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Abstract.  

Coupled atmospheric-hydrologic systems are increasingly used as instruments for flood forecasting and water management 

purposes, making the performance of the hydrologic routines a key indicator of the model functionality. This study’s objectives 

were: (i) to calibrate the one-way coupled WRF-hydro model for simulating extreme events in Cyprus with observed 

precipitation; and (ii) to evaluate the model performance when forced with WRF-downscaled (1 × 1 km2) re-analysis 15 

precipitation data (ERA-Interim). This set up resembles a realistic modelling chain for forecasting applications and climate 

projections. Streamflow was modelled during extreme rainfall events that occurred in January 1989 (calibration) and 

November 1994 (validation) over 22 mountain watersheds. In six watersheds, Nash-Sutcliffe Efficiencies (NSE) larger than 

0.5 were obtained for both events. The WRF-modelled rainfall showed an average NSE of 0.83 for January 1989 and 0.49 for 

November 1994. Nevertheless, hydrologic simulations of the two events with the WRF-modelled rainfall and the calibrated 20 

WRF-Hydro returned negative streamflow NSE for 13 watersheds in January 1989 and for 18 watersheds in November 1994. 

These results indicate that small differences in amounts or shifts in time or space of modelled rainfall, in comparison with 

observed precipitation, can strongly modify the hydrologic response of small watersheds to extreme events. Thus, the 

calibration of WRF-Hydro for small watersheds depends on the availability of observed rainfall with high temporal and spatial 

resolution. However, the use of modelled precipitation input data will remain important for studying the effect of future 25 

extremes on flooding and water resources. 

1 Introduction 

Atmospheric and hydrologic processes are strictly related, since they share the land surface as a common interface for moisture 

and heat fluxes. Precipitation is the primary cause of all surface hydrologic processes, such as overland, subsurface and river 

flow. Conversely, soil moisture and surface water distributions affect near surface atmospheric conditions and processes, such 30 

as the temperature distribution, the structure of the atmospheric boundary layer, the formation of shallow clouds and 

precipitation amounts (Lin and Cheng, 2016; Zittis et al., 2014 and references therein). In recent years, the scientific community 

has made ever-increasing efforts to improve the simulation skills of both atmospheric and hydrologic models, leading also to 

the development of coupled modelling systems. Since the beginning of the 21st century, the main research interest in developing 

such models has been the evaluation of the feedbacks between the hydrologic cycle and the atmospheric processes, to get a 35 

deeper understanding of regional climate change and its impacts (Ning et al., 2019). However, recently authors have started to 

see these systems as instruments for flood forecasting, making the performance of the hydrologic routines a key indicator of 

the model quality (Givati et al., 2016; Maidment, 2017). 

The Weather Research and Forecasting hydrologic modeling system WRF-Hydro (Gochis et al., 2015) is an example of such 

a modelling system. It consists of a set of routines extending the hydrologic physics options in the Noah Land Surface Model 40 

(Noah LSM, Ek et al., 2003) and Noah with Multi-Parameterization Land Surface Model (Noah-MP LSM, Niu et al., 2011), 
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which are the most commonly used land surface schemes of WRF (Constantinidou et al., 2019; Skamarock and Klemp, 2008). 

In relation to WRF, WRF-Hydro can be run in an uncoupled (one-way coupled) mode or in a fully-coupled (two-way coupled) 

mode. In the first case, WRF-Hydro is run with user’s specified atmospheric forcing, which can be observations, reanalyses, 

previously calculated model outputs or a mixture of the three (e.g., observed precipitation and WRF-derived temperature, wind 45 

speed, humidity, radiation etc). As a result, hydrologic outputs are influenced by the atmospheric variables but not vice versa. 

In the second case, WRF-Hydro enhanced hydrologic routines update the land surface states and fluxes in the LSM grid, which 

are then used by the atmospheric component of the model.  

As summarized by Rummler et al. (2019), WRF-Hydro is mainly used in its uncoupled mode for model calibration and flood 

forecasting (e.g., Lahmers et al., 2019; Maidment, 2017; Silver et al., 2017; Verri et al., 2017; Givati et al., 2016; Yucel et al., 50 

2015). Conversely, the fully-coupled mode is usually adopted to investigate land-atmosphere feedbacks (Arnault et al., 2016, 

2019; Rummler et al., 2019; Senatore et al., 2015; Wehbe et al., 2019; Zhang et al., 2019).  

Focusing on the use of the model for the simulation of flood events, Yucel et al. (2015) calibrated WRF-Hydro over one 

watershed and two heavy rainfall events in northern Turkey, using 4-km WRF rainfall as input. The calibrated model 

parameters were then applied to three other watersheds and 10 heavy rainfall events. Their main aim was to quantify the 55 

performance improvement of the calibrated WRF-Hydro model against its use with default parameterization and test parameter 

transferability. In addition, they tested the model with WRF, WRF with data assimilation, and EUMETSAT precipitation 

derived input. They obtained the best results with the calibrated model, forced by WRF with data assimilation precipitation. 

They suggest that this model configuration allows parameter transferability to ungauged catchments.  

Givati et al. (2016) calibrated uncoupled WRF-Hydro based on gridded observations of two high intensity rainfall events that 60 

occurred in 2013 over the Ayalon basin in Israel. The calibrated model was subsequently run with WRF-derived precipitation 

resulting from both uncoupled and fully-coupled simulations. The study demonstrated that both precipitation and streamflow 

as derived from the fully-coupled model were superior to one-way coupled results, suggesting a possible application of fully 

coupled systems for early flood warning applications. Still, the authors suggested further research with a similar study set-up 

but over areas characterized by different precipitation and hydrologic regimes.  65 

Silver et al. (2017) focused on five extreme events occurring over seven watersheds located in Israel and Jordan. They proposed 

a procedure for parameterizing the model scaling coefficients related to infiltration partitioning and soil hydraulic conductivity, 

as well as for defining topographic categories. The procedure was based on soil physical properties and terrain characteristics 

only. They demonstrated that their method leads to better streamflow predictions than trial and error calibration and is as good 

as expert knowledge parameterization.  70 

Verri et al. (2017) calibrated an uncoupled WRF/WRF-Hydro modelling system over the Ofanto river basin, in southern Italy. 

Focus was on two three-month periods, each characterized by a heavy rainfall event and covering different seasons. WRF was 

run with 16-km horizontal resolution and 6-h fields forced by ECMWF-IFS (European Centre for Medium-Range Weather 

Forecasts – Integrated Forecasting System) as initial and boundary conditions. In addition, they presented a WRF rainfall 

correction approach based on rainfall observations, an objective analysis and a least square melding scheme and demonstrated 75 

that it improved river discharge simulation. The study also showed that optimal, calibrated values of infiltration partitioning 

and baseflow coefficients differ in the two events, suggesting a seasonal dependence.  

