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8
Abstract: The existence of debris flows not only destroys the facilities, but also seriously threatens9
human lives, especially in scenic areas. Therefore, the classification and susceptibility analysis of10
debris flow are particularly important. In this paper, 21 debris flow catchments located in Huangsongyu11
town ship, Pinggu District of Beijing, China were investigated. Besides field investigation, geographic12
information system, global positioning system and remote sensing technology were applied to13
determine the characteristics of debris flows. This article introduced clustering validity index to14
determine the clustering number, and the fuzzy C-means algorithm and factor analysis method were15
combined to classify 21 debris flow catchments in the study area. The results were divided into four16
types: scale-topography-human activity closely related, topography-human activity-matter source17
closely related, scale-matter source-geology closely related and topography-scale-matter source-human18
activity closely related debris flow. And 9 major factors screened from the classification result were19
selected for susceptibility analysis, using both the efficacy coefficient method and the combination20
weighting. Susceptibility results showed that the susceptibility of 2 debris flows catchments were high,21
6 were moderate, and 13 were low. The assessment results were consistent with the field investigation.22
Finally, a comprehensive assessment including classification and susceptibility evaluation of debris23
flow was obtained, which was useful for risk mitigation and land use planning in the study area, and24
provided reference for the research on related issues in other areas.25

26
Keywords Debris flow classification, Susceptibility, Fuzzy C-means algorithm, Factor analysis,27
Efficacy coefficient method28

1 Introduction29

Debris flow is a common geological disaster widely distributed across the world. Due to its sudden30
outbreak, it is often difficult to give real-time warning. Debris flow usually flows at a speed of 0.8-2831
tn/s (Dieter et al., 1999; Clague et al., 1985), inflicting severe damage to lives and properties once it32
occurs. China is one of the worst affected areas prone to natural disasters. According to data, there are33
nearly 8,500 debris flows distributed across 29 provinces, with an area of approximately 4.3×106 km234
(Ni et al., 2010). Every year, nearly one hundred counties are directly endangered by debris flow, and35
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hundreds of people lose their lives, resulting in irreparable losses (Kang et al., 2004).36
Debris flow susceptibility analysis (DFS), which expresses the likelihood of a debris flow37

occurring in an area with respect to its geomorphologic characteristics (Blais et al., 2016), is very38
important to mitigate, evaluate and control debris flow disasters (Chiou et al., 2015). Physical,39
empirical, and statistical approaches are used to analyze debris flow, which expresses the presumption40
of a debris flow occurring in an area with respect to its geomorphologic characteristics (Blais et al.,41
2016). Physical-based approaches (Carrara et al., 2008; Burton and Bathurst, 1998) are more applicable42
to analyze physical and mechanical factors in independent catchments. Empirical model belongs to43
qualitative evaluation and is too subjective to be convinced. Statistical analyses which are usually44
applied in the research of regional debris flow, belongs to quantitative evaluation and depends on the45
completeness and accuracy of data. For a study area with a limited number of debris flows, a46
semi-quantitative evaluation method is more appropriate. This analysis includes the extraction of47
evaluation factors, the determination of weight factors and the establishment of an evaluation model.48
Considering that the influencing factors of debris flow are complex, multiple evaluation indexes are49
generally involved, and linear correlations between different factors further complicate debris flow50
susceptibility analysis (Benda et al., 1990). However, the unreasonable selection of factors may cause51
the loss of important information and failure to obtain accurate evaluation results. One way to alleviate52
these problems is dimension reduction through exploratory factor analysis (Aguilar et al., 2000). Some53
researchers (Peggy et al., 1991; Ming et al., 2016) have used the principal component analysis method54
to conduct effective dimensionality reduction for selected factors and eliminate the correlation between55
factors. However, the coefficient of principal component after dimensionality reduction can be positive56
or negative, which is not ideal for the occurrence of debris flow. Factor analysis, in which the57
coefficients of the common factors are all positive, and the variables are more resolvable by rotation58
technology is applied in the current study.59

To determine the influence of different factors on debris flow susceptibility, the weights of these60
factors should be assigned first. The combined weighting method, which possesses the advantages of61
subjective and objective weighting methods, was applied to assign factors with logical weights.62

The efficiency coefficient method (ECM) is a comprehensive evaluation method based on63
multiple factors and is suitable for complex research objects, such as debris flow. The factors can be64
converted into measurable scores through the appropriate function and objectively reflect the situation65
of the evaluation object in the case of a large difference in the factor value. This research primarily66
focuses on the method, which is applied to the debris flow susceptibility evaluation based on the results67
of the weight analysis.68

Debris flow classification plays a direct guiding role in disaster prevention and mitigation, and69
mature classification methods have been developed (Iverson et al., 1997; Brayshaw et al., 2009).70
However, a single classification standard cannot fully and accurately reflect the comprehensive71
characteristics of debris flow ditches, and base on different classification criteria, the same debris flow72
will belong to different types at the same time. The fuzzy C-means (FCM) method which is applicable73
to a wide variety of geostatistical data analysis (Bezdk et al., 1981), was applied to classify debris flow74
in this paper. Considering that the main influencing factors of different types of debris flow are also75
different, FA was carried out for each category to obtain major factors to define each type of debris76
flow.77

In recent years, with the improvement of computer performance and the advance features in78
geographic information systems (GIS), global positioning systems (GPS) and remote sensing (RS)79
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techniques, also known as "3S technology", has become very effective and useful especially to debris80
flow research (H. Gómez 2008; Glade T 2005; Conway SJ 2010). In particular, the application of GIS81
has greatly improved the ability of spatial data processing and analysis, such as slope direction analysis82
and flow direction calculation (Mhaske et al., 2010; Xu et al., 2013; Kritikos et al., 2015). Therefore,83
FA、FCM and ECM were used to classify and evaluate the susceptibility of debris flow in the current84
study, combining with "3S technology" and field investigation.85

