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Abstract. Landslide is a major natural hazard in Kyrgyzstan and Tajikistan. Knowledge about atmospheric triggering condi-

tions and climatic disposition of landslides in Kyrgyzstan and Tajikistan is limited, even though this topic has already been

investigated thoroughly in other parts of the world. In this study, the newly developed, high-resolution High Asia Refined Anal-

ysis version 2 (HAR v2) data set generated by dynamical downscaling was combined with historical landslide inventories to an-

alyze
::
the

:
atmospheric conditions that initialized landslides in Kyrgyzstan and Tajikistan. The results indicate the crucial role of5

snowmelt in landslide triggering processes since it contributes to the initialization of 40% of landslide events. Objective thresh-

olds for rainfall, snowmelt, as well as the sum of rainfall and snowmelt (rainfall+snowmelt) were defined. Peak intensity(Imax)

and accumulated amount (Q)
:::::::::
Thresholds

::::::
defined

:::
by

:::::::::::::::
rainfall+snowmelt

::::
have

:::
the

::::
best

:::::::::
predictive

:::::::::::
performance.

:::::
Mean

::::::::
intensity,

::::
peak

::::::::
intensity,

:::
and

:::
the

:::::::::::
accumulated

:::::::
amount of rainfall+snowmelt events yield the best predictive performance

:::::
show

::::::
similar

::::::::
predictive

:::::::::::
performance.

:::::
Using

:::
the

::::::
entire

:::::
period

::
of

::::::::::::::::
rainfall+snowmelt

:::::
events

::::::
results

::
in

:::::
better

:::::::::
predictive

::::::::::
performance

::::
than

::::
just10

:::::::::
considering

:::
the

::::::
period

:::::
up-to

::::::::
landslide

:::::::::
occurrence. Mean annual exceedance maps were derived from regional thresholds of

Imax =12.8mmd−1 and Q=17.2mm
::::::
defined

:::::::
regional

:::::::::
thresholds for rainfall+snowmelt. Mean annual exceedance maps de-

pict climatic disposition and have added value in landslide susceptibility mapping. The results reported in this study highlight

the potential of dynamical downscaling products generated by regional climate models in landslide prediction.

1 Introduction15

Landslide is one of the most severe natural hazards in Kyrgyzstan and Tajikistan. More than 300 big landslides occurred in

Kyrgyzstan from 1993 to 2010, causing 256 fatalities and direct economic losses of 2.5 million USD per year (Torgoev et al.,

2012). Under global warming, wildfires, glacial retreat, and permafrost degradation are much likely to enhance slope instabili-

ties in mountainous areas (Froude and Petley, 2018; Palmer, 2020), making these regions, including Kyrgyzstan and Tajikistan,

more vulnerable to climate change. Landslides are predetermined by static factors
:::
The

::::::::::
occurrence

::
of

:::::::::
landslides

:::::::
depends

:::
on20

:::::::::
disposition

:::
and

:::::::::
triggering

::::::
events.

::::::::::
Disposition

:::::
refers

::
to

:::
the

::::::
general

:::::::
settings

::::
that

:::::
make

:::::
slopes

:::::
prone

::
to

::::::
failure

:::::::
without

:::::::
actually

:::::::
initiating

::
it, such as slope gradient and aspect, geology, vegetation cover,

:::::::
climate, etc. (Dai et al., 2002). These factors that

make slopes prone to failure without actually initiating it are also referred to as dispositions (Zimmermann, 1997). Landslides
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are triggered by dynamic factors, which are mainly
:::::::
Common

:::::::
triggers

:::
for

::::::::
landslides

:::
are

:
extreme and prolonged rainfall, rapid

snowmelt, as well as earthquakes (Wieczorek, 1996).25

The majority of landslide research in Kyrgyzstan and Tajikistan focused on characterizing landslide susceptibility, i.e.,

"where" landslides are prone to occur (e.g., Braun et al., 2015; Saponaro et al., 2015; Havenith et al., 2015b)
:
,
:::
and

:::::
how

::
to

:::::::
improve

:::
the

:::::::
landslide

::::::::::::
susceptibility

::::::
models

::::::::::::::::::::::::::::::::::
(Ozturk et al., 2020; Barbosa et al., 2021). But little attention is paid to the atmo-

spheric triggering conditions, and our knowledge of "when" landslides are likely to occur is limited in this region. In addition,

most landslide susceptibility studies only took non-climatic factors into account or simply applied annual precipitation as a30

climatic factor. According
:
to Segoni et al. (2018), no rainfall threshold for landslide triggering has been defined for Kyrgyzs-

tan and Tajikistan yet, even though this topic has already been thoroughly investigated in other parts of the world with high

landslide susceptibility (e.g., Berti et al., 2012; Gariano et al., 2015; Giannecchini et al., 2016; Leonarduzzi et al., 2017).

The reasons are twofold. Firstly, although landslide inventories have been developed in this region, e.g., the Tien Shan Geo-

hazards Database (Havenith et al., 2015a, b) and the multi-temporal landslide inventory from Behling and Roessner (2020),35

there is a lack of landslide inventories with the exact date of landslide occurrence. Given the highly dynamic nature of weather

phenomena, at least a daily time stamp
::::::::
timestamp

:
of landslide records is required to investigate weather conditions that trig-

ger landslides. Secondly, there is a lack of atmospheric data. The number of in-situ observation stations in Kyrgyzstan and

Tajikistan decreased sharply in the 1990s due to reduced funding. There are currently eight stations in Kyrgyzstan and 26

stations in Tajikistan available from Global Surface Summary of the Day (GSOD), which is a publicly available data set.40

These numbers are already significantly below the recommendation of
::
the

:
World Meteorological Organization, even for flat

areas (Ilyasov et al., 2013). Despite the sparse distribution, most GSOD stations are located in low-lying valleys and are not

fully representative of the area.

Rainfall is the most common trigger of landslide all over the world (Wieczorek, 1996). Over snow-covered regions, snowmelt

is recognized as another common trigger of shallow landslides and debris flows (Wieczorek, 1996; Mostbauer et al., 2018).45

In Kyrgyzstan and Tajikistan, more than half of the annual precipitation falls in the form of snow. Snow cover duration over

high mountain ranges in the Tien Shan and the Pamir is more than 200 days per year (Dietz et al., 2014). A large amount of

water stored in snowpacks is released during the melting season. Snowmelt is another important source of water infiltrating

into the soil that increases slope instability. Thus, in Kyrgyzstan and Tajikistan, snowmelt might also play a role in landslide

triggering besides rainfall. But snowmelt is not as easy to be observed as rainfall and might often be neglected as a landslide50

trigger, especially when co-occurring with rainfall.

There are two main approaches to assess rainfall threshold
:::::::::
thresholds for landslide triggering. The first approach is physically

based and requires detailed lithological, morphological, and geotechnical information of each landslide event (Guzzetti et al.,

2007). Unfortunately
:
, this level of detail is usually restricted to small areas and is not available for the whole of Kyrgyztan

:::::::::
Kyrgyzstan

:
and Tajikistan. The second one is the empirical approach based on historical landslide and rainfall data. The55

majority of studies applying this approach relied on rain gauge data to analyze rainfall thresholds (e.g., Berti et al., 2012;

Khan et al., 2012; Bui et al., 2013). However, rain gauge data are point measurements that cannot capture the large spatial
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heterogeneity of rainfall, especially over complex terrains. Gridded products can provide continuous data in both space and

time and can be used in detecting atmospheric triggering conditions of landslides.

We aim to analyze the atmospheric triggering conditions of landslides and generate climatic disposition maps that contain60

information on these triggering conditions in Kyrgyzstan and Tajikistan. For this purpose, we combined freely available
::::::
gridded

atmospheric data with historical landslide events. Atmospheric triggers for each landslides events
:::::::
landslide

:::::
event

:
were deter-

mined by the co-occurrence of landslide and weather events. Properties (mean intensity, peak intensity, accumulated amount)

of landslide triggering events and non-landslide triggering events were compared. Objective thresholds of these properties for

different atmospheric triggers (rainfall, snowmelt, and the sum of rainfall and snowmelt) were defined so that they can best65

separate
:::
the atmospheric conditions that resulted and did not result in landslides. Finally, we applied the thresholds with the

best predictive performance to generate maps of mean annual exceedance. In this way, we can transform the weather-scale

triggering conditions into climate-scale disposition
::::::::::
dispositions (hereafter referred to as "climatic disposition").

The objective of this study is threefold: (1) investigate the role of snowmelt in landslide triggering processes; (2) find

appropriate quantities of atmospheric triggers for assessing landslide hazards; (3) characterize climatic disposition in terms of70

rainfall and snowmelt over Kyrgyzstan and Tajikistan.

The paper is organized as follows: we describe the data and methods used in this study in the following section. Results are

presented in section 3 and discussed in 4. Conclusions are drawn in section 5.

2 Data and method

2.1 Data75

2.1.1 Landslide catalog

Landslide events used in this study come from two sources: the Global Landslide Catalog (GLC) (Kirschbaum et al., 2010,

2015) and the Global Fatal Landslide Database (GFLD) (Froude and Petley, 2018). GLC has been compiled by NASA since

2007 and contains all types of mass movements triggered mostly by rainfall. The sources of the GLC are mainly media reports,

disaster databases, and scientific reports. The GFLD only includes landslide events that caused fatality obtained from media80

reports. It currently covers the period from 2004 to 2017. Both the GLC and the GFLD provide dates of landslide events.

We selected landslide events triggered by atmospheric factors in Kyrgyzstan and Tajikistan from 2007-2018 from the GLC

and 2004-2017 from the GFLD. Then we merged these two data sets and deleted duplicated events that occurred on the same

day and came from the same source link, resulting in 96 landslide events for Kyrgyzstan and Tajikistan from 2004 to 2018

(Fig. 1).85

2.1.2 Atmospheric data

Rainfall and snowmelt data are extracted from the HAR v2. The HAR v2 is a newly developed regional atmospheric data set.