Nowadays, uncoupled WRF-Hydro is the core of the National Water Model (NWM, https://ral.ucar.edu/projects/supporting-

the-noaa-national-water-model), running over the Conterminous United States and furnishing streamflow forecasts for 2.7 

million river reaches. The NWM flood forecasting skills has been strengthened within the framework of the National Flood 80 

Interoperability Experiment (Maidment, 2017). The NWM and WRF-Hydro remain under constant development. An example 

is the study of Lahmers et al. (2019), who added channel infiltration processes to the modelling system to improve streamflow 

simulations in the arid southwestern United States.   
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From this review, it appears that few studies focus on the evaluation of the hydrologic output of WRF-Hydro when forced with 

observed rainfall and just a few more when forced with modelled rainfall. Model performance loss due to differences between 85 

observed and modelled rainfall is rarely discussed. Also, little attention has been given to small watersheds (area below 100 

km2), which are often ungauged and prone to flash floods. This study aims to address this gap. The focus is on two extreme 

events that occurred over 22 small watersheds, located in the Troodos Mountains of Cyprus, between 8-10 January 1989 and 

20-22 November 1994. The main objectives are: (i) to calibrate the uncoupled WRF-Hydro model for simulating extreme 

events in Cyprus with observed precipitation; and (ii) to evaluate the model performance when forced with WRF-downscaled 90 

(1 × 1 km2) re-analysis precipitation data (ERA-Interim). The model runs covered two 15-day periods (1-16 January and 11-

26 November) to include a short spin-up of the WRF-Hydro routines and the simulation and evaluation of the receding limb 

of the hydrograph. 

2 Study area 

This study focuses on 22 watersheds located on the northern slope of the Troodos Mountains, Cyprus (Figure 1). The bedrock 95 

geology of the region is characterized by an ophiolitic complex. The highest peak of Troodos is Mt. Olympus (1952 m a.sl.). 

At high elevations (above 1400 m a.s.l.), ultramafic rocks are the dominant lithology (harzburgite, serpentinite, pyroxenite, 

wehrlite and dunite). Moving downhill, dominant rock types show a transition from gabbro to diabase, pillow lavas and 

sedimentary formations, therefore stratigraphically from the lower to the higher lithotype. Between gabbro and pillow lavas, 

diabase is present in the form of sheeted dykes and it constitutes the largest area of Troodos outcrop. Often, pillow lavas and 100 

sheeted dykes do not present a net geological limit, but the oldest lavas host the youngest dykes (Cleintaur et al., 1977). This 

transitional zone between pillow lavas and dykes takes the name of basal group. Throughout the ophiolitic complex, bedrock 

is usually found at shallow depths. According to the digital soil map of Cyprus (Camera et al. 2017), most of the soils over 

Troodos are Lithic Leptosols with a stony gravelly texture and a predominant very shallow depth (0-10 cm), which can 

sometimes reach up to 100 cm. These characteristics highlight why rock fractures can be considered the main controlling factor 105 

for the region’s subsurface hydrology.  

Due to its characteristic Mediterranean climate, more than 90% of a hydrologic year’s (October-September) runoff from 

Troodos is produced between December and April. During the summer months, most rivers are completely dry (Le Coz et al., 

2016). Due to their small areas and steep slopes, all watersheds have quite short times of concentration. Therefore, intense 

rainfall events lasting few hours can easily cause floods in the downstream plains. 110 
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Figure 1. Geographical setting of the island of Cyprus and WRF-Hydro study area with the 22 target watersheds. For watershed 
short names refer to Table 1. 

Table 1 lists the 22 watersheds, their area and the total modeled stream length, and summarizes their geology, as obtained from 115 

the geological map of Cyprus (Cyprus Geological Survey Department, 1995). Agios Nikolaos and Platania are sub-watersheds 

of Kargiotis; Lagoudera is a sub-watershed of Vyzakia; Kotsiati is a sub-watershed of Nisou. 

 
Table 1. Morphological and geological characteristics of the studied watersheds. 

Watershed 
Watershed 
short name 

Area 
[km2] 

Channel 
length 
[km] 

Ultramafic 
complex 

[%] 

Gabbro 
[%] 

Sheeted 
Dikes 
[%] 

Basal 
group 
[%] 

Pillow 
Lavas 
[%] 

Sedimentary 
formations 

[%] 
Xeros Xe 67.5 11.0 0 0 100 0 0 0 
Agia Forest Af 21.3 5.5 0 0 100 0 0 0 
Stavros St 78.9 18.9 0 0 42 13 0.17 26 
Argaka Ar 44.7 11.9 0 0 72 24 0.04 0 
Pano Gialia Pg 15.1 4.9 0 0 100 0 0 0 
Leivadi Le 27.9 8.8 0 4 96 0 0 0 
Mavros Kremnos Mk 5.2 2.0 0 8 92 0 0 0 
Pyrgos Py 38.1 12.0 0 0 100 0 0 0 
Limnitis Li 48.0 11.5 0 0 100 0 0 0 
Marathasa Ma 22.6 5.4 15 65 20 0 0 0 
Agios Nikolaos An 15.7 4.8 95 5 0 0 0 0 
Platania Pl 10.2 2.1 33 67 0 0 0 0 
Kargiotis Ka 64.6 13.1 30 41 25 3 1 1 
Atsas At 32.7 15.8 0 47 42 8 3 0 
Lagoudera La 14.5 4.9 0 12 76 11 0 0 
Vyzakia Vy 81.0 15.6 0 11 36 38 14 0 
Peristerona Pe 78.2 13.2 1 11 69 20 0 0 
Akaki Ak 96.7 25.0 0 2 37 47 11 2 
Agios Onoufrios Ao 14.2 11.0 0 0 33 57 9 0 
Pedieos Pd 29.8 16.5 0 0 52 35 11 1 
Kotsiatis Ko 74.1 21.3 0 1 11 28 59 1 
Nisou Ni 95.6 30.3 0 0 9 22 50 18 
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3 Data 120 

3.1 Streamflow data 

For the 22 watersheds, daily discharge data (m3 s-1) from streamflow stations of the Cyprus Water Development Department 

for the period 1980-2010 were analyzed. In addition, the original continuous hydrograph charts (water levels) of 16 of the 22 

streamflow stations, for the Jan-1989 and Nov-1994 events, were scanned and manually digitized through the GetData Graph 

Digitizer software (http://getdata-graph-digitizer.com). The digitized water levels were interpolated to obtain values precisely 125 

every 15 minutes (00.00, 00.15, 00.30, 00.45, 01.00….) and converted to discharge with the appropriate rating curve of the 

station. The streamflow stations and rating curves are maintained by the Water Development Department through frequent 

observations. Both interpolation and conversion were carried out by R scripts (https://www.r-project.org/). The 15-minute data 

were aggregated into hourly discharge values. Both hourly and daily values were used for model performance analysis. 