2 Study area86

The research area is located around several scenic spots in Huangsongyu township, Pinggu district,87
Beijing. The village covers an area of 12.83 square kilometers, including 732 households, a total of88
2043 people. And the Shilin gorge is the core scenic area of Huangsongyu geopark, attracting a large89
number of tourists all year round. The geographical location of the study area and 21 debris flow90
catchments are shown in Fig. 2. During our field investigation, some scenic spots have been closed91
down due to the threat of falling rocks, floods and debris flow, which were shown in Fig.3. And Fig.492
and Fig.5 show the situation of the other two scenic spots, respectively. Considering the sudden and93
rapid outbreak of debris flow and the large number of tourists and surrounding villagers in the scenic94
area, it is necessary to assess the susceptibility of debris flow.95

The study area is located in the northwest of north China plain, which belongs to yanshan96
mountain range. Surrounded by high terrain, the central is flat, and the highest elevation of the territory97
is 1188m, the lowest is 174m. The Yanshanian and Indosinian periods in the study area were98
characterized by strong tectonic activity, which resulted in a series of large fold and fault structures.99
Due to long-term geological processes, the structure in the area is relatively complex. But the strata are100
relatively simple, except for a few Archean metamorphic rocks, the exposed strata are middle101
Proterozoic sedimentary strata and Quaternary sediments. The main lithology of the Archean age (Ar)102
is amphibious plagiarize gneiss and black cloud matinee. The Great Wall system (Ch) is the broadest103
strata in this area, and the main lithology is dark gray ferric dolomite, sacrilegious micritic dolomite,104
dolomite sandstone. The main lithology of jixian system (Jx) is dolomite. Quaternary system (Q) is105
dominated by sand, gravel and clay of residual and diluvial facies. The non-developed lithology of106
magmatite is mainly granite and quartz diorite.107

The study area is characterized by a north temperate continental climate with distinct four seasons108
and large annual temperature difference. The coldest average January temperature is 6 ~ 8°C and the109
hottest July average temperature is 21.6°C. The annual precipitation is about 639.5mm, and the average110
monthly rainfall (1959-2017) is shown in Fig. 1. Precipitation is concentrated in the summer,111
accounting for 74.9% of the annual precipitation, which is generally concentrated in late July and early112
August, promoting debris flow.113

114
115
116
117

118
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3 Methodology119

3.1 Fuzzy c-means clustering (FCM)120

The fuzzy c-means method belongs to soft clustering, which is widely used at present. Its core idea is121
to map data points of multi-dimensional space to different clustering sets in the form of membership122
degree, so as seeks C cluster centers in such a manner that the intercluster associations are minimized123
and the intracluster associations are maximized (Bezdek et al., 1981). For every group, each point is124
assigned a membership degree between 0 and 1. The membership values indicate the probability of125
each point belonging to the different groups (Samuel et al., 2019). The steps of FCM algorithm are as126
follows (Fig.6):127
(1) The membership matrix μij is initialized with random Numbers between 0 and 1, which is used to128
represent membership degree of xi to the cluster j. And it satisfies the constraint conditions:129
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Where C represents the number of clusters.131

(2) Calculating clustering centers Ci and the formula is as follows (Hammah et al., 1998)132
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where m controls the degree of fuzziness and m = 2 is deemed to be the best for most applications134
(Bezdek et al., 1981); Xj represents the jth sample.135
(3) Determining the number of clustering centers136
The clustering number C of FCM algorithm is not clearly given, which is one of the key factors137
affecting the clustering effect. So this paper combines the non-distance-based FCM clustering138
effectiveness index proposed by Chen and Pi (Chen et al., 2013) to determine the value of C. The139
exponent (Vcs) consists of compactness index and separation index. And the definition of compactness140
is as follows:141
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where Cij is the compactness of the jth sample with the ith. When uij is greater than or equal to 1/c, it143
avoids the meaningless for too small . When uij<1/c, it indicates that the J sample is unlikely to belong144
to the ith class. When all samples clearly belong to a certain class, the compactness degree is the145
maximum. That is, the clustering result is compact. We define the whole compactness of sample data as146
following:147
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The definition of separation index is as follows:149
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150

That is, the minimum value of the membership degree of samples belonging to these two categories.151
When the division of the two categories is relatively clear, it indicates that the membership degree of152
samples belonging to a certain category must be greater than other values. Therefore, the better the153
clustering result is, the smaller Sij should be. And the total separation is defined as:154
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155

The smaller the dispersion is, the greater the difference between the two classes is and the better the156
clustering result is.157
Based on this, the clustering effectiveness Vcs index is defined as follows:158

cs
CV
S


(7)

159

In conclusion, when C is larger and S value is smaller, Vcs is larger and the clustering effect is better.
160

（4）Calculating the value function J.
161
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162

where N is the total number of observations, and j is the fuzzy objective function; d2 is the Euclidean
163

distance between the ith clustering center and the jth data point (Wang, 2008);
164

The operation is stopped when J is less than a certain threshold.
165

（5）Calculating the new matrix Uij and return to step 2
166






 C

k

m

kj

ij
ij

d
du

1

)1/(2)(

1

(9)

167

168

3.2 Factor analysis169

FA is a multivariate statistical analysis method, which studies the internal dependence of variables and
170

reduces some variables with intricate relations to a few comprehensive factors (Li et al., 2016). FA is
171

the inferred decomposition of observed data into two matrices. One matrix represents a set of
172

underlying unobserved characteristics of the subject which giverise to the observed characteristics and
173

the other explains the relationship between the unobserved and observed characteristics (Max R 2018).
174

