
List of most important changes 

Reviewer 1 proposed a simpler depth criterion. We have adjusted the manuscript in the Methods 
section (l. 101-102). As a consequence some of the results presented changed in a rather minor way 
(none of the key findings nor the interpretation were affected by this change!)  

Feedback received by Philip Ebert in a private email (we cited P. Eberts’ study) suggested to rephrase 
the description of PPV and NPV and the proportion of unstable slopes as the original description was 
not fully clear. We have adjusted the manuscript accordingly (l. 185-198). 

Feedback received by Philip Ebert suggested to show data for both stability tests in Table 4. We 
added this data. To address the data shown in this expanded table, we added (or rephrased) several 
lines (l. 337-340, 342-345). 

Feedback by Eric Knoff (public discussion) suggested to introduce class labels rather than class 
numbers. We added a short section in this regard (Section 5.6 Proposing stability class labels , l. 451-
464) and a new Figure 6 visualizing classes together with class labels for the two tests. 

 



Point-by-point response to reviews 

Please find below a point-by-point response to the reviews indicating the respective line numbers in 

the original and the revised manuscript. Please also refer to the manuscript showing all the track 

changes for further changes, and to the replies to the reviewer comments on the discussion site. 

Reviewer #1 – Bret Shandro: 

Original version Revised manuscript 

As the NHESS audience includes readers beyond 
snow avalanche hazard, I suggesta title that 
communicates the relevant natural hazard, for 
example, “On the snowpackstability 
interpretation of extended column test results.” 

We changed the title to:  
On the snow stability interpretation of Extended 
Column Test results 

105 – Regarding the minimal depth criteria, 
Techel and Pielmeier (2014) appear to use a 15 
cm. What is the benefit of distinguishing 
between a weak layer 6-10 cm and 5 cm or 
less? Why not classify all tests class 4, if the 
weak layer less than 10 cm? 

We have addressed this issue by simplifying the 
criterion to (101-102): 
We addressed this by assigning stability class 4 
if the failure layer was less than 10 cm below 
the snow surface. 
See also reply to reviewer. 
Please note, this simplification of the criterion 
had a minor effect on some of the results 
shown. However, none of the key findings (or 
their interpretations) were affected by this 
change. Please refer to the track-changes-
version of the revised manuscript, where these 
changes are highlighted. 

146 – For the dataset sampling to cluster 
stability classes, were any precautions taken to 
avoid the algorithm producing results that were 
overfitted to the sampled data, i.e. how was a 
90-10 ratio selected? 

We added a line in that respect (253-254): 
Applying the same approach with 80% of the 
data (rather than with 90%) resulted in very 
similar class thresholds (LINK TO SUPPLEMENT). 
We will provide a link to a supplement, which 
will be an extract of our reply to the reviewer. 

Figure 3 – The reader may benefit from the 
proportion values included in the figure. I 
believe this would allow the reader to better 
interpret the results section. 

We have added the proportion values in Figure 
3a and 3c. 

168 – There appears to be a formatting issue 
with the list, (i) (ii). 

We changed the formatting to (a) and (b). 

 

Reviewer #2 – Markus Landrø: 

Original version Revised manuscript 

21: what about the risk involved? 19: changed to 
Furthermore, considerable experience in the 
selection of a representative and safe site is 
needed, and the interpretation of test results is 
challenging. 

99: consider adding fatal skier-triggered 
avalanches 

Not addressed, see reply to reviewer. 

345-358: is there a difference in test 
performance dependent on weak layer 
properties (grain type, grain size, weak layer 

Not addressed, see reply to reviewer. 



thickness). You probably have this data from 
the test sites.  

102-105: what if the overlaying snow is harder 
than lets say 1F. Does that have an impact? Not 
theme of this paper, but still. It could also be 
interesting if you related it to the forecasted 
avalanche problem. 

Not addressed, see reply to reviewer. 

2: consider changing into to in  

33: consider changing to improve with 
improving 

31: done 

50:  remove comma after Both 48: done 

72:  insert The test procedure  

104: remove comma after (2014)  

116: remove comma after stable  

117: consider changing relates to relate 213: changed from singular to plural 

145: change were to was 141: done 

154: consider changing its with it’s  

177: add The probability  

218: consider removing comma after slopes  

226: consider changing was to were 213: changed from plural to singular 

233: consider adding proportion of 220: done 

242: consider adding Regardless of  

p10 figure text:  consecutive numbers Fig. 3: done 

376: consider adding one or two commas , in 
fact, 

 

420: consider removing comma instability,  

439: consider changing make to makes  

440: consider removing in  

445: consider changing in addition to Also  

449: consider changing are best to is best  

457: change for to of 464: done 

We did not address the other suggestions, as we believe that the grammar was correct as it was. 

Public – Eric Knoff: 

Original version Revised manuscript 

Eric Knoff proposed to use (or introduce) class 
labels rather than class numbers. – see also the 
detailed reviewer comment 

We have taken up this suggestion. In that 
respect, we added a new subsection (Section 
5.6) together with the new Figure 6 (part of 
which was already shown in .  
See also our detailed reply to Eric Knoff. 

 

Additional Feedback – P. Ebert received via email: 

Original version Revised manuscript 

189-194: The formula and the description don't 
match up. The proportion of "unstable slopes" 
is most naturally understood as:  
a+c/ a+b+c+d.  (the number of unstable slopes/ 
total number of slopes), which in effect is just 
the base rate. 

We have taken up this comment, and rephrased 
accordingly with the goal to make it more easily 
understandable what we mean, when we refer 
to the proportion of unstable slopes. 
Please refer to lines 182-193. 



a/a+b is, I think, best characterised as the 
proportion of "correct unstable predictions" (a= 
number of correct unstable slope prediction/ 
a+b= total number of predictions indicating 
unstable slope) or the proportion of unstable 
slopes, given the test results instability (as you 
say above). It's just that shortening it, and 
saying "proposition of unstable slope" doesn't 
make it a proportion on predictions but a 
proportion on facts, and so it is possibly 
misleading. 
Also, the same applies to the NPV value:  
 
d/c+d is the proportion of correct stable 
prediction, but not proportion of "stable 
slopes". The latter is 
b+d/a+b+c+d 

Table 4: It be nice to have a table here for the 
RB as well. 

We agree that this information would be 
beneficial for the reader. Table 4 now shows 
the data for ECT and RB together, allowing a 
comparison. 
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Abstract. Snow instability tests provide valuable information regarding the stability of the snowpack. Test results are key

data used to prepare public avalanche forecasts. However, to include them into [..1 ]operational procedures, a quantitative

interpretation scheme is needed. Whereas the interpretation of the Rutschblock test (RB) is well established, a similar detailed

classification for the Extended Column Test (ECT) is lacking. Therefore, we develop a 4-class stability interpretation scheme.

Exploring a large data set of 1719 ECTs observed at 1226 sites, often performed together with a [..2 ]RB in the same snow5

pit, and corresponding slope stability information, we revisit the existing stability interpretations, [..3 ]and suggest a more

detailed classification[..4 ]. In addition, we consider the interpretation of cases when two ECTs were performed in the same

snow pit. Our findings confirm previous research, namely that the crack propagation propensity is the most relevant ECT result

and that the loading step required to initiate a crack is of secondary importance for stability assessment. The comparison with

the RB showed that the ECT classifies slope stability less reliably than the RB. In some situations, performing a second ECT10

may be helpful, when the first test did neither indicate rather unstable nor stable conditions. Finally, the data clearly show

that false-unstable predictions of stability tests outnumber the correct-unstable predictions in an environment where overall

unstable locations are rare.