3.2 Meteorological data 130 

An hourly gridded dataset with a resolution of 1×1 km2 was developed using hourly and daily rainfall data from the Cyprus 

Department of Meteorology stations and the daily gridded rainfall dataset of Camera et al. (2014). Data were extracted for two 

extreme events, with 42 rain gauges available over the island for Jan 1989 and 37 rain gauges available for Nov 1994. The 

temporal disaggregation from daily to hourly gridded rainfall was developed through a FORTRAN code based on the method 

of hourly fractions (Di Luzio et al., 2008), which preserves the original daily values. The main steps of the disaggregation 135 

method are: 

a. The hourly rainfall observations (ph) are summed in 24-hour totals (phs). The 24-hour period ranges from 8.00 AM 
of the previous day until 8.00 AM of the attribution day, coherently with the daily gridded dataset. 

b. The fractions of the hourly rainfall data to the daily total rainfall are calculated as: 

hfrac = ph/phs.           (1) 140 

c. The nearest gauge to each rainfall gridded dataset cell (ng) is found. 
d. The hourly rainfall at each grid cell (phc) is calculated by multiplying each gridded daily (d) rainfall value (pdc) with 

the hourly (h) fraction (hfrac) of the nearest valid gauge (ng). 

phc(h,ng) = pdc(d,c) ∙ hfrac(h,ng).         (2) 

4 Modelling setup 145 

4.1 WRF-Hydro model description 

The WRF-Hydro model is an extension package of the 1-D Noah LSM and Noah-MP LSMs, which are commonly coupled to 

WRF. In this study, the Noah LSM 2.7.1 version and the WRF-Hydro 3.0 version, as modified by Rummler et al. (2019), were 

used. WRF-Hydro, in comparison to the traditional 1-D LSM, enhances the physical description and mathematical resolution 

of surface and near surface hydrologic processes. It includes physics options for quasi 3-D saturated subsurface flow, 1-D or 150 

2-D surface overland flow, 1-D channel routing, lake/reservoir routing, and baseflow processes. WRF-Hydro uses a 

disaggregation-aggregation procedure to resolve the hydrologic processes at a finer resolution than the LSM. Below, a brief 

description of the main modeled processes and characteristics is presented. For a detailed description of the model components 

the reader can refer to Gochis et al. (2015). A schematic representation of the model structure, as used in this study, is presented 

in Fig. 2. 155 
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Figure 2. Schematic illustration of the model structure used in this study, including the coupling between WRF, the Noah Land 
Surface Model and WRF-Hydro routines (modified after Gochis et al., 2015). 

One of the major advances of WRF-Hydro is the lateral subsurface flow component, which is calculated following the approach 

proposed by Wigmosta et al. (1994) and Wigmosta and Lettenmaier (1999). When precipitation reaches the surface, it can 160 

either infiltrate or run off. The partitioning between infiltration and runoff is controlled, besides the antecedent soil moisture 

conditions, by soil properties. In the Noah-LSM, the infiltration capacity (DDT) is defined as a function of the soil moisture 

deficit (DD) and an exponential scaled adjustment (VAL), which is a function of the parameter KDT. It follows the approach 

of Schaake et al. (1996), with the difference that KDT is not directly calibrated but is expressed as a function of the saturated 

hydraulic conductivity and two scaling coefficients: 165 

DDT = DD ∙ VAL,           (3) 

VAL = ൫1 − 𝑒(ିୈ∙ୈ)൯,           (4) 

KDT =
ୖୈ∙౩౪

ୖୈ
,           (5) 

where DT is the time step duration [day]; Ksat [m s-1] is the saturated hydraulic conductivity; REFDK is the reference (silty 

clay loam) saturated hydraulic conductivity (default 2E-06 m s-1); and REFKDT is the infiltration partitioning scaling 170 

coefficient, which needs to be calibrated to empirically correct KDT for natural variability. As was demonstrated by previous 

studies (e.g., Naabil et al., 2017; Verri et al., 2017; Givati et al., 2016; Senatore et al., 2015), the model is sensitive to REFKDT. 

Once the water enters the soil, it moves vertically, through a four-layer soil column, until it reaches the saturated level and 

then laterally, according to the local gradient. In case the moisture content at the top of the soil column is larger than its water 

holding capacity (saturation), exfiltration occurs. The exfiltration amount is added to the infiltration excess and is routed over 175 

the surface. At the bottom of the soil column a vertical flux is calculated, using Richards equation (Richards, 1931). Drainage 

from the soil column is computed by multiplying the vertical flux with the SLOPE parameter, which can vary between 0-1, 
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where 0 represents an impermeable boundary between the soil column and the underlying formations. The SLOPE parameter 

is assigned based on terrain slope classes through a table, however in an implicit way it expresses bedrock properties too (the 

higher the slope, the higher is the SLOPE coefficient in order to scale the projected map area over which deep drainage occurs). 180 

Drained water can be considered a loss or added to streamflow within the channel network through a conceptual baseflow 

module, if this is activated. 

Regarding overland flow, WRF-Hydro allows water to pond on the earth’s surface. A water retention depth is defined based 

on land use and vegetation cover. This parameter can be adjusted through a scaling factor (RTDPT), which can be specified 

for each model cell and can vary between 1-10 (Yucel et al., 2015). The fraction of ponded water exceeding the retention depth 185 

is available to overland flow routing. The routing is performed based on the diffusive wave formulation of Julien et al. (1995) 

and it can be resolved in both 1-D (Steepest Descent) or 2-D (x-y directions). Overland roughness is defined through the same 

tables as the retention depth and it can be adjusted through the overland-roughness routing factor (OVRGH), which can vary 

between 0-1 (Yucel et al., 2015). Overland flow can re-infiltrate, evaporate or enter the channel network. 

Water entering the channel network, which the user defines through a Digital Elevation Model, is routed based on a streamflow 190 

algorithm that uses an implicit, one-dimensional, variable time stepping diffusive wave formulation. Such formulation is a 

simplification of the St. Venant equations for shallow water flow. The algorithm does not allow overbank flow and therefore 

the 2-D modelling of floods (Rummler et al., 2019). Channels are considered trapezoidal in section. Their geometrical 

properties, including roughness, are defined based on stream order. These model parameters are entered through a table and 

they can be set by expert knowledge or adjusted during calibration. Along the channel network, reservoirs can be added. Water 195 

can flow into reservoirs through the channel network or when overland flow intersects them. Water can flow out of the reservoir 

through weir overflow and gate-controlled flow. These fluxes are governed by the reservoir parametrization (reservoir area, 

maximum water level in the reservoir, weir length, gate area, gate elevation, gate aperture coefficient). No exchanges occur 

between the reservoir, the atmosphere, and the soil column around the reservoir (i.e., evaporation and subsurface lateral flow 

from the reservoir are not accounted for).   200 

When deep drainage from the soil column is not considered as a loss, WRF-hydro allows two mathematical simple solutions 

to account for baseflow. For both solutions, baseflow is calculated within sub-watersheds. The first solution consists of a 

simple pass-through model, meaning that the cumulated deep drainage occurring in a time step is equally redistributed to all 

channel segments within the sub-watershed. The second solution consists of calculating a baseflow discharge [m3 s-1] (Qbf) by 

means of an exponential bucket model, described by the following equation:  205 

𝑄 = 𝐶 ∙ ൬𝑒
∙

ೋ

ೋೌೣ − 1൰,           (6) 

where C is the bucket coefficient [m3 s-1], a is the bucket model exponent [-], Zmax is the maximum bucket level [m], and Z [m] 

is the bucket level at a certain time step. The user defines the C, a and Zmax parameters for each sub-watershed, together with 

a Zini [m] parameter to initialize the water storage in the bucket groundwater reservoir. At each time step the Z value is updated 

first adding the deep drainage contribution (Perc) and subsequently subtracting Qbf: 210 

𝑍௧ = 𝑍௧ିଵ +∑ 𝑃𝑒𝑟𝑐
ୀ௦
ୀଵ −

ொ್∙்∙ଷ


          (7) 

where A is the area of the sub-watershed [m2], DT the model time step [day], n is the index for the sub-watershed cells, and 

ncells represents the number of cells of the sub-watershed. Similar to the first solution, Qbf is equally redistributed to channel 

segments. If Z equals or exceeds Zmax, all deep drainage is transferred to the channel network.  

