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Abstract. Landslide is a major natural hazard in Kyrgyzstan and Tajikistan. Knowledge about atmospheric triggering condi-

tions and climatic disposition of landslides in Kyrgyzstan and Tajikistan is limited, even though this topic has already been

investigated thoroughly in other parts of the world. In this study, the newly developed, high-resolution High Asia Refined

Analysis version 2 (HAR v2) data set generated by dynamical downscaling was combined with historical landslide inventories

to analyze the atmospheric conditions that initialized landslides in Kyrgyzstan and Tajikistan. The results indicate the crucial5

role of snowmelt in landslide triggering processes since it contributes to the initialization of 40% of landslide events. Objective

thresholds for rainfall, snowmelt, as well as the sum of rainfall and snowmelt (rainfall+snowmelt) were defined. Thresholds de-

fined by rainfall+snowmelt have the best predictive performance. Mean intensity, peak intensity, and the accumulated amount

of rainfall+snowmelt events show similar predictive performance. Using the entire period of rainfall+snowmelt events results in

better predictive performance than just considering the period up-to landslide occurrence. Mean annual exceedance maps were10

derived from defined regional thresholds for rainfall+snowmelt. Mean annual exceedance maps depict climatic disposition and

have added value in landslide susceptibility mapping. The results reported in this study highlight the potential of dynamical

downscaling products generated by regional climate models in landslide prediction.

1 Introduction

Landslide is one of the most severe natural hazards in Kyrgyzstan and Tajikistan. More than 300 big landslides occurred15

in Kyrgyzstan from 1993 to 2010, causing 256 fatalities and direct economic losses of 2.5 million USD per year (Torgoev

et al., 2012). Under global warming, wildfires, glacial retreat, and permafrost degradation are much likely to enhance slope

instabilities in mountainous areas (Froude and Petley, 2018; Palmer, 2020), making these regions, including Kyrgyzstan and

Tajikistan, more vulnerable to climate change. The occurrence of landslides depends on disposition and triggering events.

Disposition refers to the general settings that make slopes prone to failure without actually initiating it, such as slope gradient20

and aspect, geology, vegetation cover, climate, etc. (Dai et al., 2002). Common triggers for landslides are extreme and prolonged

rainfall, rapid snowmelt, as well as earthquakes (Wieczorek, 1996).

The majority of landslide research in Kyrgyzstan and Tajikistan focused on characterizing landslide susceptibility, i.e.,

"where" landslides are prone to occur (e.g., Braun et al., 2015; Saponaro et al., 2015; Havenith et al., 2015b), and how
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to improve the landslide susceptibility models (Ozturk et al., 2020; Barbosa et al., 2021). But little attention is paid to the25

atmospheric triggering conditions, and our knowledge of "when" landslides are likely to occur is limited in this region. In

addition, most landslide susceptibility studies only took non-climatic factors into account or simply applied annual precipitation

as a climatic factor. According to Segoni et al. (2018), no rainfall threshold for landslide triggering has been defined for

Kyrgyzstan and Tajikistan yet, even though this topic has already been thoroughly investigated in other parts of the world

with high landslide susceptibility (e.g., Berti et al., 2012; Gariano et al., 2015; Giannecchini et al., 2016; Leonarduzzi et al.,30

2017). The reasons are twofold. Firstly, although landslide inventories have been developed in this region, e.g., the Tien Shan

Geohazards Database (Havenith et al., 2015a, b) and the multi-temporal landslide inventory from Behling and Roessner (2020),

there is a lack of landslide inventories with the exact date of landslide occurrence. Given the highly dynamic nature of weather

phenomena, at least a daily timestamp of landslide records is required to investigate weather conditions that trigger landslides.

Secondly, there is a lack of atmospheric data. The number of in-situ observation stations in Kyrgyzstan and Tajikistan decreased35

sharply in the 1990s due to reduced funding. There are currently eight stations in Kyrgyzstan and 26 stations in Tajikistan

available from Global Surface Summary of the Day (GSOD), which is a publicly available data set. These numbers are already

significantly below the recommendation of the World Meteorological Organization, even for flat areas (Ilyasov et al., 2013).

Despite the sparse distribution, most GSOD stations are located in low-lying valleys and are not fully representative of the area.

Rainfall is the most common trigger of landslide all over the world (Wieczorek, 1996). Over snow-covered regions, snowmelt40

is recognized as another common trigger of shallow landslides and debris flows (Wieczorek, 1996; Mostbauer et al., 2018).