It was generated by dynamical downscaling of the ERA5 reanalysis data using the Weather Research and Forecasting model
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(WRF). It is the only gridded atmospheric data set over High Mountain Asia
:::::::
provides

::::::::::
atmospheric

::::
data

:
with high resolution and

accuracy (Hamm et al., 2020)
::::
over

::::
High

:::::::::
Mountain

::::
Asia

::::::::::::::::::::::::::::::::
(Hamm et al., 2020; Wang et al., 2021). Detailed modeling strategies90

of the HAR v2 are described in Wang et al. (2021). The HAR v2 has a grid spacing of 10 km and is available in hourly, daily,

monthly and yearly aggregations. Daily products were used in this study to determine the climatic trigger of each landslide

event (section 2.2.1) and to define thresholds for landslide triggering (section 2.2.2). Rainfall was calculated as the difference

between total precipitation and snowfall. Snowmelt is not a standard output of the WRF and was calculated using the Surface

Energy Balance (SEB). The SEB in the HAR v2 is resolved by the Noah Land Surface Model (LSM) (Tewari et al., 2004):95

Hm =Rn −Hs −Hl −Hg (1)

where Rn, Hs, Hl and Hg are net radiation, sensible heat flux, latent heat flux
:
, and ground heat flux in Wm−2, respectively.

These four variables are directly available in the HAR v2. Hm is the heat flux for melting and refreezing in Wm−2. Hm > 0

indicates melting process, while Hm < 0 refers to refreezing process. When Hm > 0, snowmelt hm (kgm−2 s−1) is calculated

as:100

hm =Hm/λm (2)

where λm is the latent heat of fusion. When the calculated hm is greater than snow water equivalent, then hm is set to be equal

to snow water equivalent.

2.2 Methods

2.2.1 Determine
:::
the

:
atmospheric trigger of landslide events105

Atmospheric
:::
The

::::::::::
atmospheric trigger of a landslide event is determined by the co-occurrence of the landslide event with rainfall

and snowmelt event. If a landslide event only occurred within or one day after a rainfall (snowmelt) event, then this landslide

event is defined as rainfall (snowmelt) triggered. If there are both a rainfall event and a snowmelt event on the day or one day

before the landslide occurrence day, then the atmospheric trigger of this landslide event is mixed.

To define a rainfall (snowmelt) event, the daily time series of rainfall(snowmelt) were extracted from the grid cells where110

landslides occurred. For each time series, an independent
::::::
rainfall

:::::::::
(snowmelt)

:
event is defined as a series of consecutive days in

which more than 0.2mmd−1 of rainfall (snowmelt) is simulated. The value of 0.2mmd−1 is chosen because it is the traditional

precision of daily precipitation measurement (Jarraud, 2008) and can be applied to separate dry and wet conditions (Rodwell

et al., 2010).

2.2.2 Threshold model for atmospheric triggers115

The threshold model developed in this study contains three steps: (1) define landslide triggering events and non-triggering

events; (2) define the thresholds for rainfall, snowmelt, and the sum of rainfall and snowmelt (hereafter referred to as rain-

fall+snowmelt) based on maximizing the predictive performance using 2× 2 contingency tables; (3) validate and assess the
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Figure 1. Landslide events from 2004-2018 extracted from the Global Landslide Catalog (GLC)
::::
GLC (white points) and the

Global Fatal Landslide Database (GFLD)
:::::
GFLD (black popints). Background contour is topography from Digital Elevation Model

::::::::::::::::::::::::
Digital Elevation Model (DEM) data from Shuttle Radar Topographic Mission

::::::::::::::::::::::::::::::::
Shuttle Radar Topographic Mission (SRTM).

uncertainties of the defined thresholds. The methods for the first two steps were adopted from Leonarduzzi et al. (2017). Only

the landslide events, the climatic triggers of which could be determined, were used for threshold modeling.120

The first step is to define landslide triggering events and non-triggering events for rainfall, snowmelt, and rainfall+snowmelt.

Here, we take rainfall as an example to describe the procedure. First, the method used in section 2.2.1 is applied to define

rainfall events for each time series extracted from grid cells where landslides occurred. Next, if a landslide event occurred

during or one day after a rainfall event, then this rainfall event is classified as a landslide triggering event (LTE). Given the

uncertainty in time stamps
:::::::::
timestamps of landslide events, the day after is also considered as a temporal relaxation. Otherwise,125

if a rainfall event is not associated with any landslide events, it is classified as a non-landslide triggering event (NLTE). For

each rainfall event, we calculated three event properties: mean intensity Imean, maximum intensity Imax, and the accumulated

amount of rainfall for the entire event Q. For triggering events, we also calculated these three properties by only considering

the period up to the day of the landslide occurrence (hereafter referred to as UTL, meaning Up-To-Landslide). Note that, not all

the landslide events co-occurred with a rainfall event. For these events, we set Imean, Imax, andQ to zero. The same procedure130

for defining LTEs and NLTEs was conducted for snowmelt and rainfall+snowmelt as well.
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The second step is to define thresholds of rainfall, snowmelt, and rainfall+snowmelt for entire events and UTL events,

using Imean, Imax, and Q. No single threshold can perfectly separate LTEs from NLTEs since their distributions overlap. We

applied 2× 2 contingency tables to select the threshold that yields the best predictive performance. Using a certain threshold

as a binary classifier, LTEs and NLTEs were categorized into true positive (TP), true negative (TN), false positive (FP), and135

false negative (FN). The Peirce Skill Score (PSS) (Hanssen and Kuipers, 1965) was applied as the measure of the predictive

performance because it is trail-independent, which means it is unbiased even when the numbers of LTEs and NLTEs are not

equally presented (Woodcock, 1976). The PSS is also known as the Hanssen-Kuiper skill score and the true skill statistic. It is

calculated as the difference between Hit Rate (HR) and False Alarm Rate (FAR):

PSS =HR−FAR (3)140

HR=
TP

TP +FN
(4)

FAR=
FP

FP +TN
(5)

We chose the threshold that maximizes the PSS. We also computed the Euclidean distance (d) to the optimal point (HR=1,

FAR=0), which is another commonly used skill score in this application (e.g., Gariano et al., 2015; Piciullo et al., 2017;

Postance et al., 2018; Zhuo et al., 2019). Additionally, the receiver operating characteristic (ROC) curve was used to determine145

the general predictive power of a certain predictor by calculating the area under the ROC curve (AUC) (Fawcett, 2006).

The last step is to validate the threshold model and assess uncertainty. For the calibration of thresholds, all landslide event

samples were utilized, and corresponding statistic measures were calculated, i.e., the threshold model was trained and tested on

the same data set. To test the model’s predictive ability on an unseen data set, we performed k-fold cross-validation. Landslide

events were randomly split into k folds with k=8. Then for each unique fold, the fold was taken as the testing set, and the150

remaining k-1 folds were taken as the training set. Mean values of thresholds, the corresponding statistic measures, as well as

their uncertainties represented by standard deviations were reported.

2.2.3 Mean annual exceedance

Mean annual exceedance (N th) is calculated for each HAR v2 grid cell. It is defined as the number of events that exceed a

certain threshold over a certain period (Nth) divided by the total number of years (Na):155

N th =
Nth

Na
(6)

The unit of N th is the number of events per year. Mean annual exceedance transforms weather-scale triggering conditions to

climate-scale disposition. It depicts where are landslides
::::::::
landslides

::
are

:
likely to occur from

:::
the climatic aspect.

3 Results

3.1 The role of snowmelt in landslide triggering160
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Fig.
:::::
Figure

:
2 shows the climatology of seasonal rainfall, snowmelt, and rainfall+snowmelt resolved by the HAR v2.

:::
We

:::::
define

:::::::
seasons

::
as

:::::::::
commonly

:::::
done

::
in
::::::::::::

meteorology,
::::::::
spanning

::::
three

:::::::
months

:::::
each:

::::::
winter

::::::::::::::::::
(December-February,

:::::
DJF),

::::::
spring

:::::::::::
(March-May,

::::::
MAM),

:::::::
summer

::::::::::::
(June-August,

:::::
JJA),

:::
and

:::::::
autumn

:::::::::::::::::::
(September-November,

::::::
SON). A high amount of rainfall con-

centrates in the western foothill of the Fergana Range, the northern foothill of the Turkestan Range, and the Tajik Basin in

spring and shifts northeastwards into the Tien Shan in summer. Snowmelt occurs in spring over most high elevated areas. In165

summer, while most regions are snowmelt-free, the Pamir plateau still experiences a high amount of continuous snowmelt,

which is in line with the results by Dietz et al. (2014) using remote sensing data.

Atmospheric triggers for each landslide events
::::
event are determined using the method described in section 2.2.1, and the

results are shown in Fig. 3. Table A1 lists all 96 events and the climatic triggers detected by the HAR v2.
:::::
Figure

:::
A1

::::::
shows

::
the

::::::::
temporal

:::::::
process

::
of

:::::::
rainfall

:::
and

:::::::::
snowmelt

:::
for

:::::::
selected

::::::::
landslide

:::::
cases.

:
Nine landslide events did not occur within any170

rainfall event, snowmelt event, or rainfall+snowmelt event. These
::::
This

::::::::
mismatch

::::::::
between

:::::::
landslide

::::::::::
information

::::
and

:::::::
weather

:::::::::
information

::::::
stems

::::
from

::::
the

:::::::::::
uncertainties

::
in

::::::::
landslide

::::::::
locations

::::
and

::::::
timing,

:::
as

::::
well

:::
as

:::
the

:::::::::::
uncertainties

::::
from

:::::::
rainfall

::::
and

::::::::
snowmelt

::::::::
simulated

::
in
::::

the
:::::::
HAR v2

:::::::
(detailed

:::::::::
discussion

:::
in

::::::
section

::::
4.1).

::::::
These

::::
nine

:
events are referred to as "not detected"

(white points in Fig. 3) and are excluded. The remaining 87 landslide events were used for further analysis. Landslide events

that were only triggered by rainfall mainly cluster in Tajik Basin and the northeastern rim of the Fergana Basin, where the175

contribution of rainfall to the annual sum of rainfall and snowmelt is high (Fig. 3).

The annual cycles of rainfall, snowmelt, and rainfall+snowmelt are compared with monthly landslide occurrences in Fig.