1 Introduction

Gathering information about current snow instability is crucial when evaluating the avalanche situation. However, direct evi-15

dence of instability - as recent avalanches, shooting cracks or whumpf sounds - is often lacking. When such clear indications of

instability are absent, snow instability tests are widely used to obtain information on the stability of the snowpack. Such tests

provide information on failure initiation and subsequent crack propagation - essential components for slab avalanche release

(Schweizer et al., 2008b; van Herwijnen and Jamieson, 2007). However, performing snow instability tests is time-consuming,

as they require to dig a snow pit. Furthermore, considerable experience in the selection of a representative and safe site is20

needed, and the interpretation of test results is challenging (Schweizer and Jamieson, 2010). Alternative approaches such as

1removed: the
2removed: Rutschblock (RB )
3removed: explore the potential of
4removed: , and specifically
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interpreting snow micro-penetrometer signals [..5 ](Reuter et al., 2015), are promising, but not sufficiently established yet.

Two commonly used tests to assess snow instability are the Rutschblock test (RB, Föhn, 1987) and the Extended Column Test

(ECT; Simenhois and Birkeland, 2006, 2009). For both tests, which are described in greater detail in Section 2.1, blocks of

snow are isolated from the surrounding snowpack. According to test specifications, the block is then loaded in several steps.25

The loading step leading to a crack in a weak layer (failure initiation) is recorded, and whether crack propagation across the

entire block of snow occurs (crack propagation). For the RB, the interpretation of the test result is well established and involves

combining failure initiation (score) and crack propagation (release type) (e.g. Schweizer, 2002; Winkler and Schweizer, 2009).

In contrast, the original interpretation of ECT results considers crack propagation propensity only (Simenhois and Birkeland,

2006, 2009; Ross and Jamieson, 2008): if a loading step leads to a crack propagating across the entire column, the result is30

considered as unstable, else as stable. However, Winkler and Schweizer (2009) suggested [..6 ]improving this binary classifi-

cation by additionally considering the loading step required to initiate a crack and by considering a minimal failure layer depth

leading to interpretations of ECT results as unstable, intermediate and stable. Moreover, they hypothesized that performing

two tests, and considering differences in test results, may help to establish an intermediate stability class.

As the properties of the slab as well as the weak layer may vary on a slope (Schweizer et al., 2008a), reliably estimating slope35

stability requires many samples (Reuter et al., 2016) and a single test result may not be indicative. Hence, it was suggested

to perform more than one test, either in the same snow pit or in a distance beyond the correlation length, which is often on

the order of ≤ 10 m (Kronholm et al., 2004). For instance, Schweizer and Bellaire (2010) analysed whether performing two

pairs of Compression Tests (CT) about 10 m apart improves slope stability evaluation. They suggested a sampling strategy that

essentially suggests that in case the first test does not indicate instability, additional tests can reduce the number of false-stable40

predictions. Moreover, they reported that in 61–75% of the cases the two tests in the same pit provided consistent results, in the

remaining cases either the CT score or the fracture type varied. For the ECT, several authors also noted that two tests performed

adjacent to each other in the same snow pit or at several meters distance within the same small slope [..7 ]showed different

results (Winkler and Schweizer, 2009; Hendrikx et al., 2009; Techel et al., 2016). For instance, Techel et al. (2016) reported

that in 21% of the cases the ECT fracture propagation result differed between two tests in the same snow pit. Moreover, they45

explored differences in the performance between the ECT and the RB with regard to slope stability evaluation and found that

the RB detected more stable and unstable slopes correctly than a single ECT or two adjacent ECTs.

Both [..8 ]ECT and RB provide information relating to slab avalanche release. While the Rutschblock provides reliable results,

the ECT is quicker to perform in the field, which probably explains why it has quickly become the most widely used instabil-

ity test in North America (Birkeland and Chabot, 2012). Given the popularity of the ECT as a test to obtain snow instability50

information and the lack of a quantitative interpretation scheme that includes more than just two classes, our objective is to

revisit the originally suggested stability interpretations and to specifically consider cases when two ECTs were performed in

the same snow pit. Building on our findings, we propose a new stability classification differentiating between cases when just

5removed: (Reuter et al., 2015; van Herwijnen et al., 2009)
6removed: to improve
7removed: frequently lead to
8removed: ,
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Table 1. Data overview with the number (N) and proportion of unstable rated slopes.

stability tests N unstable

single ECT 279 15%

two ECT 208 30%

single ECT and a RB 454 20%

two ECT and a RB 285 20%

a single ECT and when two adjacent ECTs were performed in the same snow pit with the goal to minimize false-stable and

false-unstable predictions. Additionally, we empirically explore the influence of the base rate [..9 ]frequency of unstable loca-55

tions [..10 ]on stability test interpretation, which - if neglected - may lead to false interpretations (Ebert, 2019). We address this

topic by exploring a large set of [..11 ]ECTs with observations of slope stability collected in Switzerland. Furthermore, ECT

results are compared with concurrent RB test results.

2 Data

Data were collected in 13 winters from 2006-2007 to 2018-2019 in the Swiss Alps. We explored a data set of stability test60

results [..12 ]in combination with information on slope stability [..13 ]and avalanche hazard[..14 ].

At 1226 sites, [..15 ]where slope stability information was available, 1719 ECT were performed (Tab. 1). At 487 out of the 1226

sites either one (279) or two ECTs (208) were performed (695 ECTs in total). At the other 739 sites, a RB test was conducted

in addition to either one (484) or two ECTs (285) in the same snow pit (1024 ECTs in total).

2.1 Extended Column Test (ECT) and Rutschblock test (RB)65

At sites where ECT and RB were realized in the same snow pit, one or two ECTs were generally performed directly down-

slope from the RB (e.g. as described in detail in Winkler and Schweizer (2009)). If no RB was performed but two ECTs were

performed, it is not known whether the ECTs were performed side-by-side, or whether the second ECT was located directly

up-slope from the first ECT.

Test procedure followed observational guidelines (Greene et al., 2016). For the ECT, loading is by tapping on the shovel blade70

positioned on the snow surface on one side of the column of snow isolated from the surrounding snowpack (30 loading steps,

9removed: , the
10removed: ,
11removed: ECT
12removed: (Sect. 2.1 and 2.2)
13removed: (Sect. 2.3)
14removed: (Sect.2.4).
15removed: for which
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Fig. 1a). For the RB, a person on skis stands or jumps on the block (6 loading steps, Fig. 1b). When a crack initiates and

propagates within the same weak layer across the entire column within one tap of crack initiation, it is called ECTP for the

ECT; for the RB this corresponds to the release type whole block. If the crack does not propagate within the same layer across

the entire column or within one tap of crack initiation, ECTN is recorded for the ECT. Similarly, if the fracture does not75

propagate through the entire block, part of block or edge only are recorded as RB release type. If no failure can be initiated

including loading step 30 (ECT) or 6 (RB), these are recorded as ECTX or [..16 ]RB7, respectively.

2.2 Stability classification of ECT and RB

To facilitate the distinction between the result of an instability test and the stability of a slope, we refer to test stability using

four classes 1 to 4, with class 1 being the lowest stability (poor or less) and class 4 the highest stability (good or better). In80

contrast, for slope stability, we use the terms unstable and stable. We chose four classes as a similar number of classes has been

used for RB stability interpretation, as outlined below.

Extended Column Test (ECT): The stability classification originally introduced by Simenhois and Birkeland (2009) (ECTorig)

suggested two stability classes: ECTN or ECTX are considered to indicate high stability (class 4), while ECTP indicates low85

stability (class 1).