4.2 WRF-Hydro model parameterization 215 

The Noah LSM was parameterized over a 1 × 1 km2 grid, while WRF-Hydro was run over a 100 × 100 m2 grid. All simulations 

were performed in uncoupled mode, resolving the steepest descend formulation of the overland flow routine, with channel 

flow, baseflow and reservoir routines activated.  
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To run WRF-Hydro in uncoupled mode, the meteorological forcing needed are precipitation rate [mm s-1], downward 

shortwave and longwave radiation [W m-2], specific humidity [kg kg-1], air temperature [K], surface pressure [Pa], near surface 220 

wind components [m s-1]. For the calibration and validation runs, all variables except precipitation were taken from the WRF 

ERA-Interim downscaling experiments presented in Zittis et al. (2017). These simulations incorporated the Grell-Freitas 

Ensemble Convection and the Ferrier Microphysics parameterization schemes, which were found to outperform the other 

tested configurations for the selected events. For precipitation, hourly observed gridded data were used (see Section 3.2 – 

Meteorological Data). For the simulation runs with WRF-modelled rainfall, all variables including precipitation were taken 225 

from the WRF experiments (Zittis et al., 2017). To derive soil moisture initial conditions, 15-day WRF spin-up runs were 

performed for both events. For Jan 89, the 15-day rainfall during spin-up was 99 mm and average soil moisture at the end of 

the simulation was 0.32 m3 m-3. The Nov-1994 event followed the dry summer and only a few scattered rain days occurred 

between the end of October and the beginning of November. The 15-day rainfall during spin-up was 18.4 mm and average soil 

moisture at the end of the simulation was 0.26 m3 m-3. Experimental data (Camera et al., 2018) show that in these conditions 230 

soil moisture for a gravelly sandy loam at 1300 m a.s.l. in the Troodos Mountains can vary between 0.10 and 0.15 m3 m-3. 

Therefore, the WRF-derived initial soil moisture values for November were halved.  

Land use and vegetation cover data were derived from the MODIS dataset through the WRF Pre-Processing System. According 

to the MODIS dataset, the Troodos Mountains has a uniform clay loam texture. However, field observations at higher elevation 

in the mountains, where the predominant lithologies consist of gabbro and ultramafic rocks, showed a gravelly sandy loam 235 

texture (Djuma et al., 2020; Camera et al., 2018; Cyprus Geological Survey Department, 1995). In addition, it is known that 

the Troodos gabbro is very weathered and therefore permeable (Christofi et al., 2020). Therefore, a sandy loam soil type was 

assigned to these areas. The related properties were attributed through the default table values implemented in WRF-Hydro 

(see Gochis et al., 2015). The hydrologic input layers (latitude, longitude, topography, flow direction, channel grid, lake grid, 

stream order, watersheds) were all calculated in ArcGIS® 10.2.2 starting from a 25 × 25 m2 Digital Elevation Model (see 240 

Camera et al., 2017), resampled on the 100 × 100 m2 grid, and the known locations of stream gauges and lakes. For the channel 

grid, a flow accumulation threshold of 250 cells (2.5 km2) was adopted.  

For the definition of the deep drainage related parameter, two approaches were tested. First, nine slope terrain classes were 

derived following Silver et al. (2017). In the second case, for cells where the bedrock consists of gabbro or ultramafic rocks 

(Cyprus Geological Survey Department, 1995), the slope terrain class (3) that maximizes drainage (representing a highly 245 

fractured system) was assigned. In both cases, for each slope terrain class, the related default SLOPE value listed in the WRF-

hydro general parameters table was given. These changes in soil type and deep drainage based on geology affected mainly 

watersheds Ma, An, Pl, Ka, and At, where 70% or more of the surface bedrock is made up of gabbro and ultramafic rocks 

(Table 1).  

Other general parameters are REFKDT and soil depth (SD), which were calibrated. REFDK was left to its default value (2.00E-250 

6 m s-1). The WRF-Hydro parameter OVRGH was tested and values were assigned based on the sensitivity analysis, whereas 

RTDPT was kept constant all over the study area and a value of 1, consistent with a steep mountainous terrain, was assigned. 

Channel geometrical parameters were attributed based on the study area knowledge of the authors (Table 2). The initial channel 

water depth was set to the default value for dry conditions. Six reservoirs were characterized in the model setup (Table 3) 

according to data from the Cyprus Water Development Department (2009). At all reservoirs, outflow occurs for overflow only; 255 

the structures do not have a gate. Vyzakia reservoir was completed in early 1994, therefore it was not included in the Jan-1989 

simulation.  

Regarding baseflow, the parameter C was set equal to the long-term baseflow index, calculated from the 1980-2010 data series 

with the program PART (Rutledge, 1988). The initial level of the conceptual reservoir (Zini) was set as a fraction of the 

maximum level (Zmax), based on the saturation degree of the deepest soil layer at the end of the 15-day WRF spin-up period. 260 

The exponent a and Zmax were adjusted during calibration.  
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4.3 WRF-Hydro sensitivity analysis 

A sensitivity analysis of the LSM parameters REFKDT, SLOPE, and soil depth (SD), which have been identified as sensitive 

parameters in previous studies (e.g., Fersch et al., 2019; Senatore et al., 2015), was performed for the Jan-1989 event. In 

addition, sensitivity runs for the OVRGH parameter and the saturated hydraulic conductivity (KS) were performed, too. For 265 

these simulations, the baseflow routine was switched off. A reference scenario was set, with REFKDT and OVRGH equal to 

1, SD equal to 1.0 m, KS equal to 2.45E-6 m s-1 (value attributed to clay loam soils in the soil parameter table), and the deep 

drainage parameter (SLOPE) assigned based on terrain slope, as in Silver et al. (2017). Parameters were changed one at a time. 

Eight values were tested for REFKDT (0.3, 0.5, 3.0, 5.0, 8.0, 10.0, 100.0, 1000.0), two for SD (0.5 and 2.0 m), two for OVRGH 

(0.1, 0.5), three for KS (3.38E-6 m s-1 as for loam, 5.23E-6 m s-1  as for sandy loam, 1.41E-5 m s-1  as for loamy sand), and a 270 

different set of SLOPE values was assigned based on terrain slope and geology. Also, to demonstrate the equifinality of 

calibrating REFDK and REFKDT, as suggested by eq. 5, two extra runs were performed for REFDK values of 4.00E-6 m s-1 

and 6.67E-7 m s-1.The relative sensitivity (S) was computed according to the following formula: 

𝑆 = −
൫௧௧ି௧௧ೝ൯

௧௧ೝ
,           (8) 

where Vtot is the total volume discharged during the simulation period, ref refers to the reference scenario, and i to the perturbed 275 

value.  