4. The study region experiences a peak of landslide activity in April and May, which corresponds with the peak of rain-

fall+snowmelt. While rainfall is the dominant trigger of landslides, snowmelt contributes to triggering 40% of landslide events

(35 out of 87). There are 29% of landslide events (25 out of 87) that are attributed to the combined effect of rainfall and180

snowmelt. Most snowmelt-contributing events occurred in April when snowmelt amount is the highest. March and June have

almost the same amount of rainfall+snowmelt. However, there are more landslide occurrences in June. This could be resulted

from still frozen soil in March, which stabilizes the slope. As shown in Fig. 4a, both soil temperature at the top soil layer

(0-0.1m) and air temperature at 2m are still
:::::
below

:
zero in March.
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Figure 2. Seasonal rainfall, snowmelt, and rainfall+snowmelt from the High Asia Refined Analysis version 2 (HAR v2)

::::::
HAR v2 from 2004-2018. Black points

:::::
circles: seasonal landslide events from Global Landslide Catalog (GLC)

::::
GLC and

Global Fatal Landslide Database (GFLD)
:::::
GFLD. Topographic shading is based on Digital Elevation Model

::::
DEM data from

Shuttle Radar Topographic Mission
::::
SRTM

:
.
::::
DJF:

:::::::::::::::
December-February;

::::::
MAM:

:::::::::
March-May;

::::
JJA:

::::::::::
June-August;

::::
SON:

:::::::::::::::::
September-November.
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Figure 3. Contribution (%) of snowmelt to annual sum of rainfall and snowmelt (background contour) and climatic triggers of 96

landslide events extracted from Global Landslide Catalog (GLC)
::::
GLC and Global Fatal Landslide Database (GFLD)

:::::
GFLD (points). Topo-

graphic shading is based on Digital Elevation Model
:::::
DEM data from Shuttle Radar Topographic Mission

::::
SRTM.
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Figure 4. (a) Mean monthly soil temperature at the top soil layer (0-0.1m) and air temperature at 2m averaged over Kyrgyzstan and

Tajikistan extracted from the High Asia Refined Analysis version 2 (HAR v2)
::::::
HAR v2; (b) mean monthly rainfall and snowmelt averaged

over Kyrgyzstan and Tajikistan extracted from the HAR v2; (c) mean monthly landslide occurrences in Kyrgyzstan and Tajikistan from

2004-2018.
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3.2 Thresholds of climatic
:::::::::::
atmospheric triggers for landslide triggering

:::::::::
landslides in Kyrgyzstan and Tajikistan185

Statistics of different properties of LTEs and NLTEs for rainfall, snowmelt, and rainfall+snowmelt are presented in Fig. 5 in

the form of cumulative distribution function (CDF)
::::::::::::::::::::::::::::::::::::::::
empirical cumulative distribution function (eCDF). Rainfall and snowmelt

have a high percentage of events with Imean = 0, Imax = 0, and Q= 0because
:
.
::::
This

::
is

:::::::
because,

:
for landslide events that

cannot be detected by only rainfall (orange points in Fig. 3)or only snowmelt (blue points in Fig. 3), Imean, Imax:
, and Q

::
of

::::::
rainfall

:::
for

::::
these

::::::
events

:
were all set to zero.

:::
The

:::::
same

::::::::
procedure

::::
was

:::::::::
conducted

:::
for

:::::
events

::::
that

::::::
cannot

:::
be

:::::::
detected

:::
by

::::
only190

::::::::
snowmelt

::::
(blue

::::::
points

::
in

:::
Fig.

:::
3). It can be seen in Fig. 5 that LTEs ,

:::
for both entire events and UTL events , have stronger Imean

and Imax, as well as larger Q compared to NLTEs. Besides, snowmelt events have much higher Q but lower Imean and Imax

than rainfall events, indicating that snowmelt events are in general prolonged and not as intense as rainfall events. Overall, the

HAR v2 combined with landslide inventories from GLC and GFLD can distinguish LTEs from NLTEs well and has potential

in landslide threshold modeling.195

We calibrated thresholds of Imean, Imax, andQ using rainfall, snowmelt, and rainfall+snowmelt as predictors. The procedure

was conducted for both entire events and UTL events. Predictive performance is better when using the entire period (Table 1)

than just using the UTL period (Table ??
:
1), which was also concluded by Leonarduzzi et al. (2017).

::::
One

::
of

:::
the

:::::::
reasons

::
is

:::
that

:::
by

:::::::::
considering

::
a
:::::
longer

::::::
period,

::::::
Imean,

::::::
Imax,

:::
and

:::::::::
especially

::
Q

::
of

::::
LTE

:
s
::::::::
generally

:::::::
increase,

:::::::
making

:
it
:::::
easier

::
to
::::::::::
distinguish

:::
LTE

:
s
:::::
from

:::::
NLTE

::
s. This can also be seen from the CDF

:::::
eCDFs in Fig. 5. In CDF

:::
the

:::::
eCDF space, the threshold defined by200

maximizing PPS
::::
PSS is the point on the x-axis, where the

::::::
vertical distance between the LTE curve and the NLTE curve

is the largest. CDF
:::::
eCDFs of UTL events are closer to the NLTE curve than CDF

::::
eCDFs of the entire events. Therefore,

the maximum PSSs of UTL events are smaller (Fig. 5).Here, only results for entire events are presented since using
:::
The

:::::
better

::::::::::
performance

:::
by

::::::::::
considering

:
the entire period leads to better predictive performance and was mostly used in previous

studies (Leonarduzzi et al., 2017)
::::
could

::::
also

:::::::
indicate

::::
that

::::
there

::::::
exists

::::
some

::::::::::
uncertainty

::
of

::::::::
landslide

::::::
timing

:::::::
reported

:::
in

:::::
GLC205

:::
and

::::::
GFLD. It can be seen from Table 1 that rainfall+snowmelt has the best predictive performance . For rainfall+snowmelt

entire event, the best performance is achieved by Imax with a threshold value of 12.8mmd−1, and by Q with a threshold

value of 17.2mm. The PPS and d for
:::
for

::::
both

:::::
entire

:::::
events

:::
and

:::::
UTL

::::::
events.

:::
The

:::::::::
predictive

::::::::::
performance

:::::::::
indicating

::
by

::
d,
::::
PSS

:
,

:::
and

:::::
AUC

::
of

:::
the

::::
three

:::::
event

::::::::
properties

:::::::
(Imean,

:
Imax,

:
and Qare very

:
)
::
are

:::::
quite similar, but these two predictors have different

advantages. Using
::::
using

:
Imax as

:
a predictor leads to a lower FAR but also a lower HR when compared with Q

:::
and

:::::
Imean.210

K-fold cross-validation results
::
for

:::::
entire

:::::
events

::::
and

::::
UTL

::::::
events are presented in Table ??

::
A2

::::
and

:::::
Table

:::
A3. Cross-validation

reduces the sample size and makes the results more sensitive to outliers. The validation results are in line with the conclusions

drawn by calibration: (1) among all the predictors, rainfall+snowmelt has the best predictive performance
::
for

::::
both

:::::
entire

::::::
events

:::
and

::::
UTL

::::::
events; (2) for rainfall+snowmelt entire event, Imax and Q are more suitable than Imean::::::::

predictive
:::::::::::
performance

::
is

:::::
better

:::::
when

:::::
using

:::
the

:::::
entire

::::::
period

::::
than

:::
just

:::::
using

::::
the

::::
UTL

::::::
period; (3) calibrated thresholds for

::::::::
predictive

::::::::::
performance

:::
of215

::::::
Imean, Imax:

,
:
and Q are robust since they fall into the uncertainty range of the thresholds obtained by cross-validation

:::
for

:::::::::::::::
rainfall+snowmelt

:::
are

::::
quite

:::::::
similar,

:::
but

::::
Imax:::

has
::
a
:::::
lower

::::
FAR

:::
and

::::
also

::
a

:::::
lower

:::
HR.
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Figure 5. Cumulative distribution function (CDF)
:::::
eCDF curves of mean intensity (Imean), maximum intensity (Imax), and accumulated

amount (Q ) of non-landslide triggering event (NLTE)
:::::
NLTE, landslide-triggering entire event (LTE entire), and landslide-triggering up-to-

landslide event (LTE UTL) for rainfall, snowmelt, and rainfall+snowmelt during the period of 2004–2018. Grey dashed lines represent the

thresholds
::
for

::::
UTL

::::
event

:
defined in Table 1.

3.3 Mean annual exceedance

Using the thresholds defined in section 3.2 for rainfall+snowmelt entire event, Fig.
::::
UTL

::::::
events,

::::::
Figure

:
6 presents the annual

number of rainfall+snowmelt events that exceed the thresholds of
::::::::::::::::::
Imean =5.05mmd−1,

:
Imax =12.8mmd−1

::::::::::::
14.05mmd−1220

:
, and Q=17.2mm

::::::::
15.65mm (hereafter referred to as

:::::::
Imean,th,

:
Imax,th:

, and Qth ).
::::
Here,

::::
only

:::
the

::::::
results

:::
for

::::
UTL

::::::
events

:::
are

::::::::
presented

::::
since

:::
the

:::::::
defined

::::::::
thresholds

::
of

:::::
entire

::::::
events

:::
and

:::::
UTL

:::::
events

:::
for

:::::::::::::::
rainfall+snowmelt

:::
are

::::
very

::::::
similar

:::
and

:::::
only

::::::
deviate

:::::
within

:::::
10%,

:::::::
although

::::
their

:::::::::
predictive

::::::::::
performance

::
is
::::::::
different

:::::
(Table

:::
1).
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Table 1. Calibrated thresholds of Imean (mmd−1), Imax (mmd−1), and Q (mm) for entire events
:::
and

::::
UTL

:::::
events of rainfall, snowmelt,

and the sum of rainfall and snowmelt (rainfall+snowmelt), and corresponding performance statistics.

predictor property threshold HR FAR d PSS AUC

rainfall Imean 3.60 0.62 0.35 0.51 0.27 0.62

:::::
(entire

:::::
event) Imax 11.20 0.49 0.18 0.54 0.32 0.65

Q 16.95 0.52 0.18 0.52 0.34 0.67

snowmelt Imean 7.05 0.23 0.06 0.77 0.17 0.31

:::::
(entire

:::::
event) Imax 13.45 0.24 0.04 0.76 0.20 0.32

Q 119.60 0.24 0.03 0.76 0.21 0.33

rainfall+snowmelt Imean 4.95 0.71 0.25 0.38 0.46 0.78

:::::
(entire

:::::
event) Imax 12.80 0.67 0.15 0.37 0.51 0.81

Q 17.15 0.74 0.23 0.35 0.50 0.81

:::::
rainfall

:::::
Imean :::