In Kyrgyzstan and Tajikistan, more than half of the annual precipitation falls in the form of snow. Snow cover duration over

high mountain ranges in the Tien Shan and the Pamir is more than 200 days per year (Dietz et al., 2014). A large amount of

water stored in snowpacks is released during the melting season. Snowmelt is another important source of water infiltrating

into the soil that increases slope instability. Thus, in Kyrgyzstan and Tajikistan, snowmelt might also play a role in landslide45

triggering besides rainfall. But snowmelt is not as easy to be observed as rainfall and might often be neglected as a landslide

trigger, especially when co-occurring with rainfall.

There are two main approaches to assess rainfall thresholds for landslide triggering. The first approach is physically based

and requires detailed lithological, morphological, and geotechnical information of each landslide event (Guzzetti et al., 2007).

Unfortunately, this level of detail is usually restricted to small areas and is not available for the whole of Kyrgyzstan and50

Tajikistan. The second one is the empirical approach based on historical landslide and rainfall data. The majority of studies

applying this approach relied on rain gauge data to analyze rainfall thresholds (e.g., Berti et al., 2012; Khan et al., 2012; Bui

et al., 2013). However, rain gauge data are point measurements that cannot capture the large spatial heterogeneity of rainfall,

especially over complex terrains. Gridded products can provide continuous data in both space and time and can be used in

detecting atmospheric triggering conditions of landslides.55

We aim to analyze the atmospheric triggering conditions of landslides and generate climatic disposition maps that contain

information on these triggering conditions in Kyrgyzstan and Tajikistan. For this purpose, we combined freely available grid-

ded atmospheric data with historical landslide events. Atmospheric triggers for each landslide event were determined by the

co-occurrence of landslide and weather events. Properties (mean intensity, peak intensity, accumulated amount) of landslide
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triggering events and non-landslide triggering events were compared. Objective thresholds of these properties for different60

atmospheric triggers (rainfall, snowmelt, and the sum of rainfall and snowmelt) were de�ned so that they can best separate

the atmospheric conditions that resulted and did not result in landslides. Finally, we applied the thresholds with the best pre-

dictive performance to generate maps of mean annual exceedance. In this way, we can transform the weather-scale triggering

conditions into climate-scale dispositions (hereafter referred to as "climatic disposition").

The objective of this study is threefold: (1) investigate the role of snowmelt in landslide triggering processes; (2) �nd65

appropriate quantities of atmospheric triggers for assessing landslide hazards; (3) characterize climatic disposition in terms of

rainfall and snowmelt over Kyrgyzstan and Tajikistan.

The paper is organized as follows: we describe the data and methods used in this study in the following section. Results are

presented in section 3 and discussed in 4. Conclusions are drawn in section 5.

2 Data and method70

2.1 Data

2.1.1 Landslide catalog

Landslide events used in this study come from two sources: the Global Landslide Catalog (GLC) (Kirschbaum et al., 2010,

2015) and the Global Fatal Landslide Database (GFLD) (Froude and Petley, 2018). GLC has been compiled by NASA since

2007 and contains all types of mass movements triggered mostly by rainfall. The sources of the GLC are mainly media reports,75

disaster databases, and scienti�c reports. The GFLD only includes landslide events that caused fatality obtained from media

reports. It currently covers the period from 2004 to 2017.Both theGLC andtheGFLD providedatesof landslideevents
:::::
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We selected landslide events triggered by atmospheric factors in Kyrgyzstan and Tajikistan from 2007-2018 from the GLC80

and 2004-2017 from the GFLD. Then we merged these two data sets and deleted duplicated events that occurred on the same

day and came from the same source link, resulting in 96 landslide events for Kyrgyzstan and Tajikistan from 2004 to 2018

(Fig. 1).

2.1.2 Atmospheric data

Rainfall and snowmelt data are extracted from the HAR v2. The HAR v2 is a newly developed regional atmospheric data85

set. It was generated by dynamical downscaling of the ERA5 reanalysis data using the Weather Research and Forecasting

model (WRF). It provides atmospheric data with high resolution and accuracy over High Mountain Asia (Hamm et al., 2020;

Wang et al., 2021). Detailed modeling strategies of the HAR v2 are described in Wang et al. (2021). The HAR v2 has a grid

spacing of 10 km and is available in hourly, daily, monthly and yearly aggregations. Daily products were used in this study to

determine the climatic trigger of each landslide event (section 2.2.1) and to de�ne thresholds for landslide triggering (section90
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2.2.2). Rainfall was calculated as the difference between total precipitation and snowfall. Snowmelt is not a standard output of

the WRF and was calculated using the Surface Energy Balance (SEB). The SEB in the HAR v2 is resolved by the Noah Land