Table 2. WRF-Hydro channel parameter values used in this study (Bw is the channel bottom width, HLINK is the initial depth of 
water in the channel, ChSSlp is the channel side slope, and MannN is the Manning’s roughness coefficient).  

Stream Order Bw [m] HLINK [m] ChSSlp [-] MannN [-] 

1 1.5 0.02 3.00 0.14 
2 3.0 0.02 1.00 0.12 
3 5.0 0.02 0.50 0.09 
4 10.0 0.03 0.18 0.09 

 

Table 3. Characteristics of the reservoirs included in the WRF-Hydro simulations; Long and Lat are longitude and latitude, 280 
respectively. 

Watershed 
Reservoir 

Name 

Long 
 

[deg] 

Lat 
 

[deg] 

Reservoir 
Area 
[m2] 

Reservoir max 
elevation 
[m a.s.l.] 

Reservoir ave 
elevation 
[m a.s.l.] 

Weir 
length 

[m] 
Vyzakia Xyliatos 33.038 35.006 80000 537.5 529.9 15.0 
Vyzakia Vyzakia 33.029 33.029 160000 353.8 319.0 6.0 
Akaki Palaichori 33.130 34.928 110000 719.6 704.5 9.8 
Akaki Kalochorio 33.155 34.981 13000 533.5 528.5 22.5 
Kotsiatis Lythrodontas-1 33.274 34.944 10000 460.3 455.3 19.0 
Kotsiatis Lythrodontas-2 33.288 34.949 15000 422.5 413.5 33.8 

4.4 WRF-Hydro calibration and validation with observed precipitation 

Calibration runs were evaluated for each watershed against Jan 1989 daily observed streamflow, based on five performance 

indices. The selected set of indices contains both absolute error and goodness-of-fit measures, as suggested by Legates and 

McCabe (1999). They are percent bias (PBIAS), Mean Absolute Error (MAE), Nash-Sutcliffe Efficiency (NSE - Nash and 285 

Sutcliffe, 1970), modified Nash-Sutcliffe Efficiency (mNSE, Krause et al., 2005), and Kling-Gupta Efficiency (KGE, Kling et 

al., 2012).  

Soil Depth is constant throughout the domain, therefore it was fixed at the value that returned the best performance indices in 

the majority of the watersheds, following an evaluation of the sensitivity analysis runs. Similarly, SLOPE parameters were 

assigned using the slope terrain class map allowing the best performance during sensitivity. REFKDT and OVRGH were 290 

initialized, in each watershed, based on the evaluation of the sensitivity runs through performance indices, as for SD. For the 

baseflow bucket routine, initial values of α and Zmax were set to the default. Next, the initialized parameters were fine-tuned 

based on a trial and error procedure for all watersheds. Modifications were applied to a single parameter at the time and if 
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changes could not improve the model performance according to three indices out of five after five attempts, the parameters 

were retained. Commonly applied changes were ±1 for REFKDT, ±0.1 for OVRGH, ±0.5 for α, and ±10% of the actual value 295 

for Zmax. Smaller (larger) changes were applied only in watersheds where the response of streamflow was (not) particularly 

sensitive to specific parameters. The parameterization of Zmax was aimed at filling the reservoir after the rainfall peak, between 

10 January at midnight and 11 January at noon, to simulate the observed recession of the hydrograph. For those watersheds 

that highly overestimated the baseflow due to spilling out of the groundwater reservoir, Zmax was further increased. A good fit 

between observed and simulated flow before the peak was the target for the calibration of the exponent α. The calibrated model 300 

was subsequently applied to the Nov-1994 event for validation. The same five model performance indices were used for the 

evaluation.  

4.5 WRF-Hydro simulations with WRF-modelled precipitation 

The WRF-modelled precipitation (Zittis et al., 2017) was averaged over each of the 22 watersheds and the daily values were 

compared to observed data by means of BIAS, MAE and NSE. To evaluate how deviations from the observed rainfall pattern 305 

affected the hydrologic model performance in these small mountain watersheds, the calibrated version of WRF-Hydro model 

was run with the WRF-modelled hourly precipitation forcing. Modelled streamflow was evaluated with observed data, similar 

as in the calibration phase.  

4.6 WRF-Hydro evaluation with observed and modeled precipitation at hourly scale 

For watersheds presenting daily NSE equal to or larger than 0.50 for both the calibration and the validation event, model 310 

performance was also investigated at hourly resolution. The NSE, KGE and MAE were computed for the hourly streamflow 

values simulated with both observed and modeled precipitation.  

5 Results and discussion 

5.1 Sensitivity analysis 

The results of the sensitivity analysis are presented in Fig. 3 as boxplots. Each boxplot represents the sensitivity of the modelled 315 

total discharge volume, over the 22 watersheds, for the perturbation applied, in comparison to the reference simulation. The 

boxplots show that in the suggested calibration range (0.5-5.0, Gochis et al., 2015) REFKDT is very sensitive. Although the 

sensitivity decreases for REFKDT values larger than 5.0, variations in the discharged volume can be observed up to REFKDT 

values equal to 100.0. Further increases in REFKDT (see REFKDT 1000.0) do not cause any variations in discharge, 

suggesting that the model already infiltrates at its maximum capacity. The variability over the watersheds is related to local 320 

conditions (e.g., soil moisture distribution, area, topography, type of vegetation). Precipitation, which is not homogeneous 

throughout the study area, can play a role in causing different responses as well. 

The two simulations ran with REFDK values of 4.00E-06 m s-1 and 6.67E-7 m s-1 returned discharged volumes equal to those 

obtained with REFKDT values of 0.5 and 3.0, respectively. These results confirm the equifinality of the two parameters and 

make it clear that REFDK calibration should be avoided. As shown in Eq (3-5), REFDK automatically adjusts the infiltration 325 

capacity for the effect of soil texture, whereas any other effects on the partitioning of rainfall into surface runoff and infiltration 

can and should be calibrated through REFKDT. 
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Figure 3. Boxplots of the sensitivity of the modelled streamflow to perturbations (x-axis) in REFKDT (infiltration partitioning scaling 330 
coefficient), Soil Depth, OVRGH (overland roughness factor), KS (saturated hydraulic conductivity), and SLOPE geo (deep drainage 
parameter defined based on slope terrain and geology) relative to a defined reference scenario (SLOPE terrain represents the slope 
parameter defined based on slope terrain only, as in Silver et al., 2017). 

The sensitivity analysis shows also an important role played by Soil Depth. Especially in mountainous areas, soils are usually 

thin. This limited soil thickness affects the total amount of water retained by the soil, favoring a partitioning of the available 335 

water between infiltration and surface runoff towards the latter. Similar observations are reported by Fersch et al. (2019), while 

commenting the offset between modelled and observed soil moisture content in mountainous catchments in Bavaria 

(Germany). To overcome the issue, in other land surface models (e.g., Brunke et al., 2016) variable soil thickness has been 

implemented and tested. 