3.05
:::
0.60

:::
0.40

:::
0.57

:::
0.20

::::
0.59

::::
(UTL

:::::
event)

::::
Imax ::::

12.40
:::
0.34

:::
0.16

:::
0.67

:::
0.19

::::
0.58

:
Q

:::
9.25

:::
0.52

:::
0.31

:::
0.57

:::
0.21

::::
0.59

:::::::
snowmelt

:::::
Imean :::

7.40
:::
0.22

:::
0.05

:::
0.78

:::
0.17

::::
0.31

::::
(UTL

:::::
event)

::::
Imax ::::

12.80
:::
0.24

:::
0.05

:::
0.76

:::
0.19

::::
0.32

:
Q

::::
98.30

:::
0.24

:::
0.04

:::
0.76

:::
0.20

::::
0.32

:::::::::::::
rainfall+snowmelt

:::::
Imean :::

5.05
:::
0.68

:::
0.25

:::
0.41

:::
0.43

::::
0.76

::::
(UTL

:::::
event)

::::
Imax ::::

14.05
:::
0.59

:::
0.14

:::
0.44

:::
0.45

::::
0.77

:
Q

::::
15.65

:::
0.66

:::
0.25

:::
0.43

:::
0.40

::::
0.76

Locations with higher mean annual exceedance over Imax,th indicate a higher chance of having rainfall+snowmelt event

:::::
events

:
with high intensity, such as the Fergana Range and the northeastern Tajik Basin. These two regions have a high contri-225

bution of rainfall to annual rainfall+snowmelt (Fig. 3), and rainfall events tend to have stronger intensity than snowmelt events

(Fig. 5). Locations with high mean annual exceedance over Qth but low exceedance over Imax,th, including the Pamir Plateau

and the Tien Shan, indicate that prolonged events instead of short and intense events are more frequent. The mean annual

exceedance map
::::
maps

:
of Qth corresponds

:::
and

::::::::
Imean,th :::::::::

correspond
:
better with the landslide occurrences since it takes

::::
they

:::::::::
encompass both extreme events and prolonged eventsinto account. Landslide events reported from the GLC and the GFLD230

are generally located in areas with high exceedance over Qth ::
and

::::::::
Imean,th. However, the mean annual exceedance map

::::
maps

of Qth also has
:::
and

::::::::
Imean,th::::

also
::::
have

:
more areas with false alarms, i.e., areas with high mean annual exceedance but no

landslide occurrence. In remote areas, such as the Tien Shan, high false alarm
:::::
alarms could be due to the fact that landslides

extracted from median
:::::
media reports are generally under-reported in remote regions. This is discussed in details

:::::
detail in sec-

tion 4.1. In contrast, the mean annual exceedance map of Imax,th misses more landslide events but has less false alarm area235

when compared to the exceedance map
::::
maps

:
of Qth:::

and
::::::::
Imean,th.
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Figure 6. Mean annual exceedance (number of events per year) of (a)
:::::::::::::::::
Imean =5.05mmd−1

::
(b)

:
Imax =12.8mmd−1

:::::::::::
14.05mmd−1

:
;
:
and (b

:
c) Q=17.2mm

::::::::
15.65mm for the sum of rainfall and

:::::
rainfll+snowmelt

:::
UTL

::::::
events. Black points

::::
circles: landslide

events from Global Landslide Catalog (GLC)
:::::
GLC and Global Fatal Landslide Database (GFLD)

::::
GFLD. Topographic shading is based on

Digital Elevation Model
::::
DEM data from Shuttle Radar Topographic Mission

:::::
SRTM.
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4 Discussion

4.1 Sources of uncertainties
::::::::::
uncertainty

:::
The

::::::::::
uncertainty

::
of

:::
the

::::::
results

:::::::
depends

::
on

:::
the

::::::::
accuracy

::
of

:::
the

::::
data

::::
and

:::
the

::::::
method

:::::::
applied

::
to

:::::::
analyze

:::
the

::::
data.

::::
Our

::::::::
approach

:
is
::::::
purely

::::::::::::::
empirical-based,

::::::
which

:::::
allows

:::
us

::
to

:::::::::
investigate

:::::::
broader

:::::
areas

:::::::
without

:::::::
knowing

:::
the

:::::::
detailed

:::::::
surface

::::::::::::
characteristics240

::
of

::::
each

::::::::
landslide

:::::
event.

::::::::
However,

:::::
slope

::::::::
instability

:::::
often

::::::
results

::::
from

:::::::::
numerous

::::::
factors.

::::
The

:::::::::
interaction

:::::::
between

:::::::::::
non-climatic

:::::::::::
characteristics

::::
and

::::::::::
atmospheric

:::::::
triggers

::
is

::::
also

::::::::::
responsible

::
for

::::
the

:::::::
initiation

:::
of

::::::::
landslides

::::::::::::::::::::::::::::
(Berti et al., 2012; Jia et al., 2020)

:
,

:::::
which

:::
can

:::
not

::
be

::::::::
captured

::
by

::::::::
empirical

::::::::
methods.

::::
This

::
is

:::
the

:::::
reason

::::
why

:::
not

:::
all

:::::::::::::::
rainfall+snowmelt

:::::
events

::::
that

::::::
exceed

::::::::
Imean,th,

:::::::
Imax,th,

:::
and

::::
Qth ::::::::

triggered
::::::::
landslides

::::
(Fig.

:::
6),

::::
even

::::::
though

:::
the

:::::::
number

::
of

::::::::
landslides

::
is
::::::::::::::
underestimated.

:::::::::
Uncertainty

:::
in

::::::::
landslide

:::::::::
inventories

::::
and

::::::::::
atmospheric

::::
data

::
is
::
a
::::
very

::::::::
common

::::
issue

:::
in

::::::
studies

:::::::::::
investigating

:::::::::
thresholds

:::
for245

:::::::
landslide

:::::::::
triggering.

:::::
These

::::
two

::::::
sources

::
of

:::::::::
uncertainty

::::
have

:::::
been

::::::::::::::
comprehensively

::::::::
discussed

:::
and

::::::::
quantified

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Nikolopoulos et al., 2014, 2015; Marra et al., 2016, 2017; Rossi et al., 2017; Peres et al., 2018; Marra, 2019)

:
.
:::::::::
Uncertainty

:::
in

::::
these

::::
two

::::
data

::::::
sources

::::::::
generally

::::::
results

::
in

:::
an

:::::::::::::
underestimation

::
of

::::::
rainfall

::::::::::
thresholds,

::::::
leading

::
to

::
a
:::::
higher

:::::
false

:::::
alarm

:::
rate

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Nikolopoulos et al., 2014, 2015; Marra et al., 2016; Peres et al., 2018)

:
.
::
In

:::
the

::::::::
following

::::::::::
subsections,

:::
we

::::::
discuss

:::
the

:::::::::
uncertainty

::::::::
stemming

:::::
from

:::
the

:::::::
landslide

::::::::::
inventories

:::::
(GLC

:::
and

::::::
GFLD

:
)
:::
and

:::
the

::::::
rainfall

::::
and

::::::::
snowmelt

::
in

:::
the

:::::::
HAR v2

:
.

4.1.1
::::::::::
Uncertainty

::
of

:::::::::
landslide

:::::::::
inventories250

Uncertainties of the GLC and GFLD are comprehensively discussed in Kirschbaum et al. (2010), Kirschbaum et al. (2015),

and Froude and Petley (2018). The first major problem of these two data sets is that they underestimate the total number of

landslides. This is because these two data sets’ primary sources are media reports, which are biased towards events with human

casualties (Carrara et al., 2003). The second issue is that the spatial distribution of landslides is biased towards populated

areas. In our study area, landslide events also tend to cluster in areas with high population density, e.g., the eastern rim of the255

Fergana Basin and the Tajik Basin. Landslide number over remote areas is much likely to be under-reported. Last but not least
::
In

:::::::
addition, there is large uncertainty in landslide location because most media reports do not contain the exact location where

landslides
:::
were

:
initiated, but rather just the name of the village, road, or city affected by landslides. An example in our case is

the landslide event in the Issyk-Kul Basin (Fig. 1), the location of which is in a flat area, and the location accuracy provided by

the GLC is "exact". This landslide event’s initial zone must be different from the reported location and somewhere nearby with260

slopes. We also failed to determine the climatic trigger of this landslide event using the HAR v2.
:::
Last

:::
but

:::
not

:::::
least,

::::::::
landslide

:::::
timing

::::
was

::::
also

:::::::
reported

::::
with

::
a
::::::
certain

::::::
degree

::
of

::::::::::
uncertainty.

::::::::
Although

::
it

::
is

::::
more

:::::::
typical

:::
that

::
a

:::::::
landslide

::::
was

:::::::
reported

:::::
after

::
its

:::::
actual

::::::::::
occurrence

:::::::
(positive

::::::
errors),

::::::::
negative

:::::
errors

:::
are

::::
also

:::::::
possible

:::::::::
depending

::
on

:::
the

::::::::::::
interpretation

::
of

::::::::
historical

::::::::
landslide

:::::::::
information

:::::
from

::
an

:::::::
analyst

::::::::::::::::
(Peres et al., 2018).

::::
Our

::::::
results

::::
show

::::
that

:::::
using

:::
the

:::::
entire

:::::::
weather

:::::
event

:::::
period

:::::
leads

::
to

::
a

:::::
better

::::::::
predictive

::::::::::
performance

::::
than

::::
just

:::::
using

::
the

:::::
UTL

:::::
period

::::::
(Table

:::
1).

::::
This

:::::
could

::
be

::
an

:::::::::
indication

::
of

:::::::
negative

:::::
errors

::
in

:::
the

::::::::
landslide265

::::::
timing.

Despite these known limitations, the GLC and the GFLD still provide the lower boundary of landslide number and are proven

to be valuable in global and regional landslide studies (Kirschbaum and Stanley, 2018; Jia et al., 2020; Stanley et al., 2020).

Although the landslide number is known to be incomplete, our results show that they can still present the seasonal distribution
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of landslide occurrence reasonably well (Fig. 4). This was also concluded by Kirschbaum et al. (2015), who stated that the270

reason for
::
the

:
unbiased seasonal distribution of landslide occurrence is that the compilation method depends on media alerts,

which is consistent throughout the year. Additionally, even though location uncertainty exists, we could determine atmospheric

triggers of 91% of landslide events (87 out of 96). The reason could be that landslide-triggering rainfall and snowmelt events

generally have a large spatial extend (Leonarduzzi et al., 2017).