The classification suggested by Winkler and Schweizer (2009) (ECTw09) uses three classes:

– ECTP≤21: low stability (class 1)

– ECTP>21: intermediate stability (class 2-3)

– ECTN or ECTX: high stability (class 4)90

Rutschblock test: We classified the RB in four classes (classes 1 to 4; Fig. 2). We followed largely the RB stability classi-

fication by Techel and Pielmeier (2014), who used a simplified version of the classification used operationally by the Swiss

avalanche warning service (Schweizer and Wiesinger, 2001; Schweizer, 2007). Schweizer (2007) defined five stability classes

for the RB, based on the score and the release type in combination with snowpack structure, while Techel and Pielmeier (2014)

relied exclusively on RB score and release type. In contrast to both these approaches, we combined the two highest classes95

(good or very good) to one class (class 4).

Shallow weak layers (≤ 15 cm) are rarely associated with skier-triggered avalanches (Schweizer and Lütschg, 2001; van Her-

wijnen and Jamieson, 2007), which is, for instance, reflected in the threshold sum approach (Schweizer and Jamieson, 2007),

a method to detect structural weaknesses in the snowpack. Schweizer and Jamieson (2007) reported the critical range for weak

layers particularly susceptible to human triggering as 18-94 cm below the snow surface. Minimal depth criteria were also taken100

into account by Winkler and Schweizer (2009) in their comparison of different instability tests or by Techel and Pielmeier

(2014), when classifying snow profiles according to snowpack structure. We addressed this [..17 ]by assigning stability class
16removed: RB7
17removed: , by assigning the next higher stability class if the weak layer was between 6 and 10 cm below the surface, and class
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RB

ECT

200 cm90 cm

a) ECT b) RB

Figure 1. ECT and RB according to observational guidelines. At the back, the block of snow is isolated by either cutting with a cord or a

snow saw. The lightblue area indicates the approximate area, where the skis or the shovel blade is placed. This area corresponds to the area

loaded for the ECT, while the main load under the skis is exerted over a length of about 1 m (Schweizer and Camponovo, 2001). Loading is

from above (arrows).

4 if the failure layer was less than [..18 ]10 cm below the snow surface. If there were several [..19 ]failures in the same test, we

searched for the ECT and RB failure [..20 ]layer with the lowest stability class.

2.3 Slope stability classification105

We classified stability tests according to observations relating to snow instability in similar slopes as the test on the day

of observation, such as recent avalanche activity or signs of instability (whumpfs or shooting cracks). This information was

manually extracted from the text accompanying a snow profile and/or stability test. This text contains - among other information

- details regarding recent avalanche activity or signs of instability.

A slope was [..21 ]called unstable if any signs of instability or recent avalanche activity - natural or skier-triggered avalanches110

from the day of observation or the previous day - were noted on the slope where the test was carried out or on neighbouring

slopes (Simenhois and Birkeland, 2006, 2009; Moner et al., 2008; Winkler and Schweizer, 2009; Techel et al., 2016).

We [..22 ]called a slope only as stable [..23 ]if it was clearly stated that on the day of observation none of the before-mentioned

signs were observed in the surroundings. In most cases, surroundings relates to observations made in the terrain covered or

observed during a day of back-country touring (estimated to be approximately 10 to 25 km2, Meister, 1995; Jamieson et al.,115

2008).

In the following, we denote slope stability simply as stable or unstable, although this strict binary classification is not [..24

18removed: 5
19removed: failure planes
20removed: plane
21removed: considered
22removed: considered
23removed: ,
24removed: entirely correct
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Figure 2. Classification of RB into four stability classes. *combines release type part of block and edge only.

]adequate. For instance, many tests were performed on slopes that were actually rated as unstable, though did not fail. In

other words, unstable has to be understood as a slope where the triggering probability is relatively high compared to

stable where it is low.120

If it was not clearly indicated, when and where signs of instabilities or fresh avalanches were observed, or if this information

was lacking entirely, these data [..25 ]were not included in our dataset.

2.4 Forecast avalanche danger level

For each day and location of the snow instability test, we extracted the forecast avalanche danger level related to dry-snow

conditions from the public bulletin issued at 17.00 CET, and valid for the following 24 hours.125

3 Methods

3.1 Criteria to define ECT stability classes

We consider the following criteria as relevant when testing existing or defining new ECT stability classes:

– (i) Stability classes should be distinctly different from each other. The criteria we rely on is the proportion of unsta-

ble slopes. Therefore, a higher stability class should have a significantly lower proportion of unstable slopes than the130

neighboring lower stability class.

– (ii) The lowest and highest stability classes should be defined such that the rate of correctly detecting unstable and stable

conditions is high, respectively; hence, the rate of false-stable and false-unstable predictions should be low, respectively.

Stability classes in-between these two classes may represent intermediate conditions, or lean towards more frequently

unstable and stable conditions, permitting a higher false-stable and false-unstable rate than the rates of the two extreme135

stability classes.

– (iii) The extreme classes should occur as often as possible, as the test should discriminate well between stable and

unstable conditions in most cases.

To define classes based on crack propagation propensity and crack initiation (number of taps), we proceeded as follows:

25removed: had not been
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1. We calculated the mean proportion of unstable slopes for moving windows of 3, 5 and 7 consecutive number of taps, for140

[..26 ]ECTP and ECTN separately. ECTX was included in [..27 ]ECTN, treating ECTX as ECTN31.

2. We obtained thresholds for class intervals by applying unsupervised [..28 ]k-means-clustering (R-function kmeans with

settings max.iter = 100, nstart = 100; R Core Team (2017); Hastie et al. (2009)) on the proportion of unstable slopes of

the three running means (step 1). The [..29 ]numbers of clusters k tested were 3, 4 and 5.

3. We repeated clustering 100 times using 90% of the data, which were randomly selected without replacement. For each145

of these repetitions, the cluster boundaries were noted. Based on the 100 repetitions, we report the respective most

frequently observed k-1 boundaries, together with the second most frequent boundary.

4. To verify whether the classes found by the clustering algorithm were distinctly different ([..30 ]criterion i), we compared

the proportion of unstable slopes between clusters using a two-proportions z-test (prop.test, R Core Team (2017)). We

considered p-values ≤ 0.05 as significant.150

In almost all cases, we used a one-sided test with the null hypothesis H0 being either H0: prop(A) ≤ prop(B) (or its

inverse), where prop is the proportion of unstable slopes in the respective cluster A or B. The alternative hypothesis Ha

would then be Ha: prop(A) > prop(B) (or its inverse).

5. For clusters not leading to a significant reduction in the proportion of unstable slopes, we tested a range of thresholds (±
3 taps within the threshold indicated by the clustering algorithm) to find a threshold maximizing the difference between155

cluster centers and leading to significant differences (p ≤ 0.05) in the proportion of unstable slopes ([..31 ]criterion ii). If

no such threshold could be found, clusters were merged.

Throughout this manuscript, we report p-values in four classes (p > 0.05, p ≤ 0.05 when p = [0.05,0.01[ , p ≤ 0.01 when p =

[0.01,0.001[ and p ≤ 0.001).

3.2 Assessing the performance of stability tests and their classification160

When the predictive power or predictive validity of a test is assessed, it is compared to a reference standard, here the slope

stability classified as either unstable or stable. The usefulness of instability test results is generally assessed by considering

only two categories related to unstable and stable conditions (Schweizer and Jamieson, 2010). We refer to these two outcomes

as low or high stability.

