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 17 

In this document further details on the methods applied are provided.  18 

 19 

GLOF hazard modeling and analysis 20 

A glacial lake outburst typically consists of a chain of interacting mass movement processes. Coupled 21 

numerical models, simulating the cascade of involved mass movement processes, allow for a 22 

quantitative and transparent hazard analysis and mapping of such complex processes (Schneider et al., 23 

2014; Worni et al. 2014). For the analysis of GLOF hazards from lake Palcacocha we here rely on the 24 

work presented by Frey et al. (2018) who simulated different GLOF scenarios with numerical mass 25 

movement models for three different glacier lakes in the Quillcay catchment, including lake Palcacocha. 26 

Their approach follows earlier modeling studies performed at lake Palcacocha by Somos-Valenzuela et 27 

al. (2016), and is in line with the recommendations for glacier hazard assessments from the Standing 28 

Group on Glacier and Permafrost Hazards in Mountains (GAPHAZ) of the International Association of 29 

Cryospheric Sciences and the International Permafrost Association (IACS/IPA) (GAPHAZ, 2017). In 30 

the following, the methodological basis of this hazard analysis map is summarized, further details and 31 

results can be found in Frey et al. (2018). 32 

 33 

For the case of lake Palcacocha, a major ice or combined rock-ice avalanche is considered as the only 34 

potential trigger mechanism of a GLOF. Klimeš et al. (2016) showed, that other mass movement 35 

processes such as landslides from the inner flanks of the steep Little Ice Age moraines surrounding lake 36 

Palcacocha are very unlikely to reach a magnitude which would provoke a major overtopping wave. 37 

Considering the structural hazard prevention works, including the reinforced dams and the fixed outlet 38 

channel, other critical processes, such as heavy precipitation, seepage and piping in the dam, can as 39 
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well be excluded as potential GLOF triggers. However, the steep glacierized faces of Mount Palcaraju 40 

and Pucaranra have the potential to produce ice avalanches of up to 3 x 106 m3 in the worst case, which 41 

would trigger major impact waves in lake Palcacocha and lead to the overtopping of large volumes of 42 

water (cf. Somos-Valenzuela et al., 2016). 43 

 44 

Modelled GLOF scenarios for lake Palcacocha are therefore based on a susceptibility analysis for ice 45 

and rock-ice avalanches originating from the glaciated headwalls in the surrounding of the lake. Based 46 

on an analysis of topography, crevasse patterns and estimated ice thicknesses, following an approach 47 

proposed by Schaub et al. (2015), three avalanche scenarios of high, medium and low probability were 48 

defined. For each of the three scenarios, the entire chain of mass movement processes was then 49 

simulated with corresponding numerical models: Rock-ice avalanches were modeled using the 50 

RAMMS model (Christen et al., 2010); impact wave generation and propagation, run up at the dam and 51 

overtopping hydrographs were estimated with the hydrodynamic models IBER (IBER, 2010) and 52 

FLOW3D (Flow Science, 2012) and cross checked with empirical estimation approaches developed by 53 

Heller et al. (2009). Resulting hydrographs of the overtopping waves served as an input for the 54 

modelling of the eventual GLOF, which was again conducted using the RAMMS model. These results 55 

were directly compared to the results from Somos-Valenzuela et al. (2016), obtained with the FLO-2D 56 

model. Based on process intensities (given by resulting GLOF inundation heights) and probabilities of 57 

occurrence (given by the probabilities of the three scenarios), GLOF modeling results were eventually 58 

translated into hazard levels, according to international and national standards (CENEPRED, 2015; 59 

GAPHAZ, 2017; Hürlimann et al. 2006; Raetzo et al., 2002). 60 

 61 

A critical point in the process chain described above is the possibility of retrogressive erosion at the 62 

dam, which could initiate the formation of a breach in the moraine dam. In this case, much larger 63 

volumes of water could be released, leading to an extreme GLOF volume, as it was the case in the 1941 64 

outburst of lake Palcacocha. To assess the susceptibility of the Palcacocha moraine for breach 65 

formation, Somos-Valenzuela et al. (2016) applied the BASEMENT model (Vetsch et al., 2018; Worni 66 

et al., 2012) for the simulation of erosional processes involved in the formation of a breach. Somos-67 

Valenzuela et al. (2016) conclude that breach formation at the moraine dam of lake Palcacocha is very 68 

unlikely. However, in order to include this unlikely processes as a worst-case scenario, a GLOF 69 

resulting from a dam failure at lake Palcacocha was modeled. Resulting affected areas were translated 70 

into low hazard level. This corresponds to the Swiss standard of assigning worst-case extreme events 71 

with very low probabilities to the lowest (residual) hazard level, irrespective of intensity levels (FOEN, 72 

2016; Schneider et al. 2014), and at the same time fulfills the Peruvian standard of four hazard classes 73 

(CENEPRED, 2015). 74 

 75 

The hazard map by Frey et al. (2018) represents the GLOF hazard posed by three different lakes in the 76 

Quillcay catchment, which also includes lakes Tullparaju and Cuchillacocha in additiona to Palcacocha. 77 

In turn, the hazard analysis and map shown in Figure 5 represents the GLOF hazard emanating from 78 

lake Palcacocha only. 79 

 80 
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 82 

Qualitative research methods on socio-economic risk drivers 83 

The analysis of socio-cultural and institutional factors incorporates qualitative data gathered during 20 84 

months of ethnographic fieldwork in the Cordillera Blanca between 2017 and 2018. Ethnographic 85 

research involves building long-term relationships to gain an in-depth understanding of particular 86 

people's ways of life. The co-author Noah Walker-Crawford lived and participated in daily life with 87 

farming communities outside of Huaraz and spent extended periods of time following the practices of 88 

institutional actors and residents in the city. Research with rural farmers who also live in urban areas 89 

designated as dangerous was a particular focus of this study. Information was gathered primarily 90 

through informal discussions with informants on their attitudes towards social and environmental 91 

change. This data emerged through extended participant observation during which the researcher 92 

established relations of trust and gained broader contextual insight into daily life in a changing Andean 93 

environment. This involved living with a local family in an Andean village, participating in agricultural 94 

work and following government projects to reduce risk from Lake Palcacocha. Gathering information 95 

on institutional processes also involved the participation in planning and implementation meetings with 96 

different governmental and non-governmental institutions. Semi-structured interviews with key 97 

informants supplemented data gathered through informal discussions. 98 

 99 

Further qualitative evidence comes from the analysis of written materials, both published and 100 

unpublished. Archival research was conducted in government and non-governmental archives, where 101 

unpublished reports, correspondence, policy briefs, maps, engineering analyses, permits, brochures, 102 

pamphlets, and other related materials were collected and analyzed. Newspapers, magazines, and other 103 

locally published materials were also consulted in Callejón de Huaylas (Huaraz region) and Lima 104 

libraries, newspaper offices, government offices, and company offices. Published sources appearing on 105 

the Internet were also consulted, particularly news sources published in Peru in Huaraz and Lima, 106 

among other locations. Finally, published scholarship was also consulted and reviewed. In all of these 107 

cases, the material was limited in scope and quantity because there is relatively little published about 108 

the human dimensions of Lake Palcacocha and few archival, library, or other unpublished sources that 109 

discuss the lake or related issues. 110 

 111 

 112 
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