (N) , and the respective proportion unstable slopes 2nd following the outcome of the second ECT (ECTnew(2nd)).

ECTnew(1st) prop unstable 1st N ECTnew(2nd) N prop unstable 2nd

1 0.54 129
1 or 2 110 0.6

3 or 4 19 0.18

2 0.48 49
1 or 2 35 0.54

3 or 4 14 0.32

3 0.19 98
1 or 2 21 0.27

3 or 4 77 0.17

4 0.14 175
1 or 2 13 0.19

3 or 4 162 0.13

on the second test result (0.54 - 0.17, Tab. 3), including some combinations resulting in the proportion unstable slopes being

close to the base rate.

4.4 Comparison to Rutschblock test results

The proportion unstable slopes decreased significantly with each increase in RB stability class (0.76, 0.53, 0.25 and 0.11 for300

classes 1 to 4, respectively; p < 0.01; Fig. 3c). If a binary classification were desired, classes 1 and 2 would be considered as

indicators of instability, classes 3 and 4 as relating to stable conditions. Employing this threshold, the sensitivity was 0.54 and

the specificity 0.87 (Fig. 4d). Considering RB class 3, also termed «fair» stability (Schweizer, 2007), as an indicator of stability

is, however, not truly supported by the data. This class has a proportion unstable slopes of 0.25, only marginally lower than the

base rate.305

Comparing RB with the ECT showed that the proportion of unstable slopes for RB stability class 1 was significantly higher

(p < 0.01) and for class 4 by about 0.05 lower (p > 0.05) than for any of the ECT classifications (Fig. 3a, c). This indicates

that the RB stability classes at either end of the scale captured slope stability better than the ECT results, regardless which of

the ECT classification was applied, and whether a second test was performed. Fig. 3a and c also highlight that RB class 2 and

ECT class 1 (ECTw09, ECTnew) had similar proportions of unstable slopes. ECTnew stability class 2 had a lower proportion of310

unstable slopes than RB class 2 (p < 0.05), but a higher proportion than RB class 3 (p < 0.05). The proportions of unstable

slopes for the two highest ECTnew classes were not significantly different than for the two highest RB classes (p > 0.05).

The false alarm rate of the RB (classes 1 and 2) was lower than for any of the ECT classifications (Fig. 4). However, in our data

set a comparably large proportion of RB tests (0.34) indicated stability class 3 in slopes rated as unstable. This ratio is higher

than for single ECTnew class 3. However, the frequency that stability class 4 (false stable) was observed in unstable slopes was315

lower than for ECTnew class 4 (0.13 vs. 0.23, respectively).
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The ECTnew stability class correlated significantly with the RB stability class (Spearman rank-order correlation ρ = 0.43, p <

0.001), a correlation which was stronger for ECT pairs resulting twice in the same ECT stability class (ρ = 0.64, p < 0.001).

4.5 The predictive value of stability tests320

Now, we explore the predictive value of a stability test result as a function of the base rate, the proportion of unstable slopes.

In our data set the proportion unstable slopes, the base rate, increased strongly with forecast danger level (1-Low: 0.02, 2-

Moderate: 0.1, 3-Considerable: 0.38, Tab. 4).

Considering single ECTnew class 1 and RB class 1 showed that PPV was always higher than the base rate (Fig. 5), indicating

that the stability test predicted a higher probability for the slope to be unstable than just assuming the base rate. This shift was325

more pronounced for the Rutschblock than for the ECT, particularly at 1-Low and 2-Moderate. While PPV for stability class 1

(single or two ECT) remained low at 1-Low and 2-Moderate (PPV≤ 0.3, Tab. 4), indicating that it was still more likely that the

slope was stable rather than unstable, the likelihood ratio indicated weak evidence in favor of instability (Tab. 4). At 4-High,

the number of tests performed was very low (N = 16), therefore results are indicative at best.

Figure 5 also shows the shift in PPV, when considering ECTnew or RB stability class 4 (high stability). In these slopes, PPV330

was lower than the base rate, indicating that the probability the specific slope tested to be unstable was less than the base rate.

However, the resulting posterior probability was still higher compared to the base rate of the neighboring next lower danger

level.