There are two different contexts a test’s adequacy is looked at: the first explores whether (a) the foundations of a test are165

satisfactory[..32 ], and (b) the test is useful (Trevethan, 2017):
26removed: ECTP and ECTN separately. ECTX
27removed: ECTN, treating ECTX as ECTN31.
28removed: kmeans-clustering
29removed: number
30removed: criteria
31removed: criteria
32removed: (i), the second its practical usefulness (ii)
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([..33 ]a) Most often the performance of a snow stability test is assessed from the perspective of the reference group (Schweizer

and Jamieson, 2010), i.e. what proportion of unstable slopes are detected by the stability test. The two relevant measures

addressing this context are the sensitivity and specificity, which are considered as the benchmark for the performance:

– The sensitivity of a test is the probability of correctly identifying an unstable slope from the slopes that are known to170

be unstable. Considering a frequency table (Tab. 2) the sensitivity, or probability of detection (POD), is calculated as

(Trevethan, 2017):

Sensitivity (POD) =
a

a+ c

– The specificity of a test is the probability of correctly identifying a stable slope from the slopes that are known to be175

stable. It is also referred to as the probability of non-detection (PON).

Specificity (PON) =
d

b+ d

Ideally, both sensitivity and specificity are high, which means that most unstable and most stable slopes are detected. However,

missing unstable situations can have more severe consequences and therefore it is assumed that first of all the sensitivity should180

be high. Nonetheless, a comparably low specificity will decrease a test’s credibility.[..34 ]

([..35 ]b) The second context focuses on the ability of a test to correctly indicate slope stability, i.e. if the test result indicates

low stability, how often is the slope in fact unstable. This aspect has only rarely been explored for snow instability tests (e.g by

Ebert (2019) from a Bayesian viewpoint), and is generally assessed using two metrics:

– The positive predictive value (PPV) is the proportion of unstable slopes, given that a test result indicates instability (a185

low stability class).

PPV =
a

a+ b

[..36]

[..37 ]190

– The negative predictive value (NPV) is the proportion of stable slopes, given that a test result indicates stability (a high

stability class).

33removed: i
34removed: Sensitivity and specificity are generally considered to be insensitive to the distribution of reference standard - in our case the respective propor-

tions of unstable and stable slopes. However, this is only true when the distribution of the reference classes is approximately balanced and misclassifications

in the estimated reference classes are rare (Brenner and Gefeller, 1997).
35removed: ii
37removed: is the statistic we refer to most in this manuscript, generally termed the proportion of unstable slopes.
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Table 2. 2×2 frequency table cross-tabulating slope stability and test results. A positive test result indicates low stability, a negative test

result high stability.

slope stability

unstable stable

test result (stability)
positive (low) a b

negative (high) c d

NPV =
d

c+ d

[..38]195

[..39 ]In the following, we will use PPV and 1-NPV in the sense that it reflects the proportion of unstable slopes given a

specific test result in a setting with up to four test outcomes (classes 1 to 4), which we term the proportion of unstable

slopes.

PPV and NPV depend strongly on to the frequency of unstable and stable slopes in the data set (Brenner and Gefeller,

1997). Thus keeping the base rate the same when making comparisons across tests and stability classifications is essential.200

[..40 ]To demonstrate the effect [..41 ]variations in the frequency of unstable and stable slopes have on predictive values like

PPV or 1-NPV, we additionally explored this effect for tests observed when either danger level 1-Low[..42 ], 2-Moderate

or 3-Considerable [..43 ]were forecast.

3.3 Base rate for proportion of unstable and stable slopes

As outlined before, the proportion of unstable slopes varied within our data set: We noted a bias towards more frequently205

observing two ECTs when [..44 ]slope stability was considered [..45 ]unstable (30%)[..46 ]. For single ECT, only 15% of the

tests were observed in unstable slopes ([..47 ]Tab. 1). To balance out this mismatch when comparing two ECT results to a

single ECT or RB (20% unstable), we created equivalent data sets for single ECT and RB containing the same proportion

of tests collected on unstable and stable slopes as found for the data set of two [..48 ]ECTs. For this, we randomly sampled
39removed: PPV and NPV are correlated to the distribution
40removed: However, to
41removed: of a varying base rate, we highlight differences in PPV and NPV by considering the proportion of unstable slopes stratified by the forecast

danger level for
42removed: to
43removed: .
44removed: the
45removed: as
46removed: , compared to single ECTwith
47removed: Table
48removed: ECT
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an appropriate number of single ECT and RB observed on stable slopes (i.e. we reduced the number of stable cases), and210

combined these with all the tests observed on unstable slopes. We repeated this procedure 100 times. We report only the mean

values of these 100 repetitions [..49 ]and calclulated p-values (prop.test) for these mean proportions and the original number

of cases in the data set.

The base rate proportion with 30% tests on unstable and 70% on stable slopes was used throughout this manuscript, except in

Sect. 4.5, where we evaluate the effect of different base rates.215

3.4 Selecting ECT from snow pits with two ECT

For snow pits with two adjacent ECTs, we randomly selected one ECT, when exploring single ECT data or the relationship

between the number of taps and slope stability[..50 ]. As before, this procedure was repeated 100 times. The respective [..51

]statistic, generally the mean proportion of unstable slopes, was calculated based on the 100 repetitions.

4 Results220

4.1 Comparing existing stability classifications

We first consider the results for a single ECT. The original stability classification ECTorig led to significantly different propor-

tions of unstable slopes for the two stability classes ([..52 ]0.48 vs. 0.19, p < 0.001, Fig. 3a). The ECTw09 [..53 ]classification,

with three different classes, showed significantly different proportions of unstable slopes between the lowest and the inter-

mediate [..54 ]class (0.55 vs. 0.23, p ≤ 0.001), but not between the intermediate and the highest [..55 ]class (0.23 and [..56225

]0.19, p > 0.05). Although ECTw09-class 1 had a larger proportion unstable slopes than ECTorig-class 1, the difference was not

significant (p > 0.05).

Considering the results obtained from two adjacent ECTs resulting in the same stability class 1, between [..57 ]0.54 (ECTorig)

and [..58 ]0.64 (ECTw09) of the slopes were unstable. Although the proportion of unstable slopes was higher by [..59 ]0.06 to

0.09 than for a single ECT, this difference was not significant (p > 0.05). When both [..60 ]ECTs indicated the highest stability230

class, the proportion of unstable slopes was 0.15, not significantly different than for a single ECT resulting in this stability class

49removed: . P-values (prop.test) were calculated
50removed: (Sect. 4.2).
51removed: statistics
52removed: 0.47 vs. 0.18
53removed: -classification
54removed: classes (0.53
55removed: classes
56removed: 0.18
57removed: 0.52
58removed: 0.61
59removed: 0.05 to 0.08
60removed: ECT
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Figure 3. Proportion of unstable slopes (y-axes) for a) the two existing ECT stability classifications (ECTorig, ECTw09) and the RB, b) the

number of taps stratified by propagation, and c) the classification using the ECTnew together with the RB as in a). In a) and c): single ECT

results are indicated by the respective text labels, two ECTs resulting in the same stability class by [..70 ]circles. For single ECT and RB,

additionally the actual values for the proportion of unstable slopes are indicated. In b): The lines represent the mean proportion of unstable

slopes calculated for moving windows including five or seven consecutive [..71 ]numbers of taps. a) to c) 30% unstable and 70% stable slopes

were used (i.e. the grey line shows the the base rate proportion of unstable slopes).

([..61 ]0.19, p > 0.05). When one test resulted in the lowest and the other in the intermediate ECTw09-class, [..62 ]0.21 of the

slopes were unstable. While this was clearly less than when both resulted in ECTw09-class 1 (p < 0.05), it was not significantly

different than two ECT with ECTw09-class 4 (0.15, p > 0.05)

Regardless whether a single ECT or two ECTs were considered, the ECTw09-classification had a [..63 ]0.07-0.08 larger propor-235

tion of unstable slopes for stability class 1 than the ECTorig-classification. For stability class 4 there was no difference, as the

definition for this class [..64 ]is identical.