And the mathematical formula can be expressed as follow:
175

X AF   (10)176
Where X (x1,x2,..., xp) is the original factor，F (F1，F2，..., Fm) is the common factor ; A= (akj) p×m is

177

factor load matrix，akj represents the load of the K original factor on the J common factor; ε =(ε1，ε2 ,…,
178

εp ) is a special factor.
179
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The main calculation steps of factor analysis method can be divided into six steps:
180

1 Test the feasibility of FA of original evaluation index variables
181

In this paper, SPSS was used to provide Bartlett sphericity test to determine whether variables are
182

suitable for FA.
183

2 Standardized calculation of original data
184

In order to eliminate the numerical differences of different variables in order of magnitude and
185

dimension, the original data should be standardized. And this paper adopted the Z standardization
186

method in SPSS software.
187

3 Construct a common factor F
188

In the study, the first m factors for which the cumulative variance contribution rate is no less than
189

85%, were selected as common factors to represent the original data.
190

4 Factor rotation
191

In this paper, varimax orthogonal rotation was used to realize factor rotation.
192

5 Calculating factor scores;
193

The most common method for calculating factor scores is the Thomson regression method (Max R
194

2018), and the formula is as follow:
195

XRAF 1 (11)196

where A′R-1is factor scoring coefficient matrix and A is the factor loading matrix after rotation.197

6 Calculating weight
198

The product of factor score coefficient and variance contribution rate is the contribution of each
199

factor in the sample, and the sum of the contribution of each factor divided by the contribution of all
200

indexes is the weight of each factor. It is expressed by the formula:
201
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202

where βji is the coefficient score of each index in principal component Fj; i=1,2 ,..., p; j=1,2, ..., m; e is
203

the contribution rate of factor variance.
204
205

3.3 Combination weighting method206

Considering the defects of the current method for determining the weight of factors, the combination of
207

analytic hierarchy process and factor analysis method is used to determine the weight of each
208

influencing factor of debris flow.
209

3.3.1 Analytic hierarchy process (AHP)210

Analytic hierarchy process (AHP) was first proposed by Saaty (1979), a famous American
211

mathematician. It decomposes the factors related to decision-making into multiple layers, such as target
212
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layer, criterion layer and scheme layer. AHP is a subjective weighting method and has obvious
213

advantages in determining the weight of each factor. The specific steps are as follows:
214

1 Establishing hierarchical structure model
215

The hierarchical structure is mainly divided into three layers: target layer, criterion layer and
216

scheme layer.
217

2 Establishing the judgment matrix
218

For the same level, judgment matrix is established by pair-wise comparison. The formula is as
219

follow:
220

   1, 0, , , 1, 2,...ij ij ijn n
ji

A a a a i j n
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(13)

221

where aij is the ratio of relative importance between element Bi and Bj, which is usually expressed by
222

the scoring method from 1 to 9 (Saaty, 1977), as shown in table 2.
223

3 Consistency testing
224

The consistency test is divided into three steps:
225

(1) Calculate the consistency index（CI）(Saaty, 1977)and the expression is:
226

1
max





n

nCI 

(14)
227

Where λmax is the largest eigenvalue of the judgement matrix A.
228

(2) Average random consistency RI；
229

RI is associated with the order of judgment matrix, and their relationship is shown in Table 3.
230

(3) Obtaining the test coefficient CR.
231

RI
CICR 

(15)
232

If CR<0.1, judgment matrix has a good consistency with reasonable judgment. Otherwise, the
233

judgment matrix needs to be revised until the consistency test is satisfied.
234

3.3.2 Combination weighting rule235

The weight value obtained by AHP is set as ωci, and the weight value obtained by FA is set as ωyi (Feng236
et al., 2010), as shown in Eq16.237
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Where α and β are weight coefficients calculated through AHP and factor analysis method, respectively;239
rij is the standardized value of the jth influencing factor of the ith debris flow. And α and β are240
determined according to the following formula:241
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242

And the combined weight（ωzi） can be represented in Eq18:243
y
i

c
i

z
i   (18)244

3.4 Efficiency coefficient method245

Based on the principle of multi-objective programming, the efficiency coefficient method transforms246
each factor into a measurable evaluation score through the efficiency function, and combines the247
weight of factors to make a comprehensive evaluation. The specific steps are as follows:248
1 Selecting evaluation factors249
2 Determine the satisfactory value and the unallowable value250

The satisfaction value is a value based on years of experience, while the unallowable value is the251
lowest or highest acceptable value of the evaluation index.252
3 Calculating the single efficacy coefficient253

The single efficacy coefficient was calculated by the corresponding efficacy function based on the254
sensitivity of each factor. And It is mainly divided into three variables: the extremely large variable (the255
higher the factor, the higher the efficiency coefficient), the infinitesimal variable (the smaller the index256
value, the larger the efficiency coefficient value) and the Interval variable (The value reach the highest257
in a certain interval). The specific formula is as follows:258
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259

where g1i is the single efficacy coefficient value of the ith extremely large factor; Xi is the actual value260
of the ith factor; Xyi is the satisfactory value of the ith factor; Xni is the unallowable value of the ith261
factor.262
The infinitesimal variable：263
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264

The Interval variable：265
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4 Calculating the total efficiency coefficient

267

 
m

i
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(22)
268

where G is the total efficacy coefficient, gi is the single efficacy coefficient and ωi is the weight of the269
ith factor.270

The flow chart for the method used for our classification and susceptibility analysis is shown in271
Fig. 8.272