Another source of uncertainty comes from the rainfall and snowmelt data simulated in the HAR v2. Compared to275

4.1.2
::::::::::
Uncertainty

::
of

:::::::::::
atmospheric

:::::
data

::::::::
Extracting

:::::::
weather

:::::
data

:::
that

::::
can

::::::::
represent

:::
the

:::::
exact

:::::::
weather

:::::::::
condition

::
at

::::::::
landslide

::::
sites

:::
is

::::::
always

::
a

::::::::
challenge

::
in
:::::::

studies

::::::::::
investigating

::::::
rainfall

:::::::::
thresholds

:::
for

:::::::
landslide

:::::::::
triggering.

::::
Rain

::::::
gauges

:::
are

:::
the

::::
main

::::::
source

::
of

::::::
rainfall

::::::::::
information

::::::::::::::::
(Segoni et al., 2018)

:
,
:::
and

::
it
::
is
::::
very

:::::::
seldom

::::
that

::::::::
landslide

:::::
initial

::::::::
locations

:::
are

:::::::
gauged.

:::::
Due

::
to

:::
the

::::::
highly

::::::::::::
heterogeneous

::::::
spatial

::::::::::
distribution

:::
of

:::::::::::
precipitation,

::::::::
especially

:::::
over

:::::::
complex

::::::::
terrains,

::::
there

::::::
exists

:::::
great

:::::::::
uncertainty

::::::
when

::::::
rainfall

::
is
::::

not
:::::::
directly

::::::::
measured

:::::
from280

:::::::
landslide

::::::
initial

::::::
points.

:::::::::::
Additionally,

:::::::::::::::::
Marra et al. (2016)

::::
found

::::
that

:::
the

:::::
initial

::::::
points

::
of

:::::::
shallow

:::::::::
landslides

:::
and

::::::
debris

:::::
flows

:::::::
generally

::::::::::
correspond

::
to

:::
the

:::::
local

::::
peak

::
of

:::::::
rainfall.

:::::
Rain

:::::
depth

::::::::
decreases

::::
with

:::
the

::::::::
distance,

:::::::
causing

::
an

::::::::::::::
underestimation

:::::
when

::::::
rainfall

::
is

::::::::
measured

:::::
away

:::::
from

:::
the

::::::::
landslide

:::::
initial

:::::
point.

::::::::::::
Traditionally,

:::
the

::::::
nearest

::::::
gauge

::
is

::::
used

:::
to

::::::::
represent

:::
the

:::::::
weather

::::::::
condition

::
at

:::
the

::::::::
landslide

::::
site,

:::::
which

::::::::::
sometimes

:::
can

:::
be

:::::::::
kilometers

:::::
away.

:::::::::::::::::::::::
Nikolopoulos et al. (2015)

::::::::
examined

:::::
other

:::::
more

::::::::::
complicated

::::::::::
interpolation

::::::::
methods,

::::
such

::
as

:::::::
inverse

:::::::
distance

::::::::
weighting

:::
and

::::::::
ordinary

::::::
kriging,

::::
and

::::::::
concluded

::::
that

::::
these

::::::::
methods285

:::
did

:::
not

::::
bring

::::
any

::::::::
particular

:::::
added

:::::
value

::
to

:::
the

:::::::
simplest

::::::
nearest

::::::::
neighbor

:::::::
method.

:::::
Using

:::::::
gridded

:::
data

::::
can

:::::
avoid

:::
this

:::::::::
allocation

:::::::
problem

:::::::::::::::::::::
(Leonarduzzi et al., 2017)

:
.
:::
But

:::::::::::
uncertainties

::::
still

::::
exist

:::::
since

:::::::
gridded

:::
data

::::
only

::::::::
represent

:::
the

:::::::::
grid-mean

:::::
value

:::
but

:::
not

:::
the

:::::
"true"

:::::::
weather

::::::::
condition

::
at

::::::::
landslide

::::
sites.

:::::::::::
Nevertheless,

::
it
::
is

:::
still

::::::::
essential

:::
that

:::
the

:::::::
gridded

::::
data

::::
used

::
in

::::
our

:::::
study

:::
can

:::::::::
accurately

::::::::
represent

:::
the

:::::::::
grid-mean

:::::
value.

::::
The

:::::
WRF

:::::
model

::::::::::::
configurations

:::
of

:::
the

:::::::
HAR v2,

::::
such

::
as

:::
the

::::::
forcing

:::::::
strategy,

:::::::
physical

::::::::::::::
parameterization

::::::::
schemes,

::::
were

::::::::
carefully

::::::
chosen

:
to
::::::
ensure

::
its

::::::
quality

::::::::::::::::
(Wang et al., 2021)290

:
.
::::::
Several

::::::
studies

::::::::::::::::::::::::::::::::
(Pritchard et al., 2019; Li et al., 2020)

::::::
indicate

:::
the

::::
high

::::::::
accuracy

:::
and

:::::::
quality

::
of

:
the old version of the High

Asia Refined Analysis (HAR) (Maussion et al., 2014), HAR v2 can simulate precipitation over
:
.
::::::::::::::::
Wang et al. (2021)

::::::::
compared

::
the

:::::::::::
performance

:::
of

:::
the

:::
two

::::::::
versions

::
of

:::
the

::::::
HAR

:::::
against

::::::
in-situ

:::::::::::
observations

::::
from

:::
57

:::::::
GSOD

::::::
stations

::::
over

:::
the

:
High Moun-

tain Asia as accurately as the old version. Simulation of
::
in

:::::
terms

::
of

:::::
daily

:::::::::::
precipitation

:::
and

:
air temperature at 2mis better

than
:
.
::
It

::::
was

:::::::::
concluded

:::
that

:::::::::
compared

::
to

:
the old versiondue to the snow depth correction approach (Wang et al., 2021).

:
,295

:::::::
HAR v2

::::::::
generally

::::::::
produces

::::::
slightly

::::::
higher

:::::::::::
precipitation

:::::::
amounts

:::::
with

:
a
:::::

mean
::::

bias
:::

of
:::::::::::
0.36mmd−1

:
.
:::::::::::
Furthermore,

:
Hamm

et al. (2020) compared the HAR v2 with other gridded precipitation data sets
::
in

:::::::
different

::::::
spatial

:::::::::
resolutions, including reanal-

ysis data and satellite-based precipitation retrieval,
::::
over

::
a
::::::
rugged

::::::
terrain

::
of

:::
the

::::::
central

::::::::
Himalaya

:::
and

:::
the

:::::::::::
southwestern

:::::::
Tibetan

::::::
Plateau. It was concluded that

:::
the HAR v2 is the only product that can resolve orographic precipitation, which is a funda-

mental process over complex terrain. Furthermore, the HAR v2 can capture more extreme precipitation events than coarser300

products
:::::::::
Simulation

::
of

:::
air

::::::::::
temperature

::
at

::::
2m

::
in

:::
the

::::::::
HAR v2

:
is

:::::
better

::::
than

:::
the

::::
old

::::::
version

::::
due

::
to

:::
the

:::::
snow

:::::
depth

:::::::::
correction

:::::::
approach

::::::::::::::::
(Wang et al., 2021). Snowmelt in the HAR v2 is resolved by the Noah LSM, which only considers a single layer

of snowpack (Koren et al., 1999). Several studies found uncertainty of the Noah LSM in reproducing the snow-related pro-
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cess, e.g., the overestimation of snow albedo (e.g., Chen et al., 2014; Minder et al., 2016; Tomasi et al., 2017). Nevertheless,

the snow-related process is the major weakness of LSMs and needs further improvement in the future (Chen et al., 2014).305

Despite the uncertainty in the HAR v2, our results show that it can distinguish LTE s from NLTEs very well, 5), suggesting

that the HAR v2 and dynamical downscaling products, in general, are suitable for extracting weather conditions corresponding

to landslides.

Our approach is purely empirical-based, which allows us to investigate broader areas without knowing the detailed surface

characteristics of each landslide event. However, slope instability often results from numerous factors. The interaction between310

non-climatic characteristics and atmospheric triggers is also responsible for the initiation of landslides (Berti et al., 2012; Jia et al., 2020)

, which can not be captured by empirical methods. This is the reason why not all rainfall+snowmelt events that exceed Imax,th

and Qth triggered landslides (Fig. 6), even though the number of landslides is underestimated.

4.1.3
::::::
Impact

::
of

::::::
spatial

:::::::::
resolution

:::
of

:::::::::::
atmospheric

::::
data

:::::::
Previous

::::::
studies

::::
have

::::::
shown

:::
that

:::
the

::::::
spatial

:::::::::
resolutions

::
of

::::::
gridded

:::::::
rainfall

:::
data

::::
have

:::::::
impacts

:::
on

:::::::::
identifying

:::::::
landslide

:::::::::
triggering315

::::::::
thresholds

::::::::::::::::::::::::::::::::::::::
(Marra et al., 2017; Nikolopoulos et al., 2017).

::
To

:::::::::
investigate

:::
the

::::::::
influence

::
of

::::::
spatial

::::::::
resolution

::
of

:::::::::::::::
rainfall+snowmelt

:::
data

:::
on

:::
the

::::
event

:::::::::
properties

::
of

:::::::
landslide

::::::::
triggering

:::::::
weather

::::::
events

:::
and

:::
the

::::::::
triggering

:::::::::
thresholds,

:::
we

::::::::
resampled

:::
the

:::::::::::::::
rainfall+snowmelt

:::
data

:::::
from

:::::::
HAR v2

::
to

:::::
lower

:::::::::
resolutions

::::::
(20 km

:
,
:::::
30 km

:
,
:::
and

::::::
40 km

:
).

:::::
Then,

:::
we

:::::::
repeated

:::
the

::::::::
procedure

::::::::
described

::
in

::::::
section

:::::
2.2.2

::
to

::::::::
determine

::::
the

:::::
event

::::::::
properties

:::
of

::::
LTE

::::
UTL

::::::
events

::::
and

::::
their

:::::::::
associated

::::::::::
thresholds.