Regarding OVRGH, results show that it has a slight control on the total volume discharge, as also presented in Yucel et al. 340 

(2015), while it has almost no effect on delaying the peak (Fig. 4). More sensitive than OVRGH is Ks, suggesting a possible 

important impact of the soil type and property definitions on the model output. Senatore et al. (2015) presented one of the few 

WRF-Hydro studies that calibrated a hydraulic conductivity related parameter, although they focused on the saturated soil 

lateral conductivity. SLOPE appeared to have a low sensitivity, although in the mountain watersheds, where it changed, a 

small reduction in the total discharged volume was observed.  345 

 

 

Figure 4. Hydrographs obtained at three different watersheds for OVRGH values of 0.1 (flow ovrgh 0.1), 0.5 (flow ovrgh 0.5), and 
1.0 (flow ovrgh 1.0), in comparison to observed flow (flow obs). For watershed short names refer to Table 1. 

  350 
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5.2 WRF-Hydro calibration and validation with observed precipitation 

The calibrated parameters are listed in Table 4. Soil depth was set equal to 1 m for all watersheds, because it was the value 

returning the best performance indices (Fig. 4) in 16 out of 22 catchments (average NSE improvement equal to 0.14). SLOPE 

attributed based on both terrain slope and geology resulted in slightly better performance indices in the mountain watersheds 

than SLOPE attributed through terrain slope only. Therefore, it was selected for the final parameterization. Also, for all 355 

watersheds OVRGH was set equal to 1 because it was the value returning the best performance indices in 19 out of 22 

watersheds. Furthermore, considering that OVRGH effects total discharge volume and not hydrograph shape, its calibration 

would have been equifinal to REFKDT. Twelve watersheds have a REFKDT coefficient larger than 5.0, which is outside the 

0.5-5.0 range suggested by Gochis et al. (2015), but none has a REFKDT lower than 0.5. The hydrographs of all watersheds 

are shown in the supplementary material. Fig. S1 and Fig. S2 show hydrographs, including the baseflow component, related 360 

to responses to observed rainfall for the Jan-1989 event and the Nov-1994 event, respectively.  

The parameterization of watersheds Ma, An, Pl, Ka, and At is peculiar. These watersheds are mainly characterized by sandy 

loam texture (i.e., higher Ks than the other watersheds), maximum deep drainage obtained by using the SLOPE parameters 

based on slope terrain and geology, very high REFKDT values, and very large groundwater storage. However, poor model fit 

indices (for some watersheds even negative) were obtained for the calibration period (Fig. 5). Conversely, the same watersheds 365 

show positive NSE values and negative PBIAS (i.e., slight underestimation of the peak discharge), for the validation event. 

Overestimation of runoff in Jan 1989 could have been related to the modeling of snow and snowmelt in the LSM. Both 

observed and modeled temperature values for the upstream areas of these watersheds showed negative values, indicating that 

part of the precipitation was snow. In Fig. 6, the comparison between the observed and simulated daily hydrographs for the 

Jan-1989 event is shown. The subdued response of the streamflow to the extreme precipitation is clear for watershed Pl, which 370 

is considered representative of the behavior of all five watersheds mentioned above, and it is clear that the simulated 

hydrograph overestimates the observed peak flow of the event. Different bottom boundary conditions and snow processes 

modelling, as those implemented in the Noah Multi-Physics LSM, could improve the simulation results.  

Table 4. Calibrated parameters (REFKDT, infiltration partitioning scaling coefficient; C, baseflow bucket coefficient; α, bucket 
exponent; Zmax, maximum bucket level) for the 22 watersheds with their maximum (MaxQ) and average (AveQ) discharges for the 375 
two analyzed events; for watershed short names refer to Table 1. 

Watershed 
short name 

Max Q89 
[m3 s-1] 

Ave Q89 
[m3 s-1] 

Max Q94 
[m3 s-1] 

Ave Q94 
[m3 s-1] 

REFKDT 
[-] 

C 
[m3 s-1] 

α 
[-] 

Zmax 
[m] 

Xe 19.7 3.7 8.2 1.1 5.0 0.30 2.0 30.0 
Af 4.1 1.0 1.1 0.2 50.0 0.09 0.7 150.0 
St 12.5 2.7 4.1 0.6 2.5 0.20 2.4 100.0 
Ar 3.2 1.0 1.5 0.2 12.0 0.08 2.6 70.0 
Pg 1.1 0.3 0.3 0.1 7.0 0.04 1.1 3.3 
Le 3.3 0.9 1.4 0.3 1.8 0.07 2.0 1.5 
Mk 0.3 0.1 0.1 0.0 8.0 0.01 3.2 20.0 
Py 4.1 1.4 2.2 0.4 5.0 0.15 1.4 200.0 
Li 12.3 3.0 5.4 1.0 7.0 0.27 1.2 72.0 
Ma 3.7 1.2 2.9 0.6 50.0 0.19 1.6 600.0 
An 1.8 0.7 3.3 0.8 50.0 0.24 1.6 600.0 
Pl 1.3 0.4 1.9 0.3 50.0 0.05 2.1 600.0 
Ka 9.2 2.6 10.5 1.9 50.0 0.30 1.2 500.0 
At 2.9 1.0 1.9 0.5 10.0 0.04 2.1 220.0 
La 8.8 1.6 6.4 0.9 6.0 0.05 2.3 53.0 
Vy 15.9 3.5 12.0 2.4 4.0 0.09 2.6 50.0 
Pe 58.0 7.5 35.0 5.9 1.0 0.29 2.5 8.0 
Ak 49.0 7.7 28.0 5.7 0.8 0.20 1.4 5.0 
Ao 9.9 1.4 5.3 1.1 3.0 0.03 2.1 10.0 
Pd 26.0 3.2 8.9 1.9 2.0 0.07 2.2 10.0 
Ko 18.0 3.6 15.0 3.0 5.0 0.05 3.2 2.4 
Ni 18.2 4.1 16.5 3.0 7.0 0.05 3.2 3.0 
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Figure 5. Performance indices (NSE, Nash-Sutcliffe Efficiency; mNSE, modified Nash-Sutcliffe Efficiency; KGE, Kling-Gupta 
Efficiency; BIAS; MAE, Mean Absolute Error) calculated on daily streamflow resulting from observed rainfall for the 22 watersheds 
using the calibrated set of parameters for both Jan 1989 (cal) and Nov 1994 (val). For watershed short names refer to Table 1. 380 

Overall, in all other watersheds the model behaves satisfactorily, with goodness-of-fit scores (NSE, mNSE and KGE, Fig. 5) 

usually higher than 0.5 for the calibration run and larger than 0.0 for the validation event. Exceptions are watershed Mk for 

the calibration run and watershed St for the validation run. Looking at the hydrographs (Fig. 6 and Fig. 7), it is observed that 
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Mk presents a very low discharge due to its limited area (Table 4). Therefore, small biases between observed and modelled 

streamflow produce poor goodness-of-fit indices. Also, Mk is the only watershed showing higher rainfall and flow peaks 385 

towards the end of the Jan-1989 event rather than in the middle. The model slightly underestimates the flow peak occurred on 

January 9th and overestimates the flow at the end of the simulation period. For St, the model reacts sharply to precipitation 

input, simulating well the flow peak occurred on January 9th but overestimating the flow at end of the simulation period of the 

Jan-1989 event and above all the peak of the Nov-1994 event, therefore affecting the performance scores.  