3.5 Influencing Factors273

The topographical, geological and climatic factors play a critical role in the distribution and activities274
of debris flows (B. F. DI et al., 2008). Table 2 shows the influencing factors selected by researches in275
debris flow susceptibility assessment in recent years. Rainfall is one of the most pivotal external factors276
inducing debris flow disasters, but the meteorological data in our area are all from the same station,277
which cannot reflect the differences between each catchment. Therefore, rainfall was not included in278
this study. In addition, the frequency of debris flow and the size of soil particles are difficult to obtain279
accurately. The loose material volume reflects the lithological characteristics and fault length to some280
extent, so lithology and fault length were not taken into account. The basin area, main channel length,281
drainage density, average slop angle, average gradient of main channel, vegetation coverage, maximum282
elevation difference and curvature of the main channel, which were cited and available, were selected283
in this paper. As source conditions, the loose material volume and the loose material supply length ratio284
were also considered. As the study area is located in a tourist area with a relatively dense population,285
population density is selected as the factor of human activities. A total 13 influencing factors were286
selected based on the previous research findings to reflect the characteristics of the watershed. All these287
factors were acquired in our field survey or calculated in ArcGIS, as described below.288
Basin area（F1）（km2）289

Basin area reflects the scale of debris flow. Generally, the larger the basin area is, the greater the290
risk of debris flow will be. It was obtained by geometric operations in ArcGIS and corrected by the291
remote sensing image in Google earth.292
Main channel length（F2）（km）293

Main channel length reflects the potential for increasing loose sources along the route. This value294
was measured from ArcGIS by combining RS technology and topographic map.295
Drainage density（F3）（km/km2）296

Drainage density is the ratio of the total drainage length to the watershed area and it is an297
important index to describe the degree of ground being cut by gullies.298
Average gradient of main channel（F4）299

It is the ratio of the maximum elevation difference of main channel to its linear length. The larger300
the value, the better the hydrodynamic condition is. This value is obtained from the DEM.301
Average slop angle（F5）（°）302

As F5 increases, the erosion capacity and intensity of precipitation increase. The value was303
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obtained by ArcGIS slope analysis tool.304
Maximum elevation difference（F6）（m）305

The difference between the maximum and minimum elevation values in the basin provides kinetic306
energy condition of disaster. This value is also obtained from the DEM.307
Curvature of the main channel（F7）308

F7 is the ratio of the main channel length to its linear length, which reflects the degree of channel309
blockage.310
The loose material volume （F8）（×104m3）311

The loose material is one of fundamental factors triggering debris flows. This factor is obtained312
through field investigation with tape and laser rangefinder. And the thickness was obtained by field313
estimation and trench test.314
The loose material supply length ratio （F9）315

F9 is the ratio of loose material length along a channel to total channel length, which reflects the316
successive supplied sediments. It was obtained through field survey and RS technology.317
Vegetation coverage（F10）318

The lower the vegetation coverage will be, the more serious the soil erosion. It was estimated from319
field survey and SPOT5 imaging.320
Population density（F11）（quantity/km2）321

With the development of social economy, human activities have gradually become an important322
factor affecting debris flow. Population density reflects the intensity of human activities, which is323
estimated according to the number of buildings through field survey and RS technology.324
Roundness（F12）325

Roundness is the morphological statistical element of gully, and the plane shape of gully variates326
from its developmental stage. F12 is the ratio of the length of main channel of debris flow to its area.327
The most volume of once flow（F13）（×104m3）328

Liu (1993) selected F13 as the main factor in the risk assessment of debris flow, which is one of329
the important factors to evaluate the degree of debris flow hazard.330

4 Result331

4.1 Fuzzy c-means clustering analysis332

The curve of clustering effectiveness index Vcs with the number of clustering centers is shown in Fig.333
9 and the optimal number of clustering of evaluation units is 4. Based on the basic data of 21 debris334
flows, the FCM was carried out and set the fuzzy weighted index m=2. And results were shown in table335
5.336

337
Thus 21 debris flows in the study area are divided into 4 categories. The data of each catchment338

belonging to the same category have certain internal similarity and vary greatly among different339
categories. In other words, data of different influencing factors have different effects on different types340
of debris flows, which provide a favorable basis for us to analyze the main influencing factors of debris341
flows, and also points out the direction for monitoring and prevention of debris flows.342
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4.2 Factor analysis343

Based on the clustering results of 21 debris flows, FA was used to analyze each type of debris flow.344
Table 2, table 3, table 4 and table 5 are the results of the first, second, third and fourth categories,345
respectively.346

As shown in table 2, in the first category, the accumulative contribution rate of the first three347
factors (C1, C2 and C3) reaches 86.40%, which retain most information of the 13 original variables.348
For the first group, the load values of the main factors 1, 2 and 3 are relatively large in the basin area,349
the most volume of once flow, the maximum elevation difference, the main channel length and350
curvature of the main channel, population density and drainage density, respectively. Similarly, in the351
second type, the load values of the main factors 1, 2 and 3 are relatively large in the basin area, the352
main channel length and population density, loose material volume and drainage density, maximum353
elevation difference, respectively. In the third category, the load values of the main factors 1, 2 and 3354
are relatively large in the basin area, main channel length, the most volume of once flow, loose material355
volume and the loose material supply length ratio and vegetation coverage, respectively. And In the356
fourth category, the load values of the main factors 1, 2 and 3 are relatively large in main channel357
length, drainage density, loose material volume, the most volume of once flow and the loose material358
supply length ratio and population density, respectively.359

Among the 13 factors, the basin area and the most volume of once flow reflect the scale of debris360
flow eruption. The main channel length, drainage density, average gradient of main channel, the361
average slope, maximum elevation difference, curvature of the main channel, roundness reflect the362
topographical condition. The loose material volume and the loose material supply length ratio are the363
material sources for debris flow. Vegetation coverage reflects geomorphologic condition. Population364
density reflects the impact of human activities on nature to some extent. Therefore, four types of debris365
flows can be named according to the results of FCM and FA.366