Analysing the entire data set together, regardless of the forecast danger level, the proportion unstable slopes was 0.21, and

thus somewhat between the values for 2-Moderate and 3-Considerable. Again, the informative value of the test can be noted335

(Fig. 5). However, ignoring the specific base rate related to a certain danger level, leads - for instance - to an underestimation

of the likelihood that the slope is unstable at 3-Considerable (RB or ECTnew class 1), or an overestimation for the presence of

instability at 1-Low (RB or ECTnew class 4).

As shown in Figures 3c, the two extreme RB stability classes correlated better with slope stability than the respective two

extreme ECTnew classes. This is also reflected in Fig. 5 by the stronger shift from base rate to PPV, but can also be noted when340

calculating LR+ using a binary classification (LR+ for RB classes ≤ 2 (25, 4.2, 3 for 1-Low, 2-Moderate, 3-Considerable)

compared to single ECTnew classes ≤ 2 (5.2, 2.6, 2.9 for 1-Low, 2-Moderate, 3-Considerable)).

5 Discussion

5.1 Performance of ECT classifications

We compared ECT results, applying existing and testing a new classification with concurrent slope stability information.345

Quite clearly, whether a crack propagates across the entire column or not, is the key discriminator between unstable and stable

slopes (Fig. 3b). This is in line with previous studies (e.g. Simenhois and Birkeland, 2006; Moner et al., 2008; Simenhois and
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Figure 5. Positive predictive values (position of labels, RB - Rutschblock, ECT = single ECTnew) are shown compared to the respective base

rate (black dots and black dashed line), the proportion of unstable slopes for danger levels 1-Low, 2-Moderate (2-Mod) and 3-Considerable

(3-Cons), and for the entire data set (all). Predictive values are shown for the respective lowest (red colour, labels above base rate line) and

highest (blue, labels below base rate line) stability classes. The arrows indicate the shift from the prior probability - the base rate at a given

danger level - to the positive predictive value (posterior probability) for the specific slope tested being unstable.

Table 4. Positive predictive values (PPV) and positive likelihood ratios (LR+) for ECTnew class 1 and classes 1 and 2 combined, stratified by

forecast danger level (DRF) and corresponding base rate proportion unstable slopes.

class 1 classes 1 + 2

DRF N prop unstable PPV LR+ PPV LR+

1-Low 134 0.02 0.16 8.4 0.11 5.2

2-Moderate 523 0.1 0.29 3.7 0.23 2.6

3-Considerable 451 0.38 0.69 3.5 0.64 2.9

4-High 16 0.44 1 +∞ 0.53 1.4

15

https://doi.org/10.5194/nhess-2020-50
Preprint. Discussion started: 31 March 2020
c© Author(s) 2020. CC BY 4.0 License.



Birkeland, 2009; Winkler and Schweizer, 2009; Techel et al., 2016) and with our current understanding of avalanche formation

(Schweizer et al., 2008b). Moreover, our results confirm the proposition by Winkler and Schweizer (2009) that the number of

taps provides additional information allowing a better distinction between results related to stable and unstable conditions. The350

optimal threshold to achieve a balanced performance, i.e. high sensitivity as well as high specificity, was found to be between

ECTP20 and ECTP22, depending on the method (kmeans-clustering, pROC-cutoff point). This finding agrees well with the

threshold proposed by Winkler and Schweizer (2009) who suggested ECTP21. Using the binary classification, as originally

proposed by Simenhois and Birkeland (2009), increased the sensitivity but led to a rather high false alarm rate. Moving away

from a binary classification increased PPV and NPV for the lowest and highest stability classes, respectively, but came at the355

cost (or benefit) of introducing intermediate stability classes.

Only in some situations did pairs of ECTs performed in the same snow pit show an improved correlation with slope stability:

when two tests were either ECTnew stability class 1 or 2, or when either both tests were class 4, or one class 3 and one class 4.

5.2 Comparing ECT and Rutschblock

To our knowledge, and based on the review by Schweizer and Jamieson (2010), there have only been three previous studies360

which compared ECT and RB in the same data set.

Moner et al. (2008), in the Spanish Pyrenees, relying on a comparably small data set of 63 RB (base rate 0.44) and 47 single

ECT (base rate 0.38) observed a higher unweighted average accuracy for the ECT (0.93) than the RB (0.88). In contrast,

Winkler and Schweizer (2009, N = 146, base rate 0.25) presented very similar values for RB (0.84) and the ECT (0.81).