 390 

 

Figure 6. Observed daily hydrographs (flow obs) and hydrographs obtained with the calibrated WRF-Hydro model (flow mod) 
forced with observed rainfall (rain obs) and with WRF modelled rainfall (rain wrf) for the Jan-1989 calibration event, for 11 
representative watersheds (see Table 1 for watershed short names).   

 395 
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Figure 7. Observed daily hydrographs (flow obs) and hydrographs obtained with the calibrated WRF-Hydro model (flow mod) 
forced with observed rainfall (rain obs) and with WRF modelled rainfall (rain wrf) for the Nov-1994 validation event, for 11 
representative watersheds (see Table 1 for watershed short names). 

In the eastern part of the modelling domain (La to Ni), for the calibration event both initial baseflow and the discharge peak 400 

are well modelled in all watersheds (Fig. 6). Differences between observed and simulated hydrographs can be observed in the 

post-peak, for watersheds Ak, Pe (Fig. S1), Ko and Ni. Ak and Pe present a very high peak flow (> 50 m3 s-1) and an 

underestimation of the receding limb of the hydrograph in the following days, which causes the negative PBIAS and high MAE 

values visible in Fig 5. In the case of Ko and Ni, the receding limb shows a little overestimation. For the validation event (Fig. 

7), the peak is well simulated in Pe and Ao, slightly overestimated in Ak and Pd, underestimated in La, Vy, Ko, and Ni (Pe 405 

and Pd, Fig. S2). In the post peak phase, the simulated hydrographs show negative biases in comparison to the observed ones 

in all watersheds. As it is visible in Fig S1 and Fig S2, flow in the receding limb of the hydrograph is mainly made up of 

baseflow. For Jan-1989 event, in all these watersheds the groundwater reservoir is filled up on January 10th and baseflow 
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consists of the water spilling out from it. This water volume, redistributed along the channel network, is generally able to 

reproduce the hydrograph shape, except in Ak. In Nov 1994, no groundwater spilling is observed during the simulation and 410 

the receding limb is underestimated. Therefore, this could be partly due to a non-perfect reproduction of the model initial 

conditions and partly related to an underestimation of interflow and baseflow.  

5.3 WRF-Hydro simulations with modeled precipitation 

Figure 8 presents the performance indices of the WRF-modelled rainfall. Fig. S3 and Fig. S4 (in the supplementary material) 

show hydrographs, including the baseflow component, related to responses to modelled rainfall for all watersheds for the Jan-415 

1989 event and the Nov-1994 event, respectively. The modelled rainfall is generally closer to observations for the Jan-1989 

event than for the Nov-1994 event, as testified by the higher NSE (except for Le) and lower MAE values (Fig. 8). As can be 

seen in Fig. 6, the Jan-1989 event appears as a single day of intense precipitation, followed by a few scattered low rainfall days 

that can show a moderate intensity towards the end of the simulation period. During Jan-1989, WRF-modelled rainfall is 

usually able to fit the observed daily precipitation trend over all watersheds, with slight variations in the calculated daily 420 

amounts as suggested by the generally low bias (Fig. 8). In percentage, over the 22 watersheds rainfall PBIAS varies between 

-35% and 53%, with an average of absolute values equal to 17%. Average NSE and MAE of the WRF-modelled rainfall are 

0.83 and 4.5 mm d-1, respectively. 

 

 425 

Figure 8. Performance indices (NSE, Nash-Sutcliffe Efficiency; BIAS; MAE, Mean Absolute Error) of daily WRF-modelled rainfall 
over the 22 watersheds both Jan 1989 (J-89) and Nov 1994 (N-94) events. For watershed short names refer to Table 1. 
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Figure 7 shows that the Nov-1994 event is constituted of two days of moderately low precipitation, followed by three days of 

intense precipitation. The simulated event shows higher rainfall amounts in the preceding days and a loss of intensity after the 430 

first of the three high precipitation days. Over the 22 watersheds, average NSE, absolute PBIAS, and MAE are 0.48, 20%, and 

8.9 mm d-1, respectively.  

The modelled rainfall in Jan 1989 results in hydrograph shapes similar to the observed ones but still in goodness-of-fit indices 

that are often negative. With observed rainfall forcing, the simulated daily hydrograph returned negative NSE, mNSE and KGE 

values (Fig. 5) in three, two and two watersheds, respectively. With WRF-modelled rainfall forcing the number of watersheds 435 

with negative indices (Fig. 9) increases up to twelve, six, and nine, respectively. Moving from observed to WRF-modelled 

rainfall, both streamflow NSE and MAE indicate a loss in model performance in all watersheds except three (Ma, Pl, Ka), 

which are those characterized by very negative goodness-of-fit indices in the calibration run. The average streamflow MAE 

almost doubled, and ranged between 0.09 m3 s-1 in Mk and 3.89 m3 s-1 in Pe. The absolute value of flow PBIAS decreased in 

seven watersheds (Af, Li, Pl, Vy, Ak, Ko, Ni) but on average increased by 21.5% (96.6% in Pg and 120.3% in Le). 440 

Regarding streamflow for Nov-1994 event, the peak discharge is simulated to occur one day earlier than observed in most 

watersheds. This caused negative streamflow performance indices in eighteen watersheds for NSE, in eight watersheds for 

mNSE, and in eleven watersheds for KGE (Fig. 9), while with the forcing of observed rainfall negative indices were found in 

one, zero, and three watersheds, respectively (Fig. 5).  

These results indicate that a small shift in time or space of modelled rainfall, in comparison to observed precipitation, can 445 

strongly modify the hydrologic response of small watersheds to extreme events. This is particularly evident in watersheds Pg 

and Mk, which are among the smallest and those characterized by the lowest average discharge in both events (Fig. 6, Fig. 7, 

Fig. S3, Fig. S4). Although their rainfall performance indices (Fig. 8) do not show particularly large errors (except a negative 

NSE for Mk in Nov 1994), streamflow fit indices present very negative values and streamflow PBIAS is very high as well 

(Fig. 9).The implementation of rainfall data correction or assimilation schemes could improve the forecasts of the atmospheric-450 

hydrologic modelling chain, as demonstrated and discussed by previous studies (e.g., Avolio et al., 2019; Verri et al., 2017; 

Yucel et al., 2015). Recently, increasing efforts have been made to implement two-way coupled modelling systems, which 

were found to improve the overall skills of the modelling system (e.g., Senatore et al., 2015). However, the hydrologic 

component calibration is still usually performed based on observed precipitation data (e.g. Fersch et al., 2019; Givati et al., 

2016). 455 

The rainfall fields modelled by Zittis et al. (2017) and used in this study were downscaled from the ERA-Interim re-analysis 

dataset. The decision to use these modelled data was driven by the fact that ERA-Interim presents a resolution closer to that of 

existing forecasting, decadal prediction, and global climate models, therefore it resembles a modelling chain for forecasting 

applications and climate change projections (e.g., Reyers et al., 2019; Saha et al., 2014). For future studies ERA5, thanks to 

its finer resolution and the availability of ensemble members for uncertainty estimates, will be a valuable data source for 460 

improving the modelling chain over small (< 100 km2) catchments. 