::::
The

::::::
results

:::
are

::::::::
presented

:::
in

:::
Fig.

:::
7.

:::::
There

:::
are

::::
nine

:::
"not

::::::::
detected"

::::::
events

:::::
when

:::::
using

::
the

:::::::
original

::::::::
HAR v2

:::::
10 km

::::
data

::::
(Fig.

:::
3),

:::::
which

::::::
means

:::
the

:::::::::::::::
rainfall+snowmelt320

:::::::
amounts

::
at

:::::
these

:::::::
landslide

::::
grid

::::::
points

:::
are

::::
near

::::
zero

::::::::::::
(≤0.2mmd−1

:
)
::
at

:::
the

::::
day

:::
and

::::
one

:::
day

::::::
before

::::::::
landslide

::::::::::
occurrence.

:::
By

:::::::
lowering

:::
the

::::::
spatial

:::::::::
resolution,

:::::
more

::::::
events

:::
can

:::
be

::::::::
detected.

::::
This

::::::
implies

:::
the

::::::::::
uncertainty

::
in

:::
the

::::::::
reported

::::::::
landslide

:::::::
location

::::
since

:::::::::
resampling

:::
of

:::::::::::::::
rainfall+snowmelt

:::::::::::
encompasses

:::::::::::::::
rainfall+snowmelt

::::::::::
information

::::
from

::::::
nearby

:::
grid

::::::
points.

::
In

:::::::
general,

::::::
Imean

:::
and

:::::
Imax :::::::

decrease
::::
with

:::
the

:::::::
increase

::
of

::::
grid

::::
size,

::::::
which

:
is
::
in
::::
line

::::
with

:::
the

:::::::
findings

::
of

:::::::::::::::::
Hamm et al. (2020)

:::
that

:::::
higher

::::::::
resolved

:::::::
products

::::::::
generally

::::::
capture

:::::
more

:::::::
extreme

:::::
events

::::
than

::::::
coarser

::::::::
products.

::::::
Imean :::

and
:::::
Imax ::::::::

thresholds
:::::::
defined

::
by

::::::
coarser

::::::::
products325

::
are

::::
also

::::::::
generally

::::::
lower.

:::
The

::::::
impact

:::
of

:::
grid

::::
size

:::
on

::
Q

::
is

:::
the

::::::::
opposite:

:::::
larger

::::
grid

:::
size

:::::
leads

::
to

::::::
higher

::
Q

:::
and

::::::::
threshold

::::::
value.

::::
This

:
is
:::::::
closely

::::::::
associated

::::
with

:::
the

:::::::
increase

:::
of

::::
event

::::::::
duration

::::
with

:::
the

:::::::
increase

::
of

::::
grid

:::::::
spacing,

:::::::
resulting

:::::
from

:::
the

:::
fact

::::
that

:::
the

:::::::::
resampling

::::::
process

::::
can

:::::
blend

::::::
several

::::::::
localized

:::::
events

::::::::::
temporally

:::::::
together.

::::::::
However,

::::::::
lowering

:::
the

::::::
spatial

::::::::
resolution

:::::
does

:::
not

:::
lead

::
to
::::::
worse

::::::::
predictive

:::::::::::
performance.

:::::
This,

::
on

:::
the

::::
one

::::
hand,

:::::::
implies

:::::
again

:::
that

:::::
lower

:::::::::
resolution

:::
can

:::::
partly

::::::::::
compensate

:::
for

:::
the

:::::::::
uncertainty

::
in

::::::::
landslide

::::::::
locations.

:::
On

:::
the

:::::
other

:::::
hand,

::
it

:::::::
indicates

::::
that

::::::::
although

:::::::
landslide

::::::::
initiation

:::::
itself

::
is

:
a
::::::
highly

::::::::
localized330

:::::::::::
phenomenon,

:::
the

:::::::
weather

::::::::
processes

::::
that

::::::
ensure

::::::::
sufficient

:::::
water

:::::
input

::::
into

:::
the

::::::
system

::::
and

::::::
trigger

:::::::::
landslides

:::
can

:::
be

::::::
clearly

::::::::
identified

:
at
:::

the
::::::::::
meso-scale

:::::::::::::::::
(Prenner et al., 2018)

:
.

:::::
Based

::
on

:::
the

::::::
above

:::::::
analysis,

::
it

:::
can

::
be

::::::::
expected

::::
that

:
a
::::::::::::::::::
convection-permitting

:::::
scale

:::::::
(<10 km

:
)
::::::::::
downscaling

:::::::::
simulation

::::::
would

::::::
provide

::
a
:::::
more

:::::::
realistic

::::::::::::
representation

:::
of

:::::::
weather

::::::
events

::::
that

::::::::
initialized

::::::::::
landslides.

:::::::::
Compared

::
to
:::::

such
::
a

:::::::::::::
high-resolution

:::::::::
simulation,

:::
the

::::::::
HAR v2

::::::
10 km

:::
data

::::::
would

:::::::::::
underestimate

::::
the

:::::::
intensity

::::
and

::::::::::
overestimate

::::
the

:::::::
duration

::
of

::::::::
landslide

:::::::::
triggering335

:::::::::::::::
rainfall+snowmelt

::::::
events.

::::::::
Moreover,

:::
the

::::::
10 km

::::::::
resolution

::
of

:::
the

::::::::
HAR v2

:
is

:::
not

::::
able

::
to

::::::::
explicitly

::::::
resolve

:::::::::
convection

:::::::::
processes.

::::::::::::::::::
Convection-permitting

:::::
scale

:::::::::
simulations

:::::
show

:::::::::::
improvement

::::
over

::::::::::
simulations

::::::::
applying

:::::::
cumulus

::::::::::::::
parameterization

::::::::
schemes

::
in
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::::::
several

:::::::
aspects,

::::
such

::
as

:::::
more

:::::::
accurate

:::::::::::
reproduction

::
of

::::
the

:::::
timing

:::
of

:::::::::::
precipitation

:::::
peaks

::::::::::::::::::::::::::::
(Ou et al., 2020; Zhou et al., 2021)

:
.

::::::::
However,

:
a
::::
finer

:::::::::
resolution

:::
has

:
a
:::::
lower

::::::::
tolerance

::
to

:::
the

:::::::::
uncertainty

::
in

:::
the

::::::::
landslide

:::::::
location.

::::
The

:::::::
potential

:::
of

:
a
:::::::::::::
kilometer-scale

::::::::
simulation

::::::
cannot

:::
be

::::::
realized

::
if
:::
the

::::::::
landslide

:::::::
location

:::::::::
uncertainty

::
is

:::::
larger

::::
than

:::
the

::::
gird

::::
size.

:::::
Thus,

::
for

::::
our

::::
study

::::::
region,

::::::
future340

::::::
studies

:::::
should

:::
not

::::
only

:::::
focus

:::
on

::::::::
acquiring

::::::::::::
high-resolution

::::
and

::::::::::
high-quality

::::::::::
atmospheric

:::::
data,

:::
but

:::
also

:::
on

:::::::::
developing

::::::::
landslide

:::::::::
inventories

::::
with

:::::
higher

:::::::
location

::::::::
accuracy.
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Figure 7.
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Boxplots demonstrating the impact of spatial resolution of atmospheric data on Imean, Imax, Q, and duration of LTE UTL events, as well as the associated landslide triggering thresholds (blue stars). The yellow line denotes the median and the green triangle indicates the mean. Outliers are not shown for a better intercomparison. n denotes the number of landslide events detected by rainfall+snowmelt.

4.2 Climatic disposition

In probabilistic risk analysis (e.g., Scherer et al., 2013), the risk that a system experiences an adverse effect caused by a

hazardous process is given as the product of hazard and vulnerability. Vulnerability itself depends on exposure and sensitivity.345

Adverse effects only occur when the elements at risk are exposed to a hazardous event. Thus, risk is a function of hazard,
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exposure
:
, and sensitivity. Applying this risk concept to our case,

::
the adverse effect is landslide triggered by rainfall+snowmelt,

and
::
the

:
hazardous process is rainfall+snowmelt events that exceed Imax,th and Qth:::

the
::::::
defined

:::::::::
thresholds. The risk that a

location experiences landslide triggered by rainfall+snowmelt depends on two factors: (a) how frequent a location is exposed

to rainfall+snowmelt events that exceed
:::::::
Imean,th,

:
Imax,th:

, and Qth, and (b) how sensitive slope instability can be triggered350

at this location. Climatic disposition represented by mean annual exceedance is actually factor (a) and comprises both aspects

of hazard and exposure. Sensitivity is non-climatic landslide susceptibility that is only controlled by terrestrial characteristics.

Thus, to assess landslide susceptibility, both climatic and non-climatic aspects need to be included.

66E 68E 70E 72E 74E 76E 78E
36N

38N

40N

42N

null

very low
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Figure 8. Non-climatic landslide susceptibility map computed using slope, geology, fault zones, road networks, and forest loss developed

by Stanley and Kirschbaum (2017). Black circles: landslide events from GLC and GFLD. Topographic shading is based on DEM data from

SRTM.

The majority of landslide susceptibility studies only considered non-climatic factors. We compared our mean annul ex-

ceedance maps with a non-climatic landslide susceptibility map developed by Stanley and Kirschbaum (2017) at a resolution355

of approximately 1 km (Fig. 8). This non-climatic susceptibility map was generated using a heuristic fuzzy approach, in which

slope, faults, geology, forest loss, and road networks were taken into account. This map is chosen because it covers the whole

of Kyrgyzstan and Tajikistan. Even though the non-climatic susceptibility map and our mean annual exceedance maps were

generated by totally different methods, they share some similarities. They both show higher values over areas with steep slopes

and lower values in intermontane basins and valleys. This is because topographic relief is considered the best first-order rain-360

fall predictor (Bookhagen and Strecker, 2008). The non-climatic susceptibility map includes information on topography, and

topography is explicitly resolved during dynamical downscaling. Mean annual exceedance maps not only display these local-

scale features caused by topography but also comprise general atmospheric circulation processes. Discrepancies between the

landslide susceptibility map and our exceedance maps, e.g., over the Pamir Plateau and the southwestern Tajik Basin, suggest

that for landslide susceptibility mapping, both climatic and non-climatic aspects need to be considered.365
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Figure 9. Annual sum of rainfall and snowmelt averaged over 2014-2018 from HAR v2. Black circles: landslide events from GLC and GFLD

. Topographic shading is based on Digital Elevation Model data from SRTM.