The sensitivity was higher for ECTorig ([..65 ]0.62) than for ECTw09 (class 1: [..66 ]0.55, Fig. 4a and b). However, this comes at

the cost of a high false alarm rate (1-specificity) for ECTorig ([..67 ]0.29), considerably higher than for ECTw09 ([..68 ]0.19).

The optimal balance between achieving a high sensitivity and a low false alarm rate was found to be at [..69 ]ECTP≤21240

(R-library pROC (Robin et al., 2011)), exactly the threshold suggested by Winkler and Schweizer (2009).

61removed: 0.18
62removed: 0.25
63removed: 0.06-0.09
64removed: was
65removed: 0.64
66removed: 0.57
67removed: 0.31
68removed: 0.21
69removed: ECTP
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Figure 4. Distribution of stability classes by slope stability for the different stability test and classification approaches: a) with two classes

([..72 ]ECTorig); b) with three classes ([..73 ]ECTw09); and c) and d) with four classes ([..74 ]ECTnew and RB, [..75 ]respectively). The vertical

dashed lines indicate the thresholds when the primary slope stability associated with a test result changed from one slope stability to the other.

[..76 ]Reading subfigures row-wise provides an indication of POD and PON. Comparing proportions column-wise corresponds to a base rate

of 0.5. If no clear prevalence [..77 ]was observed, the stability class is considered as intermediate (light yellow colour). Stability classes were

considered as having no clear prevalence, when the ratio of the proportion of unstable cases to the combined proportions of unstable

and stable was between 0.4 and 0.6. As an example, for RB stability class 3 this ratio would be 0.34/(0.34+0.43).

4.2 Clustering ECT results by accounting for failure initiation and crack propagation

So far, we explored existing classifications. Now, we focus on the respective lowest number of taps stratified by propagating

(ECTP) and non-propagating (ECTN) results. If in the same test for different weak layers [..78 ]ECTN and ECTP were

observed, only [..79 ]ECTP with the lowest number of taps was considered.245

As can be seen in Fig. 3b, the proportion of unstable slopes was higher for ECTP compared to ECTN, regardless of the number

of taps and in line with the original stability classification ECTorig. However, a notable drop in the proportion of unstable slopes

between about 10 and 25 taps is obvious ([..80 ]ECTP, from about 0.6 to almost 0.25).

Clustering the ECT results shown in Figure 3b with the number of clusters k set to 3, 4 and 5, and repeating the clustering 100

times (refer to Sect. 3.1 for details), each time with 90% of the data, split the data at similar thresholds. In the following, we250

78removed: ECTN and ECTP
79removed: ECTP
80removed: ECTP
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show the results for the two most frequent cluster thresholds obtained for k = 4. The frequency, the respective cluster threshold

was selected in the 100 repetitions, is shown in brackets:

– [..81 ]ECTP≤[..82 ]14 (48%), [..83 ]ECTP≤[..84 ]13 (36%)

– [..85 ]ECTP≤20 (37%), [..86 ]ECTP≤18 (36%)

– [..87 ]ECTN≤10 (29%), [..88 ]ECTN≤9 (22%)255

Setting k to 3 resulted in clusters being divided at [..89 ]ECTP≤14 and at [..90 ]ECTP≤21, k = 5 resulted in cluster thresholds

[..91 ]ECTP≤9, [..92 ]ECTP≤14, [..93 ]ECTP≤20 and [..94 ]ECTN≤10. The second most frequent threshold was almost always

within ±1 tap of those indicated before. Applying the same approach with 80% of the data (rather than with 90%) resulted

in very similar class thresholds (LINK TO SUPPLEMENT).

To maximize the difference in the proportion of unstable slopes between classes[..95 ], we varied the thresholds defining clusters260

by testing ±3 taps. The following four stability classes for single ECT (ECTnew) in combinataion with the depth of the failure

plane criterion were obtained (p-values indicate whether the proportion of unstable slopes differed in relation to the previously

described group):

1. [..96 ]ECTP≤13 - capturing test results with the largest proportion of unstable slopes. The proportion of unstable slopes

([..97 ]0.6) was double the base rate (0.3).265

2. [..98 ]ECTP>13 and [..99 ]ECTP≤22 (proportion of unstable slopes = 0.4, p ≤ 0.05) - transitioning from a high ([..100

]0.6, for ECTP≤13) to a lower proportion of unstable slopes ([..101 ]0.27, for ECTP>22). However, the mean proportion

of unstable slopes was still higher than the base rate.

81removed: ECTP
82removed: 15
83removed: ECTP
84removed: 14
85removed: ECTP
86removed: ECTP
87removed: ECTN
88removed: ECTN
89removed: ECTP
90removed: ECTP
91removed: ECTP
92removed: ECTP
93removed: ECTP
94removed: ECTN
95removed: (Fig. 3c)
96removed: ECTP
97removed: 0.57) was about
98removed: ECTP
99removed: ECTP

100removed: 0.57, for ECTP
101removed: 0.23, for ECTP
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3. [..102 ]ECTP>22 or [..103 ]ECTN≤10 ([..104 ]0.27, p ≤ 0.01) - the proportion of unstable slopes was lower than the base

rate.270

4. [..105 ]ECTN>10 or [..106 ]ECTX (0.16, p ≤ 0.05) - capturing test results corresponding to the lowest proportions of

unstable slopes (about half the base rate).

[..107 ]

4.3 Evaluating the new ECT stability classification

4.3.1 Stability classification for single ECT275

The [..108 ]ECTnew classification showed continually and significantly decreasing proportions of unstable slopes with increas-

ing stability class ([..109 ]0.6, 0.4, 0.27, 0.16 for classes 1 to 4, respectively, p ≤ 0.01, Fig. 3c). The lowest ECTnew-class had a

larger proportion of unstable slopes ([..110 ]0.6) than the lowest classes for ECTw09 ([..111 ]0.55) or ECTorig ([..112 ]0.48), though

this was only significant compared to ECTorig (p ≤ 0.05). In contrast, only marginal differences were noted when comparing

[..113 ]the proportion of unstable slopes for stability class 4 (ECTnew 0.16, ECTorig [..114 ][..115 ]0.19). Considering ECTnew280

class 1 as an indicator of instability, the sensitivity was [..116 ]0.42. When considering classes 1 and 2 together, the sensitivity

increased to 0.56 (Fig. 4c).

4.3.2 Stability classification for two adjacent ECTs

70% of the time two ECTs indicated the same ECTnew class, in 19% they differed by one class and in 11% by two (or more)

classes. Two ECTs resulting in the same ECTnew class resulted in pronounced differences in the proportion of unstable slopes285

for classes 1 to 4 ([..117 ]0.65, 0.5, 0.24 and 0.13, respectively; Fig. 3c).

Randomly picking one of the two ECTs as the first ECT yielded the proportion of unstable slopes as shown in Table 3.

Additionally considering the outcome of a second ECT [..118 ]increased or decreased the proportion of unstable slopes for

102removed: ECTP
103removed: ECTN
104removed: 0.23
105removed: ECTN
106removed: ECTX (0.15
107removed: In the following, we apply these thresholds in combination with the depth of the failure plane.
108removed: new classification with four stability classes (ECTnew )
109removed: 0.57, 0.39, 0.25
110removed: 0.57
111removed: 0.53
112removed: 0.47
113removed: stability classes
114removed: 0.18).
115removed: Considering
116removed: 0.44 with ECTnew (0.58 when
117removed: 0.61, 0.48, 0.20
118removed: could increase or decrease the proportion
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Table 3. Proportion unstable slopes when randomly selecting one of two ECTs as the first test (ECTnew(1st)) (prop unstable 1st) and the

number of cases (N) , and the respective proportion unstable slopes 2nd following the outcome of the second ECT (ECTnew(2nd)).