The first category can be defined as debris flow closely related to scale-topography-human367
activities. Considering the situation, monitoring and control of basic material sources is recommended.368
Similarly, the second, third, and fourth categories can be defined as topography-human369
activities-provenance, scale-provenance-topography topography-scale-provenance-human activities,370
respectively. In the same way, corresponding prevention measures can be proposed according to the371
characteristics of each type of debris flow.372

4.3 Weights of major factors373

Based on FA of each category of debris flow in the previous section, the main influencing factors were374
obtained. However, the repeatability of evaluation information should be reduced. Average slop angle375
and average gradient of main channel are both indicators of potential energy, so the average gradient of376
main channel is omitted. Similarly, curvature of the main channel, the loose material supply length377
ratio and roundness were omitted. So 9 factors, including basin area F1, main channel length F2,378
drainage density F3, average slop angle F5, maximum elevation difference F6, the loose material379
volume F8, vegetation coverage F10, population density F11 and the most volume of once flow F13380
were selected. On the other hand, a reduction in the number of indicators facilitates the allocation of381
weight values.382
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4.3.1 Subjective weights383

Analytic hierarchy process（AHP）was applied to calculate the subjective weight in this paper. The384
hierarchical structure (Fig. 10) was constructed, and the 1-9 scale method was used to grade each factor.385
The judgment matrices A-A ' (Table 10) and B-B' (Table 11) were constructed and the consistency test386
was conducted, respectively. The weight values of each factor are shown in table 12.387

4.3.2 Objective weights388

FA was applied to calculate the objective weight in this paper. The weight values of each factor are389
shown in table 13.390

4.3.3 Combination weights391

After the subjective weight and objective weight are obtained, the respective distribution coefficients392
are solved according to eq1 and the final combined weight values of each factor are shown in table 14,393
α=0.70，β=0.30, F8>F13>F11>F1>F2=F6>F10>F3>F5.394

4.4 The efficacy coefficient of factors395

Among the 9 factors, basin area, main channel length, drainage density, maximum elevation difference,396
the loose material volume, the most volume of once flow and population density are all extremely large397
variables. Vegetation coverage is the infinitesimal variable. And Average slop angle is an interval398
variable. Table 15 shows the efficacy coefficient scores of 21 debris flows after combined with weight399
calculation.400

4.5 Susceptibility assessment of debris flow401

Taking the total efficiency coefficient of each catchment as the evaluation standard (the larger the value402
is, the higher the possibility of debris flow), FCM was conducted for 21debris flow in the study area.403
The result showed that the susceptibility of debris flow was divided into three grades: high (H),404
moderate (m) and low (L). Combined with the classification of each debris flow mentioned above, the405
final results were shown in the table 16.406

As shown in table 16, susceptibility for the 10th and 13th catchments was high and both of407
them belong to the debris flow with close relationship between topography, human activities and408
provenance. Susceptibility for 6 catchments, including the 1st, 4th, 6th, 17th, 20th and 21th, had409
medium susceptibility. The other 13 had low susceptibility.410

Normative scoring, k-means clustering algorithm and hierarchical cluster were determined to411
validate susceptibility analysis methods used in this paper.412

Based on the field investigation, the 10th catchment is located in Huangsongyu national413
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Mining Park, where a large amount of slag has been accumulated. With low vegetation coverage414
and steep terrain, the gully was in its prime, which directly threatened the safety of villagers and415
tourists. What's more, there are several warning boards of natural disaster and corresponding416
monitoring equipment in the scenic spot（as shown in Fig.5. And the 13th catchment is located417
Lishugou village scenic spot. Part of the pedestrian passageway was built, but a lot of stones were418
piled up in the trench and the road was broken and steep（as shown in Fig.6）. However, there is no419
obvious accumulation of loose materials in the catchments with low susceptibility. The gully was420
in its old stage with high vegetation coverage and little human interference. The quantitative421
comprehensive evaluation results of debris flow susceptibility are shown in table 17, which are422
divided into two levels: low (L) and moderate (M). Among them , the susceptibility of the 10th423
and the 13th catchments were moderate and the others were low.424

The K-means algorithm (K) (Hartigan et al.,1978) and Hierarchical cluster (H) (Kimes et al.,425
2017) were used for the classification of our data to measure the classification performance in this426
paper. And the results were shown in table 17. The susceptibility results obtained by K and FCM427
are exactly the same. The susceptibility assessment of 17th and 21th were high based on H and428
moderate from FCM and K. However, such minor differences are acceptable. On the other hand,429
the susceptibility results obtained by FCM and normative scoring are different. This is mainly430
because the number of categories is different and the level was generally higher obtained by FCM.431
In addition, it can be seen from the tree graph（Fig.11）obtained by Hierarchical cluster, that the432
clustering results are more reasonable to be divided into three categories, which is consistent with433
the Vcs. Therefore, the susceptibility model established in this paper is suitable and reasonable.434