In addition, some landslide susceptibility studies took climate into account, but they often simply applied averaged annual

precipitation (e.g., Shahabi et al., 2014; Havenith et al., 2015b; Wang et al., 2015). Averaged annual precipitation only shows

the climatological conditions in general. Mean annual exceedance is derived from weather-scale triggering conditions, and

therefore, it also contains information on extreme processes. In our case, for instance, the mean annual rainfall+snowmelt map

does not correspond well with landslide occurrences, especially in the Tajik Basin and the northeastern rim of the Fergana370

Basin (Fig. 9). But these landslide events are captured better in both mean annual exceedance maps (Fig. 6). This indicates the

added value of climatic disposition derived from triggering conditions.

4.3
:::::::::

Thresholds
:::
for

::::::::
different

::::::::
landslide

::::
size

:::::
GLC

::::::
provides

:::
six

::::::::::
categorized

::::::::
landslide

::::
sizes.

:::::::::
Landslide

:::::
events

::
in
::::::::::
Kyrgyzstan

:::
and

:::::::::
Tajikistan

:::
fall

:::
into

:::
the

:::::::::
following

:::::::::
categories:

::
(1)

::::::
small:

:::::
small

:::::::
landslide

::::::::
affecting

:::
one

::::
hill

::::
slope

:::
or

::::
small

:::::
area;

:::
(2)

:::::::
medium:

::::::::::
moderately

:::::
sized

:::::::
landslide

::::
that

:::::
could

::
be

:::::
either

::
a375

:::::
single

:::::
event

::
or

:::::::
multiple

::::::::
landslides

::::::
within

::
an

:::::
area,

:::
and

:::::::
involves

:
a
:::::
large

::::::
volume

::
of

::::::::::
material;(3)

:::::
large:

:::::
large

:::::::
landslide

:::
or

:::::
series

::
of

::::::::
landslides

:::
that

:::::
occur

::
in

::::
one

::::::
general

::::
area

:::
but

:::::
cover

:
a
::::
wide

:::::
area;

::
(4)

::::::::
unknown

:::::::::::::::::::::
(Kirschbaum et al., 2015)

:
.
::::::
GFLD

:::
does

:::
not

:::::::
contain

:::::::::
information

:::::
about

::::::::
landslide

::::
size.

:::::::::
Therefore,

:::
for

::::::::
landslide

:::::
events

:::::
from

:::::
GFLD

:
,
:::
we

:::
set

:::
the

:::::::
landslide

::::
size

::
as

::::::::::
“unknown”.

:::::
Table

::
2

:::::::
presents

:::
the

::::::::
calibrated

:::::::::
thresholds

:::
and

::::::::::::
corresponding

::::::::
statistical

::::::
scores

::
for

:::::
these

:::::::::
categories

::
for

:::::
UTL

::::::
events.

:::::
Using

:::::
entire

::::::
events

::::
leads

::
to

::::::
similar

::::::
results

::::
(not

::::::::
presented

:::::
here).380

::::::::::
Interestingly,

::::
the

:::::::::
thresholds

:::
for

::::::::
landslides

:::::
with

:::::
small

::::
sizes

:::
are

::::::
higher

::::
than

:::::
other

:::::::::
categories

::::
and

::::
have

:::
the

::::
best

:::::::::
predictive

:::::::::::
performance.

:::
All

::::
these

::
5
::::::::::
small-sized

:::::::
landslide

::::::
events

:::
are

::::::::
snowmelt

::::::::::
contributed

:::::
events

::::
that

:::::::
occurred

:::::
from

:::::
March

:::
to

::::
May.

::::
The

:::::
worse

::::::::
predictive

:::::::::::
performance

:::
for

:::::::::
landslides

::::
with

:::::
larger

:::::
sizes

:::::
could

:::::::
indicate

:::
that

:::
for

:::::
those

::::::
events,

:::
the

:::::::::
triggering

::::::::::
mechanism

:
is
:::::
much

:::::
more

:::::::::::
complicated

::::
than

::::::::::
small-sized

::::::
events,

:::
and

:::::
other

::::::::::::::
non-atmospheric

::::::
factors

::::::
might

:::
also

:::::
play

:
a
::::
role.

:::::::::
However,

:::
the
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Table 2.
:::::::
Calibrated

::::::::
thresholds

::
of
::::::
Imean ::::::::

(mmd−1),
:::::
Imax ::::::::

(mmd−1),
::::

and
::
Q

:::::
(mm)

::
for

::::
UTL

:::::
events

:::
of

::
the

::::
sum

::
of

::::::
rainfall

:::
and

::::::::
snowmelt

:::::::::::::::
(rainfall+snowmelt),

:::
and

:::::::::::
corresponding

:::::::::
performance

:::::::
statistics

::
for

:::::::
different

::::::::
categories

::
of

:::::::
landslide

::::
size.

:
n
:::::
refers

:
to
:::
the

::::::
number

::
of

::::::::
landslides

:
in
::::
each

:::::::
category..

:::::::
landslide

:::
size

::::::
property

: :::::::
threshold

::
HR

::::
FAR

:
d
: :::

PSS
: ::::

AUC

::::
small

:::::
Imean :::

9.85
: :::

1.00
: :::

0.07
: :::

0.07
: :::

0.93
: ::::

0.97

::::
(n=5)

: ::::
Imax: ::::

21.55
:::
1.00

: :::
0.07

: :::
0.07

: :::
0.93

: ::::
0.97

:
Q

:::::
124.25

:::
1.00

: :::
0.04

: :::
0.04

: :::
0.96

: ::::
0.98

::::::
medium

:::::
Imean :::

4.80
: :::

0.63
: :::

0.25
: :::

0.44
: :::

0.39
: ::::

0.71

:::::
(n=41)

::::
Imax: ::::

14.05
:::
0.49

: :::
0.12

: :::
0.53

: :::
0.37

: ::::
0.73

:
Q

:::
9.65

: :::
0.73

: :::
0.35

: :::
0.44

: :::
0.38

: ::::
0.72

::::
large

:::::
Imean :::

8.10
: :::

0.55
: :::

0.11
: :::

0.47
: :::

0.44
: ::::

0.72

:::::
(n=11)

::::
Imax: ::::

21.75
:::
0.45

: :::
0.05

: :::
0.55

: :::
0.40

: ::::
0.73

:
Q

:::
2.85

: :::
1.00

: :::
0.63

: :::
0.63

: :::
0.37

: ::::
0.73

::::::
unknown

: :::::
Imean :::

5.25
: :::

0.77
: :::

0.26
: :::

0.35
: :::

0.51
: ::::

0.80

:::::
(n=30)

::::
Imax: ::::

13.25
:::
0.73

: :::
0.17

: :::
0.32

: :::
0.57

: ::::
0.81

:
Q

::::
16.90

:::
0.77

: :::
0.25

: :::
0.34

: :::
0.51

: ::::
0.79

::::::
sample

:::
size

:::
of

:::::::::
small-sized

::::::::
landslide

::::::
events

::
is

:::
too

:::::
small

::
to

::::
draw

::
a
:::::
robust

::::::::::
conclusion.

::::
The

::::::
number

:::
of

:::::::::
small-sized

:::::::::
landslides

::
is385

:::::::
expected

::
to

:::
be

::::::::::::
under-reported

::::
since

::::::
media

::::::
reports

:::
are

:::::
biased

:::::::
towards

::::::
events

::::
with

::::
more

::::::
severe

:::::::
impacts.

:

5 Conclusions

In this study, we combined gridded atmospheric data from the HAR v2 with 87 landslide records extracted from the GLC and

the GFLD to analyze rainfall and snowmelt conditions that triggered landslides in Kyrgyzstan and Tajikistan. Thresholds for

landslide triggering were determined for different event properties for rainfall, snowmelt, and rainfall+snowmelt. Mean annual390

exceedance maps were generated based on the defined thresholds.

Monthly landslide counts in Kyrgyzstan and Tajikistan correspond well with the monthly distribution of rainfall+snowmelt.

An exception is March when soil temperature at the top soil layer (0-0.1m) and air temperature at 2m are both below zero.

Investigation
::
of the relationship between landslides and soil temperature could be a topic for future studies. Snowmelt plays a

crucial role in landslide triggering in Kyrgyzstan and Tajikistan since it contributes to the triggering of 40% of landslide events.395

By including snowmelt as an additional trigger, the skill of landslide prediction was significantly improved.
:::::
Imean,

:
Imax,

:
and

Q of rainfall+snowmelt entire events have the best
::::
have

::::::
similar

:
predictive performance. Thresholds of

::::::::::::::::::
Imean =5.05mmd−1

:
, Imax =12.8mmd−1 (HR=0.67, FAR=0.15)

::::::::::::
14.05mmd−1,

:
and Q=17.2mm (HR=0.74, FAR=0.25)

:::::::::
15.65mm

::
for

:::::
UTL

:::::
events

:
were defined for landslide triggering in Kyrgyzstan and Tajikistan.

:::::
Using

:::
the

:::::
entire

::::::
period

::
of

:::::::
weather

::::::
events

:::::
leads

::
to

::::::
similar

::::::::
threshold

:::::
values

:::
but

::::::
better

::::::::
predictive

:::::::::::
performance.

:::::
This

:::::
could

:::::::
indicate

:::::::::
uncertainty

::
in
::::::::

landslide
:::::::
timing. Mean annual400
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exceedance maps derived from these thresholds depict climatic disposition and have added value in landslide susceptibility

mapping.

Our study also
:::
The

:::::::
majority

:::
of

:::::::
previous

::::::
studies

:::::::
applied

::::::
rainfall

:::::::::
estimates

::::
from

::::::
in-situ

::::::
gauges

::
or
:::::::

satellite
:::::::::

retrievals.
::::
Our

::::
study

:
demonstrates the potential of the Regional Climate Model (RCM) in landslide prediction. Dynamical downscaling prod-

ucts generated by RCMs can provide physically consistent, high-resolution data that is extremely valuable for data scare405

areas. Given the global applicability of the dynamical downscaling methodand global coverage of the GLC and the GFLD

, our approach can also be applied in other regions, as long as the number and quality of landslide records is sufficient.