Surface Model (LSM) (Tewari et al., 2004):

Hm = Rn � H s � H l � Hg (1)

whereRn , H s, H l andHg are net radiation, sensible heat �ux, latent heat �ux, and ground heat �ux inWm � 2, respectively.95

These four variables are directly available in the HAR v2.Hm is the heat �ux for melting and refreezing inWm � 2. Hm > 0

indicates melting process, whileHm < 0 refers to refreezing process. WhenHm > 0, snowmelthm (kgm� 2 s� 1) is calculated

as:

hm = Hm =� m (2)

where� m is the latent heat of fusion. When the calculatedhm is greater than snow water equivalent, thenhm is set to be equal100

to snow water equivalent.

Figure 1. Landslide events from 2004-2018 extracted from the GLC (white points) and the GFLD (black points). Background contour is

topography from Digital Elevation Model (DEM) data from Shuttle Radar Topographic Mission (SRTM).
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2.2 Methods

2.2.1 Determine the atmospheric trigger of landslide events

The atmospheric trigger of a landslide event is determined by the co-occurrence of the landslide event with rainfall and

snowmelt event. If a landslide event only occurred within or one day after a rainfall (snowmelt) event, then this landslide105

event is de�ned as rainfall (snowmelt) triggered. If there are both a rainfall event and a snowmelt event on the day or one day

before the landslide occurrence day, then the atmospheric trigger of this landslide event is mixed.

To de�ne a rainfall (snowmelt) event, the daily time series of rainfall(snowmelt) were extracted from the grid cells where

landslides occurred. For each time series, an independent rainfall (snowmelt) event is de�ned as a series of consecutive days in

which more than0:2 mmd� 1 of rainfall (snowmelt) is simulated. The value of0:2 mmd� 1 is chosen because it is the traditional110

precision of daily precipitation measurement (Jarraud, 2008) and can be applied to separate dry and wet conditions (Rodwell

et al., 2010).

2.2.2 Threshold model for atmospheric triggers

The threshold model developed in this study contains three steps: (1) de�ne landslide triggering events and non-triggering

events; (2) de�ne the thresholds for rainfall, snowmelt, and the sum of rainfall and snowmelt (hereafter referred to as rain-115

fall+snowmelt) based on maximizing the predictive performance using2� 2 contingency tables; (3) validate and assess the

uncertainties of the de�ned thresholds. The methods for the �rst two steps were adopted from Leonarduzzi et al. (2017). Only

the landslide events, the climatic triggers of which could be determined, were used for threshold modeling.

The �rst step is to de�ne landslide triggering events and non-triggering events for rainfall, snowmelt, and rainfall+snowmelt.

Here, we take rainfall as an example to describe the procedure. First, the method used in section 2.2.1 is applied to de�ne120

rainfall events for each time series extracted from grid cells where landslides occurred. Next, if a landslide event occurred

during or one day after a rainfall event, then this rainfall event is classi�ed as a landslide triggering event (LTE). Given the

uncertainty in timestamps of landslide events, the day after is also considered as a temporal relaxation. Otherwise, if a rainfall

event is not associated with any landslide events, it is classi�ed as a non-landslide triggering event (NLTE). For each rainfall

event, we calculated three event properties: mean intensityI mean , maximum intensityI max , and the accumulated amount of125

rainfall for the entire eventQ. For triggering events, we also calculated these three properties by only considering the period up

to the day of the landslide occurrence (hereafter referred to as UTL, meaning Up-To-Landslide). Note that, not all the landslide

events co-occurred with a rainfall event. For these events, we setI mean , I max , andQ to zero. The same procedure for de�ning

LTEs and NLTEs was conducted for snowmelt and rainfall+snowmelt as well.