ECTnew(1st) prop unstable 1st N ECTnew(2nd) N prop unstable 2nd

1 0.58 114
1 or 2 [..124 ]98 [..125 ]0.64

3 or 4 [..126 ]16 [..127 ]0.19

2 0.47 52
1 or 2 [..128 ]38 [..129 ]0.53

3 or 4 14 0.32

3 0.23 78
1 or 2 [..130 ]17 0.27

3 or 4 [..131 ]61 [..132 ]0.21

4 0.13 209
1 or 2 [..133 ]14 [..134 ]0.22

3 or 4 [..135 ]195 0.13

some combinations. For instance, if a first ECT resulted in either ECTnew class 1 or 4, the second test would often indicate a

similar result: class ≤ 2 in [..119 ]86% of the cases, when the first ECT was class 1, and class ≥ 3 in 93% of the cases, when290

the first ECT was class 4. However, if the first ECT [..120 ]was either ECTnew class 2 or 3, a large range of proportion [..121 ]of

unstable slopes resulted depending on the second test result ([..122 ]0.21 - [..123 ]0.53, Tab. 3), including some combinations

resulting in the proportion of unstable slopes being close to the base rate.

4.4 Comparison to Rutschblock test results

The proportion of unstable slopes decreased significantly with each increase in RB stability class (0.76, 0.53, 0.25 and 0.11295

for classes 1 to 4, respectively; p < 0.01; Fig. 3c). If a binary classification were desired, classes 1 and 2 would be considered

as indicators of instability, classes 3 and 4 as relating to stable conditions. Employing this threshold, the sensitivity was [..136

]0.53 and the specificity [..137 ]0.88 (Fig. 4d). Considering RB class 3, also termed «fair» stability (Schweizer, 2007), as an

indicator of stability is, however, not truly supported by the data. This class [..138 ]had a proportion unstable slopes of 0.25,

[..139 ]not significantly lower than the base rate.300

Comparing RB with the ECT showed that the proportion of unstable slopes for RB stability class 1 was significantly higher

119removed: 85
120removed: would either be
121removed: unstable slopes could result
122removed: 0.54
123removed: 0.17
136removed: 0.54
137removed: 0.87
138removed: has
139removed: only marginally
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(p < 0.01) and for class 4 by about 0.05 lower (p > 0.05) than for [..140 ]the respective ECT classifications (Fig. 3a, c). This

indicates that the RB stability classes at either end of the scale captured slope stability better than the ECT results, regardless

which of the ECT classification was applied, and whether a second test was performed. Fig. 3a and c also highlight that RB

class 2 and ECT class 1 (ECTw09, ECTnew) had similar proportions of unstable slopes. ECTnew stability class 2 had a lower305

proportion of unstable slopes than RB class 2 (p < 0.05), but a higher proportion than RB class 3 (p < 0.05). The proportions

of unstable slopes for the two highest ECTnew classes were not significantly different than for the two highest RB classes (p >

0.05).

The false alarm rate of the RB (classes 1 and 2) was lower than for any of the ECT classifications (Fig. 4). However, in our data

set a comparably large proportion of RB tests (0.34) indicated stability class 3 in slopes rated as unstable. This ratio is higher310

than for single ECTnew class 3. However, the frequency that stability class 4 (false stable) was observed in unstable slopes was

lower than for ECTnew class 4 (0.13 vs. 0.23, respectively).

The ECTnew stability class correlated significantly with the RB stability class (Spearman rank-order correlation ρ = 0.43, p <

0.001), a correlation which was stronger for ECT pairs resulting twice in the same ECT stability class (ρ = 0.64, p < 0.001).

For both tests, stability class 3 was neither truly related to unstable nor stable conditions, and may therefore be considered315

to represent something like «fair» stability.

4.5 The predictive value of stability tests - including base rate information

Now, we explore the predictive value of a stability test result as a function of the base rate [..141 ]proportion of unstable slopes.

In our data set the [..142 ]base rate proportion of unstable slopes increased strongly, and in a non-linear way, with forecast

danger level[..143 ]: for the 1108 snow pits with at least one ECT it was 1-Low: 0.02, 2-Moderate: 0.1, 3-Considerable: 0.38320

[..144 ](Tab. 4).

Considering single ECTnew class 1 and RB class 1 showed that [..145 ]the proportion of unstable slopes (PPV) was always

higher than the base rate proportion (Fig. 5), indicating that the stability test predicted a higher probability for the slope to be

unstable than just assuming the base rate. This shift was more pronounced for the Rutschblock than for the ECT, particularly

at 1-Low and 2-Moderate. [..146 ]The proportion unstable for ECTnew class 1 [..147 ]remained low at 1-Low and 2-Moderate325

([..148 ]proportion unstable ≤ [..149 ]0.33, Tab. 4), indicating that it was still more likely that the slope was stable rather than

unstable [..150 ]given such a test result (Tab. 4).[..151 ]
140removed: any of the
141removed: , the
142removed: proportion unstable slopes, the base rate, increased strongly
143removed: (
144removed: ,
145removed: PPV
146removed: While PPV for stability
147removed: (single or two ECT)
148removed: PPV
149removed: 0.3
150removed: , the likelihood ratio indicated weak evidence in favor of instability
151removed: At 4-High, the number of tests performed was very low (N = 16), therefore results are indicative at best.
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Figure 5 also shows the shift in [..152 ]the proportion unstable (1-NPV), when considering ECTnew or RB stability class 4

(high stability). In these slopes, [..153 ]the proportion unstable was lower than the base rate, indicating that the probability

the specific slope tested to be unstable was less than the base rate. [..154 ]The resulting proportion unstable was still higher330

compared to the base rate proportion unstable of the neighboring next lower danger level.

[..155 ]Analyzing the entire data set together, regardless of the forecast danger level, the proportion unstable slopes was 0.21,

and thus somewhat between the values for 2-Moderate and 3-Considerable. Again, the informative value of the test can be

noted (Fig. 5). However, ignoring the specific base rate related to a certain danger level, leads - for instance - to an underes-

timation of the likelihood that the slope is unstable at 3-Considerable (RB or ECTnew class 1), or an overestimation for the335

presence of instability at 1-Low (RB or ECTnew class 4).

At 1-Low, observations of RB stability class 1 were much less common (3%, or 2 out of 78 tests, Tab. 4) compared to

ECTnew class 1 (7%). Similar observations were noted for classes 1 or 2: at 1-Low 4% of the RB and 11% of the ECT fell

into these categories, increasing to 31% (RB) and 34% (ECT) of the tests at 3-Considerable. This shift from the base rate

proportion of unstable slopes to the observed proportion was more pronounced for the RB compared to the ECT.340

As shown in Figures 3c, the two extreme RB stability classes correlated better with slope stability than the respective two

extreme ECTnew classes. This is also reflected in Fig. 5 by the stronger shift from [..156 ]the base rate proportion of unstable

slopes to the observed proportion of unstable slopes. It is important to note that a stability test indicating stability class

4 was observed in 10% (ECT) or 7% (RB) of the cases in slopes rated unstable. This clearly emphasizes that a single

stability test should never be trusted as the single decisive piece of evidence indicating stability.345

5 Discussion

5.1 Performance of ECT classifications

We compared ECT results with concurrent slope stability information, applying existing classifications and testing a new

[..182 ]one.350

Quite clearly, whether a crack propagates across the entire column or not, is the key discriminator between unstable and stable

slopes (Fig. 3b). This is in line with previous studies (e.g. Simenhois and Birkeland, 2006; Moner et al., 2008; Simenhois and

Birkeland, 2009; Winkler and Schweizer, 2009; Techel et al., 2016) and with our current understanding of avalanche formation

(Schweizer et al., 2008b). Moreover, our results confirm the proposition by Winkler and Schweizer (2009) that the number of