However, Winkler and Schweizer (2009) partially relied on a slope stability classification which is based strongly on the365

Rutschblock. Therefore, they emphasized that the RB was favored in their analysis. And finally, the data presented by Techel

et al. (2016) is to a large part incorporated in the study presented here.

In that respect, this study presents the first comparison incorporating a comparably large number of ECT and RB conducted in

the same snow pit, where slope stability was defined independently of test results. Seen from the perspective of the proportion

unstable slopes, the lowest and highest RB classes correlated better with slope stability than the respective ECT classes.370

Incorporating the sensitivity, the proportion of unstable slopes detected by a test, a mixed picture showed: Single ECT and RB

(classes 1 and 2) detected a comparable proportion of unstable slopes (0.58 vs. 0.53, respectively, Fig. 4c, d). False-unstable

classifications, however, were comparably rare for the RB (0.12) compared to single ECT (0.23). In other words, a RB detected

less reliably an unstable slope than an ECT, because intermediate RB results were still rather frequent in these slopes. At

the same time, RB results indicating stability on unstable slopes were less frequent than ECT indicating stability (RB: 0.13,375

ECT: 0.23). However, when a RB test indicated instability, this provided stronger evidence that the slope was in fact unstable

compared to an ECT indicating instability, as the latter were much more frequently also observed on stable slopes.

5.3 On the predictive value of stability tests

We recall the three lessons drawn by Ebert (2018) in his theoretical investigation of the predictive value of stability tests using

Bayesian reasoning in avalanche terrain, as this greatly inspired us to explore these aspects using actual observations and380
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compare them to our results:

(1) «A localised diagnostic test will be more informative the higher the general avalanche warning.» (Ebert, 2018, p. 4). With

general «avalanche warning» , Ebert (2018) refers to the forecast danger level as a proxy to estimate the base rate. As shown

in Fig. 5, PPV increased for both ECT and RB with increasing base rate / danger level, supporting this statement. From a

more theoretical perspective, it can be shown that PPV can be derived from Bayes Theorem (e.g. Blume, 2002; Ebert, 2018),385

therefore linking both approaches.

(2) «. . . Do not ‘blame’ the stability tests for false positive results: they are to be expected when the avalanche danger is low. In

fact, their existence is a consequence of the basic fact that low-probability events are difficult to detect reliably» (Ebert, 2018,

p. 4). Fig. 5 supports this statement: at 1-Low and 2-Moderate an ECT indicating instability was much more often observed on

a stable slope rather than an unstable one. Only once the base rate was sufficiently high, in our case at 3-Considerable, tests390

indicating instability were observed more often on unstable rather than stable slopes.

(3) «In avalanche decision-making, there is no certainty, all we can do is to apply tests to reduce the risk of a bad outcome, yet

there will always be a residual risk» (Ebert, 2018, p. 5). The likelihood ratio was greater than 1 for tests indicating instability,

regardless whether we considered an ECT or a RB result and regardless of the danger level, and less than 1 for tests indicating

stability. This is statistical evidence for a higher probability that a slope is unstable compared to the base rate. From a Bayesian395

perspective, we would say that a positive test (a low stability class) always increases our belief that the slope is unstable, and

vice versa when a test is negative (a high stability class).

In summary, and regardless of the strength of evidence, instability tests are useful despite the uncertainty which remains.

5.4 Sources of error and uncertainties

Beside potential misclassifications in slope stability, which we address more specifically in the following section (Sect. 5.5),400

Schweizer and Jamieson (2010) pointed out two other sources of error. The first of these is linked to the test method, which are

relatively crude methods and where, for instance, the loading may vary depending on the observer. The second error source is

linked to the spatial variability of the snowpack. The constellation of slab and underlying weak layer varies in the terrain and

may consequently have an impact on the test result. Furthermore, this data set did not permit to check whether the failure plane

of avalanches or whumpfs was linked to the failure plane observed in test results. Such information about the «critical weak405

layer» was, for instance, incorporated by Simenhois and Birkeland (2009) and Birkeland and Chabot (2006) in their analyses.

However, from a stability perspective, considering the actual test result is the more relevant information.

5.5 The influence of the reference class definitions and the base rate

So far we have explored ECT and RB assuming that there are no misclassifications of slope stability. However, as the true

slope stability is often not known (particularly in stable cases), errors in slope stability classification will occur. Such errors,410

however, may potentially influence all the statistics derived to describe the performance of tests (Brenner and Gefeller, 1997).