435
436

5 Discussion437

The accuracy of the debris flow classification directly affects the development of prevention and438
control measures. Based on different criteria, such as genetic classification, outbreak frequency,439
material composition, the same debris flow can belong to multiple categories at the same time, which440
does not reasonably reflect its multiple characteristics. In addition, the traditional classification441
standard has some hysteresis to prevent debris flow. Considering that different types of debris flow442
have different main influencing factors, the FCM and FA were combined in this study to refine and443
summarize the importance of various factors to improve the accuracy of the classification. FCM is444
different from traditional rigid division and it is based on the distance function to make the maximum445
correlation between the same kind of data and the minimum correlation between different kinds of data446
(Samuel et al., 2019). The clustering effectiveness Vcs was introduced to effectively solve the problem447
of determining the number of clusters, and the clustering analysis was carried out on the basic data of448
21 debris flows. FA is a primary exploratory tool for dimension reduction and visualization (Verde et al.,449
2018). The main influencing factors of each category are obtained by FA, which not only realizes450
effective dimensionality reduction but also eliminates the linear relationship between factors. The451
results showed that different kinds of debris flows obtained by the FCM had different major452
influencing factors. In other words, data for different influencing factors have different effects on453
different types of debris flows, which demonstrate the advantages of the FCM when combined with the454
factor analysis. According to different main influencing factors, the development characteristics of455
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debris flows can be reclassified. It also provided an effective basis for us to study the origin and456
classification of debris flow and point out the direction for monitoring and controlling disasters.457

The reasonable selection of evaluation factors is the premise of accurate evaluation of debris flow458
susceptibility. In this paper, 13 factors were preliminarily selected based on previous experience and459
field investigation conditions. And secondary screening was carried out based on FA analysis results,460
which enhanced rationality of screening. The determination of the factor weight is crucial to accurately461
evaluate the susceptibility of the debris flow (Zhang et al., 2013). FA is a common objective evaluation462
method in statistical analysis that determines the weight of factors according to the internal correlation463
and patterns of data. However, the objective method cannot reflect the relative significance of each464
influencing factor and may create misleading information. The AHP can make full use of expert465
experience and achievements in the corresponding fields to evaluate the influencing factors, which is a466
subjective method. However, different researchers have different preferences for major factors, which467
have a negative impact on the results. Therefore, combination weighting, which combines the468
advantages of the FA and AHP, is superior to the other methods alone when trying to obtain a more469
scientific and reasonable evaluation result.470

The efficiency coefficient method is different from other evaluation systems. By determining the471
satisfaction value of each factor as the upper limit and the unallowable value as the lower limit, the472
satisfaction degree is calculated through the corresponding efficiency function, and the final473
comprehensive score was obtained based on the weight evaluation. This method not only considers the474
relative importance of different factors but also determines the value based on the susceptibility to475
debris flow. Therefore, the efficiency coefficient method can objectively evaluate complicated research476
objects, such as debris flow, with this form of classification that conforms to people's logical thinking.477
However, the evaluation method adopted in this paper also has limitations: (1) Fuzzy c-means478
clustering is not applicable to the evaluation of a single debris flow gully; (2) Factor analysis method is479
not applicable when the sample data is too small; (3) The tools used in field investigation are too480
simple and some data, such as the loose material supply length ratio, are not accurate enough; (4)481
Rainfall variations were not considered between different debris flow.482

6 Conclusions483

Classification and susceptibility analysis are of great significance for the early warning and prevention484
of debris flow. Based on field investigation and "3S technology", an improved FCM and FA method485
were used to establish classification model and obtain the main influencing factors of different types of486
debris flow in the current study. And the ECM was used for the susceptibility analysis based on the487
combination weights of major factors.488

In this paper, 21 debris flows in Beijing were divided into 4 categories. Nine major factors489
screened from the classification results were determined for susceptibility analysis using both the ECM490
and combination weighting, and the susceptibility assessment was divided into 3 levels, which has been491
validated with normative scoring, the K-means algorithm and hierarchical clustering. An effective492
scientific classification and susceptibility assessment results of debris flow were obtained, which493
provides a theoretical basis for formulating disaster prevention, reduction plans and measures for debris494
flow. Therefore, a semi-quantitative evaluation method which combines fuzzy mathematics,495
multivariate statistical analysis and geological environment, is suitable for risk assessment for a study496
area with a limited number of samples. Different methods have their own advantages and497
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disadvantages, and some methods are complementary to a certain extent, so it is desirable to enhance498
the rationality of the application through the combination of multiple methods.499
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601
Table 1 The random average consistency index

602

n 1 2 3 4 5 6 7 8 9 10 11 12

RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54

Table 2 Definition of comparative importance
603

Table 3 Factors frequently used in susceptibility ananlysis of debris flow604

1 Two decision factors (e.g., indicators) are equally important

3 One decision factor is more important

5 One decision factor is strongly more importan

7 One decision factor is very strongly more important

9 One decision factor is extremely more important

2,4,6,8 Intermediate values

Reciprocals
If a ij is the judgment value when i is compared to j. Then Uji = 1/Uij is the

judgment value when j is compared to i
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Factors
Lin

(2002)

Chang

(2006)

Chang

(2007)

Lu

(2007)

Meng

(2010)

Zhang

(2011)

Zhang

(2013)

Shi Niu

(2014)
Time

(2016)

Rainfall

intensity
√ √ 2

Daily rainfall √ √ √ 3

Cumulative

rainfall
√ √ 2

Main channel

length
√ √ √ √ √ √ 6

Average slope

angle
√ √ √ √ √ √ √ 7

Drainage

density
√ √ √ √ √ √ √ 7

Soil particle size √ √ 2

Basin area √ √ √ √ √ √ √ √ 8

Average

gradient of main

channel

√ √ √ √ √ √ 6

Frequency √ √ √ 3

Loose material

volume
√ √ √ √ 4

Vegetation

coverage
√ √ √ √ √ 5

Population

density
√ 1

Lithology √ √ 2

Maximum

elevation

difference

√ √ √ √ 4

Curvature of the

main channel
√ √ √ √ 4

Fault length √ 1

Table 4 The values for the 13 factors of the 21 debris flow catchments605
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