5.4 WRF-Hydro with observed and modeled precipitation evaluation at hourly scale 

Figure 10 shows the comparison between observed and modelled hourly hydrographs for three out of the seven watersheds 

that had modelled daily streamflow NSE larger than 0.5 in both calibration and validation events. The four watersheds that are 

not shown are Pg (hourly streamflow data not available), Pe, Ko, and Ni (rating curve not available for peak flow). Looking 465 

at the streamflow modelled with observed rainfall as forcing, hourly peaks are generally overestimated and the modelled 

streamflow response to rainfall appears more immediate (pulse-like) than the observed streamflow. The overestimation is more 

evident for the Nov-1994 validation event than for the Jan-1989 calibration event. In addition, the receding hydrograph is well 

modelled for the calibration event but not so well for the validation event. This result is similar to what was observed for daily 

streamflow and was attributed to the possible non-perfect reproduction of the model initial conditions and underestimation of 470 
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interflow. The fairly good post-peak simulations lead to reasonable hourly performance indices for the Jan-1989 event. 

However, even with an NSE of 0.80 and a KGE of 0.72 for watershed Ao, the 17.9 m3 s-1 hourly peak flow was overestimated 

by 18%. 

 

Figure 9. Performance indices (NSE, Nash-Sutcliffe Efficiency; mNSE, modified Nash-Sutcliffe Efficiency; KGE, Kling-Gupta 475 
Efficiency; BIAS; MAE, Mean Absolute Error) calculated on daily streamflow resulting from WRF-modelled rainfall for the 22 
watersheds using the calibrated set of parameters for both Jan 1989 (J-89) and Nov 1994 (N-94) events. For watershed short names 
refer to Table 1. 
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The response of hourly streamflow to WRF-modelled rainfall shows similar behavior. The shape of the hydrographs is defined 

by rainfall pulses, in terms of both time of response and size of peaks. Even more than for daily outputs, it is evident that small 480 

differences in rainfall distribution and amount can cause large differences between observed and modelled streamflow (see 

performance indices).  

A possible improvement may be obtained by an increase in channel roughness coefficients. This would allow slower flow, and 

a smoothing of the peaks. Especially in dry Mediterranean areas, characterized by streams with seasonal flow, the vegetation 

(and consequently the roughness conditions) can be very different at the end of the dry period (vegetation grown within the 485 

stream, dry understories and bushes and bare cropland overland) and in the middle of wet winter (water within the riverbed, 

green vegetation cover overland). This could be described with the inclusion of a seasonal variation of channel and overland 

roughness coefficients in the model. However, rainfall data with high spatial and temporal resolution would be essential to test 

this model modification. 

 490 

Figure 10. Observed hourly hydrographs (flow obs) and hydrographs obtained with the calibrated WRF-Hydro model (flow mod) 
forced with observed rainfall (rain obs) and with WRF-modelled rainfall (rain wrf) for both Jan 1989 (left) and Nov 1994 (right), 
for three watersheds (see Table 1 for watershed short names); modelled flow performance indices (NSE, Nash-Sutcliffe Efficiency; 
KGE, Kling-Gupta Efficiency; BIAS) are shown as well. 
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6 Conclusion 495 

This study evaluates streamflow simulations of the one-way coupled atmospheric-hydrologic model WRF-Hydro, forced with 

observed and WRF-modeled rainfall, during two extreme events, over 22 small mountain watersheds in Cyprus (area below 

100 km2). Following model calibration and validation with observed rain, the model was run with WRF-downscaled (1 × 1 

km2) re-analysis precipitation data (ERA-Interim). These forcing data represent best-performing hindcasts of two extreme 

rainfall events, i.e. a model product that is as similar as possible to reality and considered sub-optimal.  500 

Overall, the selected four calibration parameters (REFKDT, Soil depth, the baseflow bucket exponent, and the maximum 

baseflow bucket capacity) were sufficient to obtain good model performance during model calibration in these steeply sloping 

and geologically complex watersheds. Sensitivity analysis showed that REFKDT can be calibrated beyond the suggested 0.5-

5.0 range, having an effect on infiltration till a value of approximately 100.0. A Soil depth of 1.0 m, representative of the thin 

soils characterizing the study area, rather than the default value of 2.0 m, resulted in an average increase in NSE values of 0.14. 505 

Modifications of deep drainage coefficients and MODIS soil types based on geology reduced the peak flow overestimation by 

up to 40% in watersheds characterized by a fractured and very permeable bedrock. The overland roughness routing factor 

reduced the streamflow but showed a very limited effect on delaying flow. A straightforward calibration of the baseflow 

reservoir based on low flow fitting (exponent) and reservoir filling time (maximum capacity) was a good mean for obtaining 

a reasonable simulation of the hydrograph recession in most watersheds. Calculated daily NSE values were higher than 0.5 in 510 

16 out of the 22 modeled watersheds in Jan 1989 (calibration) and in eight watersheds in Nov 1994 (validation). Negative NSE 

values were found in three watersheds located at high elevation where an underestimation of the snow fraction, computed by 

the LSM, may have occurred. Modelled snow height, and possible improvements deriving from the use of alternatives routines 

(e.g. Noah MP), should be checked with observed snow depth data, which were not available for this study. 

The comparison of modelled and observed hourly streamflow showed that almost all peak flows were overestimated by the 515 

calibrated model. Modelled hourly streamflow fit the Jan 1989 hydrographs relatively well, but much less so the Nov 1994 

discharges. This performance loss in Nov 1994 was due to a pulse-like behavior of the modeled streamflow related to an 

immediate response to rainfall, which could be attenuated by higher channel roughness coefficients.  

Streamflow obtained with WRF-modelled rainfall forcing showed high discrepancies with observations, despite the good 

agreement between modelled and observed precipitation (average NSE of 0.83 and 0.49 for Jan 1989 and Nov 1994, 520 

respectively). However, the relatively small errors in total precipitation (average relative difference over the 22 watersheds of 

17% and for 20% Jan 1989 and Nov-1994 events, respectively) and simulated daily maxima (average relative difference over 

the 22 watersheds of 22% and 18% for Jan 1989 and Nov-1994 events, respectively) indicate that modelled rainfall data could 

be suitable for investigating the effect of climate change on extreme rainfall and flood events. From the results presented and 

discussed, it emerges that future studies could focus on various aspects of the modelling system to improve the simulation 525 

results of both precipitation and streamflow. Soil properties could be specifically calibrated for the study area. For a continuous, 

long-term streamflow analysis, an evaluation of the sensitivity of the baseflow reservoir parameters could be carried out. Also, 

the model could be improved by incorporating an option for time-dependent roughness coefficients to represent vegetation 

growth in ephemeral and intermittent streams in semi-arid environments. A model configuration with variable soil depths 

could also improve model performance, especially in mountain environments.  530 
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