For instance, if there are at least some slopes misclassified, classification performance will drop. However, in such cases, POD

and PON will additionally be influenced by the true (though unknown) base rate (Brenner and Gefeller, 1997).
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In previous studies exploring ECT (Moner et al., 2008; Simenhois and Birkeland, 2009; Winkler and Schweizer, 2009), slope

stability classifications were generally well described and the base rate for the applied slope stability classification given.415

However, slope stability classification approaches differed somewhat. For instance, a stability criterion used by Moner et al.

(2008) was the occurrence of an avalanche on the test slope, while Simenhois and Birkeland (2009) additionally considered

explosives-testing of the slope as relevant information. Winkler and Schweizer (2009), on the other hand, additionally consid-

ered the manual profile classification used operationally in the Swiss avalanche warning service (Schweizer and Wiesinger,

2001; Schweizer, 2007) and considered a sufficient criterion for instability, when profiles were rated as «very poor» or «poor».420

As this classification relies rather strongly on the RB result, the RB would be favored in such an analysis (Winkler and

Schweizer, 2009).

We have no knowledge about the uncertainty linked to our classification. However, we can demonstrate the impact of vari-

ations in the definition of the reference class on summary statistics like POD and PON, and using different data subsets for

analysis: Let us assume we are not interested in comparing ECT and RB, but want to explore only the performance of a binary425

ECT classification with ECTP22 as the threshold between two classes. We will, however, use the RB together with the criteria

introduced in Section 2.3 to define slope stability:

– Without using the RB as an additional criteria, POD and PON for the ECT was 0.58 and 0.77, respectively (Fig. 4c).

– If only slopes are considered unstable, when the RB stability class was ≤ 2, and those as stable with RB stability class

≥ 3, the resulting POD is 0.70 and PON is 0.84. The base rate in this data set is 0.14 and N = 591.430

– Being even more restrictive, and considering only slopes unstable, when the RB stability class was 1, and those as stable

with RB stability class 4, the resulting POD is 0.75 and PON is 0.89. The base rate in this data set is 0.14 and N = 294.

Of course, one could also be interested in exploring the performance of the RB, and define slope stability by using ECT results

as additional criteria to those in Section 2.3. Without relying on ECT results, POD and PON for the RB were 0.54 and 0.87,

respectively (Fig. 4d). Considering ECTnew stability class ≤ 2 as unstable, else as stable, POD and PON would increase to435

0.66 and 0.91 (N = 561), or 0.71 and 0.93, respectively when considering only ECTnew stability class 1 as unstable and class 4

as stable (N = 385).

The combination of various error sources (Sect. 5.4), together with varying definitions of slope stability and differences in the

base rate make it almost impossible to directly compare results obtained in different studies. Therefore, performance values

presented in this study, but also in other studies regarding snow instability tests, must always be seen in light of the specific440

data set used and allow primarily a comparison within the study.

6 Conclusions

We explored a large data set of concurrent RB and ECT, and related these to slope stability information. Our findings confirmed

the well-known fact that crack propagation propensity, as observed with the ECT, is a key indicator relating to snow instability.

In addition, the number of taps required to initiate a crack also provides information concerning snow instability. Combining445
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crack propagation propensity and the number of taps required to initiate a failure allows refining the original binary classifica-

tion. We propose an ECT stability interpretation with four distinctly different stability classes. Furthermore, for an ECT result

being in one of the two intermediate classes, a second ECT performed in the same snow pit may be the decisive factor towards

either the highest or lowest stability class that are best related with rather stable or unstable conditions, respectively. In our

data set, the proportion of unstable slopes was higher and lower in the lowest and highest stability class for the RB than for the450

ECT. Hence, the RB correlated better with slope stability than the ECT.

We discussed further that changing the definition of the reference standard, the slope stability classification, has a large impact

on summary statistics like POD or PON. This hinders comparison between studies, as differences in study designs, data selec-

tion and classification must be considered.

And finally, we investigated the predictive value of stability test results using a data-driven perspective. We conclude by455

rephrasing Blume (2002): When a stability test indicates instability, this is always statistical evidence for instability, as this will

increase the likelihood for instability compared to the base rate. However, in case of a low base rate, false unstable predictions

are likely.

Author contributions. FT designed the study, extracted and analyzed the data, and wrote the manuscript. MW extracted and classified a

large part of the text from the snow profiles. KW, JS and AvH provided in-depth feedback on study design, interpretation of the results and460

manuscript.