1 1.887 1.721 2.51 0.48 25.88 639 1.09 1.04 0.36 0.5 28 0.74 2.41

2 0.907 0.984 1.85 0.7 26.77 579 1.09 0.706 0.65 0.5 8 0.68 0.49

3 0.292 0.321 1.71 0.24 25.27 371 1.22 0.167 0.33 0.45 90 0.82 0.05

4 2.057 2.296 2.05 0.44 27.17 752 1.1 1.615 0.74 0.55 27 0.62 2.33

5 1.547 1.728 1.6 0.42 25.44 610 1.18 0.956 0.41 0.45 25 0.58 1.62

6 2.77 3.113 2.16 0.32 25 745 1.15 1.616 0.77 0.65 6 0.61 5.95
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7 1.223 1.098 1.96 0.58 23.51 584 1.12 0.7 0.61 0.6 9 0.77 0.66

8 0.445 0.898 2.07 0.49 19.8 386 1.19 0.463 0.69 0.65 23 0.66 0.18

9 0.34 0.396 1.25 1.06 25.81 381 1.12 0.29 0.73 0.6 16 0.71 0.06

10 6.65 3.539 1.98 0.27 22.46 856 1.08 18.457 0.48 0.52 102 0.68 5.04

11 0.388 0.965 2.57 0.37 22.56 508 1.11 0.397 0.75 0.55 105 0.43 0.19

12 0.713 0.787 2.74 0.63 22.35 366 1.16 0.564 0.62 0.55 145 0.72 0.21

13 6.319 4.539 2.13 0.22 22.89 828 1.12 5.549 0.35 0.6 22 0.6 6.75

14 0.664 1.036 1.61 0.54 25.31 550 1.13 0.956 0.66 0.7 62 0.48 0.29

15 0.492 0.51 1.3 0.77 25.66 368 1.09 0.13 0.68 0.6 230 0.71 0.07

16 1.093 1.564 1.95 0.41 24.55 568 1.22 1.027 0.72 0.65 30 0.59 0.75

17 5.312 4.564 1.55 0.18 24.78 743 1.03 6.443 0.31 0.62 14 0.43 4.04

18 0.85 1.289 2.04 0.47 20.99 571 1.07 1.196 0.74 0.6 120 0.53 0.6

19 0.425 0.901 2.17 0.56 22.49 479 1.09 0.451 0.62 0.55 165 0.66 0.22

20 1.71 2.334 1.77 0.26 17.27 583 1.05 1.313 0.71 0.55 182 0.5 3.59

21 3.804 3.32 1.57 0.25 18.46 668 1.2 0.4317 0.58 0.65 66 0.49 6.31

Table 5 Clustering results of 21 debris flows debris flows606
Category Catchment

Ⅰ 1、2、5、7、14、16、21

Ⅱ 4、6、10、13、17、

Ⅲ 11、18、19、20

Ⅳ 3、8、9、12、15

Table 6 The factor load matrix after rotation and contribution ratios for the first category607
Factor C1 C2 C3

F1 0.960 0.258 0.094

F2 0.876 0.46 0.092

F3 -0.101 -0.465 0.589

F4 -0.611 -0.739 -0.17

F5 -0.832 -0.356 0.349

F6 0.902 0.053 0.422

F7 0.239 0.737 -0.164

F8 -0.776 0.2 0.569

F9 -0.272 0.102 -0.891

F10 -0.017 0.492 -0.683

F11 0.306 0.798 -0.193

F12 -0.077 -0.869 0.316

F13 0.938 0.311 0.084

Contribution rate (%) 51.686 24.245 10.469

Accumulative contribution (%) 51.686 75.931 86.399

Table 7 The factor load matrix after rotation and contribution ratios for the second category608
Factor C1 C2 C3
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F1 0.850 0.497 -0.154

F2 0.937 -0.130 -0.301

F3 -0.203 0.090 0.961

F4 -0.944 0.073 0.303

F5 -0.853 -0.467 -0.208

F6 0.485 0.801 0.301

F7 -0.103 -0.230 0.968

F8 0.389 0.869 -0.148

F9 -0.808 -0.143 0.500

F10 0.280 -0.925 0.108

F11 0.075 0.980 -0.002

F12 -0.247 0.632 0.735

F13 0.690 -0.105 0.595

Contribution rate (%) 45.350 31.221 20.737

Accumulative contribution (%) 45.350 76.572 97.309

Table 8 The factor load matrix after rotation and contribution ratios for the third category609

Factor C1 C2 C3

F1 0.986 0.161 -0.043

F2 0.966 0.218 -0.136

F3 -0.931 0.318 -0.181

F4 -0.590 -0.739 0.325

F5 -0.981 -0.171 0.094

F6 0.806 0.415 0.423

F7 -0.965 0.128 -0.230

F8 0.882 0.142 0.450

F9 0.044 0.938 0.343

F10 0.042 0.054 0.998

F11 0.705 -0.571 -0.421

F12 -0.044 -0.996 0.075

F13 0.949 0.160 -0.273

Contribution rate (%) 61.553 24.036 14.411

Accumulative contribution (%) 61.553 85.589 100

Table 9 The factor load matrix after rotation and contribution ratios for the fourth category610
Factor C1 C2 C3

F1 0.749 0.239 0.610

F2 0.937 0.258 -0.110

F3 0.913 -0.314 0.184

F4 -0.249 0.875 0.068

F5 -0.900 -0.002 0.374

F6 0.051 0.293 -0.953
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F7 0.328 -0.840 -0.431

F8 0.918 0.105 -0.123

F9 0.216 0.971 -0.093

F10 0.302 0.873 -0.305

F11 -0.068 0.053 0.919

F12 -0.455 -0.844 0.219

F13 0.994 0.090 0.037

Contribution rate (%) 44.768 30.086 19.917

Accumulative contribution (%) 44.768 74.854 94.771

Table 10 Comparison matrix elements for geology condition611
Geology F1 F2 F6 F5 F3 CI RI CR