152removed: PPV
153removed: PPV
154removed: However, the resulting posterior probability
155removed: Analysing
156removed: base rate to PPV, but can also be noted when calculating LR+ using a binary classification (LR+ for RB classes ≤ 2 (25, 4.2, 3 for 1-Low,

2-Moderate, 3-Considerable) compared to single ECTnew classes ≤ 2 (5.2, 2.6, 2.9 for 1-Low, 2-Moderate, 3-Considerable) ).
182removed: classification with concurrent slope stability information
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Figure 5. [..157 ]Proportion of unstable slopes (position of labels, RB - Rutschblock, ECT = single ECTnew) are shown compared to the

respective base rate proportion of unstable slopes (black dots and black dashed line) [..158 ]for danger levels 1-Low, 2-Moderate (2-Mod)

and 3-Considerable (3-Cons), and for the entire data set (all). [..159 ]The proportion unstable values are shown for the respective lowest (red

colour, labels above base rate line) and highest stability classes (blue, labels below base rate line)[..160 ]. [..161 ]

Table 4. [..162 ]Proportion unstable for [..163 ]ECTnew and RB class 1[..164 ], classes 1 and 2 combined, and class 4, stratified by regional

forecast danger level ([..165 ]DRF)[..166 ].

all classes class 1 classes 1 or 2 class 4

[..167 ]test DRF N prop. unstable [..168 ]N [..169 ]prop. unstable [..170 ]N [..171 ]prop. unstable N prop. unstable

ECT 1-Low 134 0.02 [..172 ]10 [..173 ]0.1 [..174 ]15 [..175 ]0.07 102 0.02

2-Moderate 523 0.1 [..176 ]73 [..177 ]0.33 128 0.23 [..178 ]302 0.05

3-Considerable 451 0.38 [..179 ]103 [..180 ]0.7 153 0.65 202 0.22

all 1108 0.21 186 0.52 296 0.44 606 0.1

RB 1-Low 78 0.01 2 0.5 3 0.33 54 0

2-Moderate 334 0.1 21 0.48 52 0.31 145 0.05

3-Considerable 315 0.36 42 0.74 98 0.61 81 0.16

all 727 0.2 66 0.64 [..181 ]153 0.57 280 0.07
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taps provides additional information allowing a better distinction between results related to stable and unstable conditions. The355

optimal threshold to achieve a balanced performance, i.e. high sensitivity as well as high specificity, was found to be between

[..183 ]ECTP20 and ECTP22, depending on the method (kmeans-clustering, pROC-cutoff point). This finding agrees well

with the threshold proposed by Winkler and Schweizer (2009) who suggested [..184 ]ECTP21. Using the binary classification,

as originally proposed by Simenhois and Birkeland (2009), increased the sensitivity but led to a rather high false alarm rate.

Moving away from a binary classification increased PPV and NPV for the lowest and highest stability classes, respectively, but360

came at the cost (or benefit) of introducing intermediate stability classes.

Only in some situations did pairs of ECTs performed in the same snow pit show an improved correlation with slope stability:

when two tests were either ECTnew stability class 1 or 2, or when either both tests were class 4, or one class 3 and one class 4.

5.2 Comparing ECT and Rutschblock

To our knowledge, and based on the review by Schweizer and Jamieson (2010), there have only been three previous studies365

[..185 ]that compared ECT and RB in the same data set.

Moner et al. (2008), in the Spanish Pyrenees, relying on a comparably small data set of 63 RB (base rate 0.44) and 47 single

ECT (base rate 0.38) observed a higher unweighted average accuracy for the ECT (0.93) than the RB (0.88). In contrast,

Winkler and Schweizer (2009, N = 146, base rate 0.25) presented very similar values for RB (0.84) and the ECT (0.81).

However, Winkler and Schweizer (2009) partially relied on a slope stability classification which is based strongly on the370

Rutschblock. Therefore, they emphasized that the RB was favored in their analysis. And finally, the data presented by Techel

et al. (2016) is to a large part incorporated in the study presented here.

In that respect, this study presents the first comparison incorporating a comparably large number of ECT and RB conducted in

the same snow pit, where slope stability was defined independently of test results. Seen from the perspective of the proportion

of unstable slopes, the lowest and highest RB classes correlated better with slope stability than the respective ECT classes.375

Incorporating the sensitivity, the proportion of unstable slopes detected by a test, a mixed picture showed: Single ECT and

RB (classes 1 and 2) detected a comparable proportion of unstable slopes ([..186 ]0.56 vs. 0.53, respectively, Fig. 4c, d). [..187

]Missed unstable classifications, however, were comparably rare for the RB ([..188 ]0.13) compared to single ECT ([..189

183removed: ECTP20 and ECTP22
184removed: ECTP21.
185removed: which
186removed: 0.58
187removed: False-unstable
188removed: 0.12
189removed: 0.23). In other words, a RB detected less reliably an unstable slope than an ECT, because intermediate RB results were still rather frequent in

these slopes. At the same time,
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]0.21). Similar findings were noted for stable cases and stability class 4: RB results indicating [..190 ]instability on [..191

]stable slopes (0.13) were less frequent than ECT indicating [..192 ]instability on stable slopes (0.27).380

5.3 [..193 ]Predictive value of stability tests

We recall the three lessons drawn by Ebert (2019) in his theoretical investigation of the predictive value of stability tests

using Bayesian reasoning in avalanche terrain, as this [..194 ]inspired us to explore these aspects using actual observations and

compare them to our results:

(1) «A localised diagnostic test will be more informative the higher the general avalanche warning.» (Ebert, 2019, p. 4). With385

general «avalanche warning» [..195 ]Ebert (2019) refered to the forecast danger level as a proxy to estimate the base rate. As

shown in Fig. 5, [..196 ]the observed proportion of unstable slopes (PPV) increased for both ECT and RB [..197 ]class 1 with

increasing danger level, and hence base rate, supporting this statement.[..198 ]

(2) «. . . Do not ‘blame’ the stability tests for false positive results: they are to be expected when the avalanche danger is low.

In fact, their existence is a consequence of the basic fact that low-probability events are difficult to detect reliably» (Ebert,390

2019, p. 4). Fig. 5 supports this statement: at 1-Low and 2-Moderate an ECT indicating instability (class 1) was much more

often observed on a stable slope [..199 ]than an unstable one. Only once the base rate proportion of unstable slopes was

sufficiently high, in our case at 3-Considerable, tests indicating instability were observed more often on unstable rather than

stable slopes. When the base rate was low, the predictive value of the RB was higher than of the ECT, suggesting that it

may be worthwhile to invest the time required to perform a RB rather than an ECT.395

(3) «In avalanche decision-making, there is no certainty, all we can do is to apply tests to reduce the risk of a bad outcome,

yet there will always be a residual risk» (Ebert, 2019, p. 5). The [..200 ]proportion of unstable slopes (PPV) was greater than

[..201 ]the base rate proportion of unstable slopes for tests indicating instability, regardless whether we considered an ECT

or a RB result and regardless of the danger level, [..202 ]while the proportion of unstable slopes (or 1-NPV) was lower for

tests indicating stability. [..203 ]From a Bayesian perspective, we [..204 ]can say that a positive test (a low stability class) always400

190removed: stability on
191removed: unstable
192removed: stability (RB: 0.13, ECT: 0.23). However, when a RB test indicated instability , this provided stronger evidence that the slope was in fact

unstable compared to an ECT indicating instability, as the latter were much more frequently also observed
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198removed: From a more theoretical perspective, it can be shown that PPV can be derived from Bayes Theorem (e.g. Blume, 2002; Ebert, 2019), therefore

linking both approaches.
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increases our belief that the slope is unstable, and vice versa when a test is negative (a high stability class). In summary, [..205

]both instability tests are useful despite the uncertainty which remains.