Competing interests. No competing interests.

Acknowledgements. REVIEWERS

19

https://doi.org/10.5194/nhess-2020-50
Preprint. Discussion started: 31 March 2020
c© Author(s) 2020. CC BY 4.0 License.



References

Birkeland, K. and Chabot, D.: Minimizing «false-stable» stability test results: why digging more snowpits is a good idea, in: Proceedings465

ISSW 2006. International Snow Science Workshop, Telluride, Co., 2006.

Birkeland, K. and Chabot, D.: Changes in stability test usage by Snowpilot users, in: Proceedings ISSW 2012. International Snow Science

Workshop, Anchorage, AK., 2012.

Blume, J.: Likelihood methods for measuring statistical evidence, Statistics in Medicine, 21, 2563—-2599, https://doi.org/10.1002/sim.1216,

2002.470

Brenner, H. and Gefeller, O.: Variations of sensitivity, specificity, likelihood ratios and predictive values with disease prevalence, Statistics

in Medicine, 16, 981–991, https://doi.org/10.1002/(SICI)1097-0258(19970515)16:9<981::AID-SIM510>3.0.CO;2-N, 1997.

Ebert, P. A.: Bayesian reasoning in avalanche terrain: a theoretical investigation, Journal of Adventure Education and Outdoor Learning, pp.

1–12, https://doi.org/10.1080/14729679.2018.1508356, 2018.

Föhn, P.: The rutschblock as a practical tool for slope stability evaluation, IAHS Publ., 162, 223–228, 1987.475

Greene, E., Birkeland, K., Elder, K., McCammon, I., Staples, M., and Sharaf, D.: Snow, weather and avalanches: Observational guidelines

for avalanche programs in the United States, American Avalanche Association, Victor, ID., 3 edn., 104 p., 2016.

Hastie, T., Tibshirani, R., and Friedman, J.: The elements of statistical learning: data mining, inference, and prediction, Springer, 2 edn.,

2009.

Hendrikx, J., Birkeland, K., and Clark, M.: Assessing changes in the spatial variability of the snowpack fracture propagation propensity over480

time, Cold Reg. Sci. Technol., 56, 152–160, 2009.

Jamieson, B., Campbell, C., and Jones, A.: Verification of Canadian avalanche bulletins including spatial and temporal scale effects, Cold

Regions Science and Technology, 51, 204–213, https://doi.org/10.1016/j.coldregions.2007.03.012, 2008.

Kronholm, K., Schneebeli, M., and Schweizer, J.: Spatial variability of micropenetration resistance in snow layers on a small slope, Annals

of Glaciology, 38, 202–208, https://doi.org/10.3189/172756404781815257, 2004.485

Meister, R.: Country-wide avalanche warning in Switzerland, in: Proceedings ISSW 1994. International Snow Science Workshop 1994,

Snowbird, UT, pp. 58–71, 1995.

Moner, I., Gavalda, J., Bacardit, M., Garcia, C., and Marti, G.: Application of field stability evaluation methods to the snow conditions of the

Eastern Pyrenees, in: Proceedings ISSW 2008. International Snow Science Workshop, Whistler, Canada, pp. 386––392, 2008.

R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https:490

//www.R-project.org/, last updated: June 2017, 2017.

Reuter, B., Schweizer, J., and van Herwijnen, A.: A process-based approach to estimate point snow instability, The Cryosphere, 9, 837–847,

https://doi.org/10.5194/tc-9-837-2015, 2015.

Reuter, B., Richter, B., and Schweizer, J.: Snow instability patterns at the scale of a small basin, Journal of Geophysical Research: Earth

Surface, 257, https://doi.org/doi:10.1002/2015JF003700, 2016.495

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., and Müller, M.: pROC: an open-source package for R and S+ to

analyze and compare ROC curves, BMC Bioinformatics, 12, 77, 2011.

Ross, C. and Jamieson, B.: Comparing fracture propagation tests and relating test results to snowpack characteristics, in: Proceedings ISSW

2008. International Snow Science Workshop, Whistler, Canada, pp. 376—-385, 2008.

Schweizer, J.: The Rutschblock test - procedure and application in Switzerland, The Avalanche Review, 20, 14–15, 2002.500

20

https://doi.org/10.5194/nhess-2020-50
Preprint. Discussion started: 31 March 2020
c© Author(s) 2020. CC BY 4.0 License.