The second step is to de�ne thresholds of rainfall, snowmelt, and rainfall+snowmelt for entire events and UTL events,130

usingI mean , I max , andQ. No single threshold can perfectly separate LTEs from NLTEs since their distributions overlap. We

applied2� 2 contingency tables to select the threshold that yields the best predictive performance. Using a certain threshold

as a binary classi�er, LTEs and NLTEs were categorized into true positive (TP), true negative (TN), false positive (FP), and

false negative (FN). The Peirce Skill Score (PSS) (Hanssen and Kuipers, 1965) was applied as the measure of the predictive

5



performance because it is trail-independent, which means it is unbiased even when the numbers of LTEs and NLTEs are not135

equally presented (Woodcock, 1976). The PSS is also known as the Hanssen-Kuiper skill score and the true skill statistic. It is

calculated as the difference between Hit Rate (HR) and False Alarm Rate (FAR):

PSS = HR � FAR (3)

HR =
TP

TP + FN
(4)

FAR =
FP

FP + TN
(5)140

We chose the threshold that maximizes the PSS. We also computed the Euclidean distance (d) to the optimal point (HR=1,

FAR=0), which is another commonly used skill score in this application (e.g., Gariano et al., 2015; Piciullo et al., 2017;

Postance et al., 2018; Zhuo et al., 2019). Additionally, the receiver operating characteristic (ROC) curve was used to determine

the general predictive power of a certain predictor by calculating the area under the ROC curve (AUC) (Fawcett, 2006).

The last step is to validate the threshold model and assess uncertainty. For the calibration of thresholds, all landslide event145

samples were utilized, and corresponding statistic measures were calculated, i.e., the threshold model was trained and tested on

the same data set. To test the model's predictive ability on an unseen data set, we performed k-fold cross-validation. Landslide

events were randomly split into k folds with k=8. Then for each unique fold, the fold was taken as the testing set, and the

remaining k-1 folds were taken as the training set. Mean values of thresholds, the corresponding statistic measures, as well as

their uncertainties represented by standard deviations were reported.150

2.2.3 Mean annual exceedance

Mean annual exceedance (N th ) is calculated for each HAR v2 grid cell. It is de�ned as the number of events that exceed a

certain threshold over a certain period (N th ) divided by the total number of years (Na):

N th =
N th

Na
(6)

The unit ofN th is the number of events per year. Mean annual exceedance transforms weather-scale triggering conditions to155

climate-scale disposition. It depicts where landslides are likely to occur from the climatic aspect.

3 Results

3.1 The role of snowmelt in landslide triggering

Figure 2 shows the climatology of seasonal rainfall, snowmelt, and rainfall+snowmelt resolved by the HAR v2. We de�ne

seasons as commonly done in meteorology, spanning three months each: winter (December-February, DJF), spring (March-160

May, MAM), summer (June-August, JJA), and autumn (September-November, SON). A high amount of rainfall concentrates

in the western foothill of the Fergana Range, the northern foothill of the Turkestan Range, and the Tajik Basin in spring and

shifts northeastwards into the Tien Shan in summer. Snowmelt occurs in spring over most high elevated areas. In summer,
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while most regions are snowmelt-free, the Pamir plateau still experiences a high amount of continuous snowmelt, which is in

line with the results by Dietz et al. (2014) using remote sensing data.165

Atmospheric triggers for each landslide event are determined using the method described in section 2.2.1, and the results are

shown in Fig. 3. Table A1 lists all 96 events and the climatic triggers detected by the HAR v2. Figure A1 shows the temporal

process of rainfall and snowmelt for selected landslide cases. Nine landslide events did not occur within any rainfall event,

snowmelt event, or rainfall+snowmelt event. This mismatch between landslide information and weather information stems

from the uncertainties in landslide locations and timing, as well as the uncertainties from rainfall and snowmelt simulated in170

the HAR v2 (detailed discussion in section 4.1). These nine events are referred to as "not detected" (white points in Fig. 3) and

are excluded. The remaining 87 landslide events were used for further analysis. Landslide events that were only triggered by

rainfall mainly cluster in Tajik Basin and the northeastern rim of the Fergana Basin, where the contribution of rainfall to the

annual sum of rainfall and snowmelt is high (Fig. 3).

The annual cycles of rainfall, snowmelt, and rainfall+snowmelt are compared with monthly landslide occurrences in Fig.175

4. The study region experiences a peak of landslide activity in April and May, which corresponds with the peak of rain-

fall+snowmelt. While rainfall is the dominant trigger of landslides, snowmelt contributes to triggering 40% of landslide events

(35 out of 87). There are 29% of landslide events (25 out of 87) that are attributed to the combined effect of rainfall and

snowmelt. Most snowmelt-contributing events occurred in April when snowmelt amount is the highest. March and June have

almost the same amount of rainfall+snowmelt. However, there are more landslide occurrences in June. This could be resulted180

from still frozen soil in March, which stabilizes the slope. As shown in Fig. 4a, both soil temperature at the top soil layer

(0-0.1m) and air temperature at2 m are still below zero in March.
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