F1 1.00 2.00 2.00 3.00 3.00

F2 0.50 1.00 1.00 3.00 3.00

F6 0.50 1.00 1.00 3.00 3.00

F5 0.33 0.33 0.33 1.00 1.00

F3 0.33 0.33 0.33 1.00 1.00 0.0024 0.52 0.0045

CR=0.0045<0.1, met the conformance inspection requirements.612
Table 11 Comparison matrix elements of the criterion level factors613

middle leve Topography Geology
Trigger

condition
CI RI CR

Topography 1.00 1.50 2.00

Geology 0.67 1.00 1.50

Trigger condition 0.50 0.67 1.00 0.02 1.12 0.02

CR=0.02<0.1, met the conformance inspection requirements.614
Table 12 The weighted values of the factors obtained by AHP615

Factor F1 F2 F3 F5 F6 F8 F10 F11 F13

Weight 0.11 0.07 0.03 0.03 0.07 0.28 0.06 0.17 0.18

Table 13 The weighted values of the factors obtained by factor analysis616
Factor F1 F2 F3 F5 F6 F8 F10 F11 F13

Weight 0.15 0.17 0.05 0.01 0.17 0.08 0.07 0.14 0.16

Table 14 The combined weighted values of the factors617
Factor F1 F2 F3 F5 F6 F8 F10 F11 F13

Combination

Weight
0.12 0.10 0.04 0.03 0.10 0.22 0.06 0.16 0.17

Table 15 The efficacy coefficient scores of 21 debris flows618
F1 F2 F3 F5 F6 F8 F10 F11 F13 Total score

1 13.56 12.89 8.53 7.30 8.29 2.26 3.57 10.29 5.84 72.53

2 13.40 10.90 7.78 6.61 7.79 2.26 2.90 9.72 5.84 67.19

3 13.14 10.44 7.31 5.98 6.08 2.26 2.76 12.08 6.35 66.39

4 13.83 12.81 8.66 7.84 9.22 2.26 3.10 10.26 5.33 73.31
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5 13.52 12.07 8.27 7.31 8.05 2.26 2.65 10.21 6.35 70.67

6 13.83 16.57 9.20 8.61 9.16 2.06 3.21 9.66 4.32 76.62

7 13.40 11.07 8.02 6.71 7.83 1.92 3.01 9.75 4.82 66.54

8 13.28 10.57 7.42 6.53 6.21 1.59 3.12 10.15 4.32 63.19

9 13.20 10.45 7.34 6.05 6.17 2.26 2.28 9.95 4.82 62.52

10 21.88 15.62 12.18 9.01 10.07 1.83 3.03 12.42 5.64 91.67

11 13.25 10.58 7.38 6.59 7.21 1.84 3.64 12.51 5.33 68.33

12 13.33 10.60 7.63 6.42 6.04 1.82 3.80 13.66 5.33 68.64

13 15.71 17.40 11.92 9.95 9.84 1.87 3.18 10.12 4.82 84.82

14 13.52 10.69 7.59 6.66 7.56 2.26 2.65 11.27 3.81 65.99

15 13.13 10.46 7.46 6.16 6.06 2.26 2.34 16.10 4.82 68.78

16 13.55 11.17 7.92 7.15 7.70 2.02 3.00 10.35 4.32 67.18

17 16.14 14.58 11.15 9.97 9.14 2.04 2.59 9.89 4.62 80.13

18 13.63 11.01 7.73 6.89 7.73 1.69 3.09 12.94 4.82 69.54

19 13.28 10.61 7.41 6.53 6.97 1.83 3.22 14.23 5.33 69.42

20 13.69 14.12 8.39 7.88 7.83 1.35 2.82 14.72 5.33 76.12

21 4.60 15.57 12.25 14.93 14.59 0.34 3.89 9.90 4.87 80.94

Table 16 The qualitative description and susceptibility class for each debris flow catchment619
Catchment Category Susceptibilit level

1 Ⅰ M

2 Ⅰ L

3 Ⅳ L

4 Ⅱ M

5 Ⅰ L

6 Ⅱ M

7 Ⅰ L

8 Ⅳ L

9 Ⅳ L

10 Ⅱ H

11 Ⅲ L

12 Ⅳ L

13 Ⅱ H

14 Ⅰ L

15 Ⅳ L

16 Ⅰ L

17 Ⅱ M

18 Ⅲ L

19 Ⅲ L

20 Ⅲ M

21 Ⅰ M
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Table 17 Comparison of susceptibility analyses based on different algorithms620
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

K M L L M L M L L L H L L H L L L M L L M M

Hierarchical M L L M L M L L L H L L H L L L H L L M H

FCM M L L M L M L L L H L L H L L L M L L M M

621

622
Fig1.Average monthly rainfall data (from 1959 to2017) for Pinggu district623
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Fig.2 Geographical positions of the Huangsongyu scenic region and the investigated 21 debris flow625
catchments626
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627
Fig.3 Shilin gore scenic spot. a some scenic spots have been closed, b the scenic area was heavily628
blocked by rockfill, c threatening object of debris flow629

630

631
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Fig.4 Huangsongyu national mining park. d sign for debris flow hazard area, e debris flow monitoring632
instrument, f loose slag accumulated in formation area, g excavator mining633

634

Fig.5 Lishu scenic spot. h stream sediments, i road cracks, g debirs flow deposit.635

636

Fig.6 A flowchart of FCM637
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638

Fig.7 A flowchart of FA639

640

Fig.8 Flow chart used for classification and susceptibility assessment.641
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Fig.10 Hierarchical structure for debris flow susceptibility analysis645

646

Fig.11 Tree diagram obtained by Hierarchical cluster.647
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