Schweizer, J.: Profilinterpretation (english: Profile interpretation), WSL Institute for Snow and Avalanche Research SLF, course material, 7

p., 2007.

Schweizer, J. and Bellaire, S.: On stability sampling strategy at the slope scale, Cold Regions Science and Technology, 64, 104–109,

https://doi.org/10.1016/j.coldregions.2010.02.013, 2010.

Schweizer, J. and Camponovo, C.: The skier’s zone of influence in triggering slab avalanches, Annals of Glaciology, 32, 314–320,505

https://doi.org/10.3189/172756401781819300, 2001.

Schweizer, J. and Jamieson, B.: A threshold sum approach to stability evaluation of manual profiles, Cold Regions Science and Technology,

47, 50–59, https://doi.org/10.1016/j.coldregions.2006.08.011, 2007.

Schweizer, J. and Jamieson, B.: Snowpack tests for assessing snow-slope instability, Annals of Glaciology, 51, 187–194,

https://doi.org/10.3189/172756410791386652, 2010.510

Schweizer, J. and Lütschg, M.: Characteristics of human-triggered avalanches, Cold Reg. Sci. Technol., 33, 147–162,

https://doi.org/10.1016/s0165-232x(01)00037-4, 2001.

Schweizer, J. and Wiesinger, T.: Snow profile interpretation for stability evaluation, Cold Reg. Sci. Technol., 33, 179–188,

https://doi.org/10.1016/S0165-232X(01)00036-2, 2001.

Schweizer, J., Kronholm, K., Jamieson, B., and Birkeland, K.: Review of spatial variability of snowpack prop-515

erties and its importance for avalanche formation, Cold Regions Science and Technology, 51, 253–272,

https://doi.org/http://dx.doi.org/10.1016/j.coldregions.2007.04.009, 2008a.

Schweizer, J., McCammon, I., and Jamieson, J.: Snowpack observations and fracture concepts for skier-triggering of dry-snow slab

avalanches, Cold Regions Science and Technology, 51, 112–121, https://doi.org/10.1016/j.coldregions.2007.04.019, 2008b.

Simenhois, R. and Birkeland, K.: The Extended Column Test: A field test for fracture initiation and propagation, in: Proceedings ISSW 2006.520

International Snow Science Workshop, Telluride, Co., pp. 79–85, 2006.

Simenhois, R. and Birkeland, K.: The Extended Column Test: Test effectiveness, spatial variability, and comparison with the Propagation

Saw Test, Cold Regions Science and Technology, 59, 210–216, https://doi.org/10.1016/j.coldregions.2009.04.001, 2009.

Techel, F. and Pielmeier, C.: Automatic classification of manual snow profiles by snow structure, Nat. Hazards Earth Syst. Sci., 14, 779–787,

https://doi.org/10.5194/nhess-14-779-2014, 2014.525

Techel, F., Walcher, M., and Winkler, K.: Extended Column Test: repeatability and comparison to slope stability and the Rutschblock, in:

Proceedings ISSW 2016. International Snow Science Workshop, Breckenridge, Co., pp. 1203–1208, 2016.

Trevethan, R.: Sensitivity, specificity, and predictive values: foundations, pliabilities, pitfalls in research and practice, Frontiers in Public

Health, https://doi.org/10.3389/fpubh.2017.00307, 2017.

van Herwijnen, A. and Jamieson, B.: Snowpack properties associated with fracture initiation and propaga-530

tion resulting in skier-triggered dry snow slab avalanches, Cold Regions Science and Technology, 50, 13–22,

https://doi.org/https://doi.org/10.1016/j.coldregions.2007.02.004, 2007.

van Herwijnen, A., Bellaire, S., and Schweizer, J.: Comparison of micro-structural snowpack parameters derived from penetration resistance

measurements with fracture character observations from compression tests, Cold Regions Science and Technology, 59, 193–201, 2009.

Winkler, K. and Schweizer, J.: Comparison of snow stability tests: Extended Column Test, Rutschblock test and Compression Test, Cold535

Regions Science and Technology, 59, 217–226, https://doi.org/10.1016/j.coldregions.2009.05.003, 2009.

21

https://doi.org/10.5194/nhess-2020-50
Preprint. Discussion started: 31 March 2020
c© Author(s) 2020. CC BY 4.0 License.