5.4 Sources of error and uncertainties

Beside potential misclassifications in slope stability, which we address more specifically in the following section (Sect. 5.5),

Schweizer and Jamieson (2010) pointed out two other sources of error. The first of these is linked to the test method, which405

are relatively crude methods and where, for instance, the loading may vary depending on the observer. The second error source

is linked to the spatial variability of the snowpack.The constellation of slab and underlying weak layer [..206 ]properties vary

in the terrain and may consequently have an impact on the test result. Furthermore, this data set did not permit to check

whether the failure [..207 ]layer of avalanches or whumpfs was linked to the failure [..208 ]layer observed in test results. Such

information about the «critical weak layer» was, for instance, incorporated by Simenhois and Birkeland (2009) and Birkeland410

and Chabot (2006) in their analyses. However, from a stability perspective, considering the actual test result is the more relevant

information.

5.5 [..209 ]Influence of the reference class definitions and the base rate

So far we have explored ECT and RB assuming that there are no misclassifications of slope stability. However, as the true

slope stability is often not known (particularly in stable cases), errors in slope stability classification will occur. Such errors,415

however, may potentially influence all the statistics derived to describe the performance of tests (Brenner and Gefeller, 1997).

For instance, if there are at least some slopes misclassified, classification performance will drop. However, in such cases, POD

and PON will additionally be influenced by the true (though unknown) base rate (Brenner and Gefeller, 1997).

In previous studies exploring ECT (Moner et al., 2008; Simenhois and Birkeland, 2009; Winkler and Schweizer, 2009), slope

stability classifications were generally well described and the base rate for the applied slope stability classification given. How-420

ever, slope stability classification approaches differed somewhat. For instance, a stability criterion used by Moner et al. (2008)

was the occurrence of an avalanche on the test slope, while Simenhois and Birkeland (2009) additionally considered [..210

]explosives testing of the slope as relevant information. Winkler and Schweizer (2009), on the other hand, additionally con-

sidered the manual profile classification used operationally in the Swiss avalanche warning service (Schweizer and Wiesinger,

2001; Schweizer, 2007)[..211 ]. They already considered a location as unstable, when profiles were rated as «very poor» or425

«poor». As this classification relies rather strongly on the RB result, the RB would be favored in such an analysis (Winkler and

Schweizer, 2009).

We have no knowledge about the uncertainty linked to our classification. However, we can demonstrate the impact of variations

205removed: and regardless of the strength of evidence,
206removed: varies
207removed: plane
208removed: plane
209removed: The influence
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in the definition of the reference class on summary statistics like POD and PON, and using different data subsets for analysis:

Let us assume we are not interested in comparing ECT and RB, but want to explore only the performance of a binary ECT430

classification with [..212 ]ECTP22 as the threshold between two classes. We will, however, use the RB together with the criteria

introduced in Section 2.3 to define slope stability:

– Without using the RB as an additional [..213 ]criterion, POD and PON for the ECT was [..214 ]0.56 and 0.79, respectively

(Fig. 4c).

– If only slopes [..215 ]were considered unstable, when the RB stability class was ≤ 2, and those as stable with RB stability435

class [..216 ]4, the resulting POD [..217 ]was 0.70 and PON [..218 ]was 0.91. The base rate in this data set [..219 ]was 0.32

and N = [..220 ]243.

– Being even more restrictive, and considering only slopes unstable, when the RB stability class was 1, and those as stable

with RB stability class 4, the resulting POD [..221 ]was 0.74 and PON was 0.91. The base rate in this data set [..222

]was 0.2 and N = [..223 ]206.440

Of course, one could also be interested in exploring the performance of a binary classification of the RB, and define slope

stability by using ECT results as additional [..224 ]criterion to those in Section 2.3. Without relying on ECT results, POD and

PON for the RB were [..225 ]0.53 and 0.88, respectively (Fig. 4d). Considering only slopes as unstable, when additionally

ECTnew stability class ≤ 2 was observed, and those with ECTnew class 4 as [..226 ]stable, POD and PON would increase to

0.66 and [..227 ]0.94 (N = [..228 ]307, base rate 0.29), or 0.71 and [..229 ]0.94, respectively when considering only ECTnew445

stability class 1 as unstable and class 4 as stable (N = [..230 ]285, base rate 0.23).

The combination of various error sources (Sect. 5.4), together with varying definitions of slope stability and differences in the

base rate make it almost impossible to directly compare results obtained in different studies. Therefore, performance values

212removed: ECTP22
213removed: criteria
214removed: 0.58 and 0.77
215removed: are
216removed: ≥ 3
217removed: is
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very poor poor poor (-fair)Figure 6. Proposed class labels for a) ECT results based on crack propagation and number of taps with four classes poor, poor-to-fair,

fair and good. In b) the RB classification is shown (same as in Fig. 2 but with four class labels).

presented in this study, but also in other studies regarding snow instability tests, must always be seen in light of the specific

data set used and allow primarily a comparison within the study.450

5.6 Proposing stability class labels

For the purposes of this manuscript, we introduced class numbers to assign a clear order to the classes rather than

assigning class labels. However, the introduction of class labels rather than class numbers may ease the communication

of results.

We believe suitable terms should follow the established labeling for snow stability, which includes the main classes: poor,455

fair, and good (e.g. CAA, 2014; Greene et al., 2016; Schweizer and Wiesinger, 2001). Hence, we suggest the following

four stability class labels to rate the ECT results (Fig. 6a):

– poor : ECTP≤13

– poor-to-fair : ECTP>13 to ECTP≤22

– fair : ECTP>22 or ECTN≤10460

– good : ECTN>10

Introducing these four labels allows an approximate alignment with the labels used for the RB (Fig. 6b), and reflects the

variations in the proportion of unstable slopes observed between classes (Fig. 3c; proportion of unstable slopes for the

four RB classes: 0.76, 0.53, 0.25, 0.11, respectively; and the four ECT classes: 0.6, 0.4, 0.27, 0.16, respectively).

6 Conclusions465

We explored a large data set of concurrent RB and ECT, and related these to slope stability information. Our findings confirmed

the well-known fact that crack propagation propensity, as observed with the ECT, is a key indicator relating to snow instability.
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[..231 ]The number of taps required to initiate a crack [..232 ]provides additional information concerning snow instability.

Combining crack propagation propensity and the number of taps required to initiate a failure allows refining the original binary

[..233 ]stability classification. Based on these findings, we propose an ECT stability interpretation with four distinctly different470

stability classes. [..234 ]This classification increased the agreement between slope stability and test result for the lowest

(poor ) and highest (good) stability classes compared to previous classification approaches. However, in our data set, the

proportion of unstable slopes was higher and lower in the lowest and highest stability class, respectively, for the RB than for

the ECT, regardless whether one or two tests were performed. Hence, the RB correlated better with slope stability than the

ECT. Performing a second ECT in the same snow-pit increased the classification accuracy of the ECT only slightly. Only475

when an ECT result was in one of the two intermediate classes, a second ECT performed in the same snow pit may be

decisive for the highest or lowest class that are best related with rather stable or unstable conditions, respectively.

We discussed further that changing the definition of the reference standard, the slope stability classification, has a large impact

on summary statistics like POD or PON. This hinders comparison between studies, as differences in study designs, data

selection and classification must be considered.480

[..235 ]Finally, we investigated the predictive value of stability test results using a data-driven perspective. We conclude by

rephrasing Blume (2002): When a stability test indicates instability, this is always statistical evidence [..236 ]of instability, as

this will increase the likelihood for instability compared to the base rate. However, in case of a low base rate, false unstable

predictions are likely.
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