The GLC and the GFLD suffer from under-reporting problem over remote areas, which suggests the need for combination of

different methods in landslide detection in remote regions
:::
are

::::::::
sufficient.

:::::
Even

:::::
though

::
a
:::::::::::::
higher-resolved

::::::::::
downscaling

:::::::
product

:::
can

::::::::
reproduce

::::::::::::::::
landslide-triggering

:::::::
weather

:::::
events

:::::
more

::::::::::
realistically,

:
it
:::
has

::
a
:::::
lower

:::::::
tolerance

::
to

:::
the

::::::::::
uncertainty

:
in
::::::::
landslide

::::::::
locations410

:::
and

::::
does

:::
not

:::::::::
necessarily

::::
lead

::
to
:::::
better

:::::::::
predictive

:::::::::::
performance.

::::
This

::::
calls

:::
for

:::
the

::::
need

::
of

::::::::::
developing

:::::::
landslide

::::::::::
inventories

::::
with

:::::
higher

:::::::
location

::::::::
accuracy

::
in

:::::::::
Kyrgyzstan

::::
and

::::::::
Tajikistan.

Appendix A
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(c) Event at 2017-06-19; Trigger: mixed
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(d) Event at 2015-07-10; Trigger: not detected

Figure A1.
:::::::::
Event-based

:::::::
temporal

::::::
process

:::
of

:::::
rainfall

::::
and

:::::::
snowmelt

:::
for

:::::::
selected

:::::::
landslide

:::::
events

::::
with

:::::::
landslide

:::::::
triggers

::::::
defined

::
as

:::
(a)

:::::::
“rainfall”,

:::
(b)

:::::::::
“snowmelt”;

:::
(c)

:::::::
“mixed”;

:::
and

::
(d)

::::
“not

:::::::
detected”

::::::::
according

::
to

::
the

::::::
method

:::::::
described

::
in
::::::
section

::::
2.2.1.

Table A1: Landslide events in Kyrgyzstan and Tajikistan extracted from Global Landslide Catalog (GLC)
:::::
GLC and

Global Fatal Landslide Database (GFLD)
:::::
GFLD from 2004 to 2018. Column "trigger" indicates the trigger of landslide events

detected by the High Asia Refined Analysis version 2 (HAR v2)
:::::::
HAR v2.

Event date Source Longitude Latitude Country Trigger

2004-04-17 GFLD 73.0420 40.3428 Kyrgyzstan mixed

2004-05-22 GFLD 69.2172 39.8106 Tajikistan rainfall

2004-06-14 GFLD 70.8718 39.8734 Kyrgyzstan rainfall

2004-11-17 GFLD 70.0802 38.8324 Tajikistan mixed
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2005-03-13 GFLD 69.0502 40.0141 Tajikistan mixed

2005-04-09 GFLD 69.2656 38.3801 Tajikistan mixed

2007-03-25 GLC 70.1951 39.0071 Tajikistan mixed

2007-04-01 GLC 72.5920 37.5760 Tajikistan mixed

2007-04-05 GLC 71.6110 36.7270 Tajikistan snowmelt

2007-04-17 GLC 71.6849 41.5552 Kyrgyzstan rainfall

2007-04-17 GLC 68.2140 38.5330 Tajikistan rainfall

2007-04-22 GLC 73.1416 40.8870 Kyrgyzstan rainfall

2007-06-05 GFLD 69.1633 37.8276 Tajikistan rainfall

2007-07-21 GLC 73.0000 38.0000 Tajikistan mixed

2007-07-22 GLC 70.4400 40.7500 Tajikistan not detected

2007-07-22 GFLD 71.0363 38.5289 Tajikistan rainfall

2009-04-16 GFLD 71.9767 41.6184 Kyrgyzstan rainfall

2009-04-21 GLC 68.7882 37.8515 Tajikistan rainfall

2009-05-05 GFLD 70.1529 38.1701 Tajikistan rainfall

2009-05-07 GFLD 69.7741 38.6726 Tajikistan rainfall

2009-05-11 GFLD 71.0363 38.5289 Tajikistan snowmelt

2009-05-14 GLC 68.6900 37.9867 Tajikistan rainfall

2009-05-16 GFLD 71.0363 38.5289 Tajikistan snowmelt

2009-05-20 GFLD 69.3199 38.7221 Tajikistan rainfall

2010-03-13 GFLD 69.0502 40.0141 Tajikistan snowmelt

2010-05-07 GLC 69.8054 37.9148 Tajikistan rainfall

2010-05-07 GFLD 70.0994 37.8560 Tajikistan rainfall

2010-06-03 GLC 72.9227 39.9854 Kyrgyzstan mixed

2011-05-11 GLC 72.8282 41.4088 Kyrgyzstan rainfall

2011-06-12 GLC 69.1238 38.2644 Tajikistan rainfall

2011-06-12 GLC 69.5667 39.9342 Kyrgyzstan rainfall

2012-05-12 GLC 70.8159 40.0538 Kyrgyzstan rainfall

2012-05-13 GFLD 70.8718 39.8734 Kyrgyzstan rainfall

2013-06-28 GLC 72.0106 41.6518 Kyrgyzstan rainfall

2014-04-12 GLC 69.0971 37.9107 Tajikistan rainfall

2014-04-12 GFLD 70.0994 37.8560 Tajikistan rainfall

2014-04-16 GFLD 68.6749 38.0710 Tajikistan rainfall

2014-04-26 GFLD 68.7626 38.5685 Tajikistan rainfall

2015-04-03 GFLD 69.4222 38.5428 Tajikistan rainfall
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2015-05-08 GLC 70.0162 38.0991 Tajikistan rainfall

2015-05-24 GLC 72.9053 40.8986 Kyrgyzstan rainfall

2015-05-24 GFLD 73.2559 41.1036 Kyrgyzstan rainfall

2015-07-10 GLC 70.4275 39.0712 Tajikistan not detected

2015-07-16 GLC 71.7041 37.5773 Tajikistan rainfall

2015-07-21 GFLD 71.7929 38.4071 Tajikistan rainfall

2016-04-26 GLC 72.9071 40.8894 Kyrgyzstan not detected

2016-05-09 GLC 68.5748 39.3160 Tajikistan mixed

2016-05-15 GLC 72.9293 41.3431 Kyrgyzstan rainfall

2016-05-23 GLC 72.7907 40.5304 Kyrgyzstan rainfall

2016-05-27 GLC 69.8266 39.8751 Kyrgyzstan rainfall

2016-05-28 GLC 71.5577 40.0150 Kyrgyzstan mixed

2016-06-16 GLC 72.3374 41.4850 Kyrgyzstan rainfall

2016-06-20 GLC 73.5233 40.1293 Kyrgyzstan rainfall

2016-06-27 GLC 74.4438 41.7246 Kyrgyzstan rainfall

2016-06-29 GLC 73.1415 41.7649 Kyrgyzstan not detected

2016-07-29 GLC 69.5597 39.9377 Kyrgyzstan rainfall

2016-08-16 GLC 78.3019 42.6831 Kyrgyzstan not detected

2016-08-18 GLC 70.5626 39.9790 Tajikistan rainfall

2017-01-04 GLC 71.9999 39.6699 Kyrgyzstan snowmelt

2017-01-26 GLC 72.8834 40.8960 Kyrgyzstan not detected

2017-03-26 GFLD 73.5725 40.8316 Kyrgyzstan mixed

2017-04-07 GLC 73.6257 40.7733 Kyrgyzstan snowmelt

2017-04-09 GLC 73.5335 40.8320 Kyrgyzstan snowmelt

2017-04-10 GLC 69.5091 39.9095 Kyrgyzstan mixed

2017-04-11 GLC 72.8601 41.2047 Kyrgyzstan mixed

2017-04-14 GFLD 73.5725 40.8316 Kyrgyzstan mixed

2017-04-16 GLC 73.2668 40.6430 Kyrgyzstan snowmelt

2017-04-16 GLC 73.6000 40.7836 Kyrgyzstan snowmelt

2017-04-17 GLC 73.6047 40.8044 Kyrgyzstan mixed

2017-04-18 GLC 71.4973 37.3628 Tajikistan mixed

2017-04-18 GLC 72.9069 40.8838 Kyrgyzstan rainfall

2017-04-22 GLC 73.3402 40.8663 Kyrgyzstan mixed

2017-04-23 GLC 71.5074 39.3410 Tajikistan snowmelt

2017-04-23 GLC 72.8835 41.1610 Kyrgyzstan rainfall
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2017-04-23 GFLD 72.9801 41.2790 Kyrgyzstan mixed

2017-04-29 GLC 73.4724 40.8864 Kyrgyzstan mixed

2017-04-29 GFLD 73.2203 40.1325 Kyrgyzstan mixed

2017-04-30 GLC 72.4381 41.2550 Kyrgyzstan rainfall

2017-04-30 GLC 73.5310 40.0774 Kyrgyzstan mixed

2017-05-10 GLC 74.4847 42.5635 Kyrgyzstan mixed

2017-05-11 GLC 73.3497 40.5560 Kyrgyzstan rainfall

2017-05-16 GLC 71.0302 41.7545 Kyrgyzstan rainfall

2017-05-17 GLC 72.6771 41.6014 Kyrgyzstan rainfall

2017-05-28 GLC 71.2755 39.1978 Tajikistan mixed

2017-06-19 GLC 72.9814 39.6978 Kyrgyzstan mixed

2017-06-19 GLC 71.7318 40.0439 Kyrgyzstan rainfall

2017-06-26 GLC 67.8173 39.5267 Tajikistan rainfall

2017-06-28 GLC 68.5480 39.3951 Tajikistan not detected

2017-06-29 GLC 72.7303 41.0321 Kyrgyzstan rainfall

2017-06-29 GLC 72.4521 41.2557 Kyrgyzstan rainfall

2017-07-03 GLC 70.3650 39.0219 Tajikistan rainfall

2017-07-03 GLC 68.4838 39.1172 Tajikistan not detected

2017-07-04 GLC 69.5279 39.8102 Kyrgyzstan not detected

2018-05-13 GLC 69.5445 39.8526 Kyrgyzstan rainfall

2018-05-16 GLC 69.1773 37.2642 Tajikistan rainfall

2018-05-21 GLC 72.1386 40.2437 Kyrgyzstan mixed
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Table A2.
:::::
K-fold

::::::::
validation

::::::
results.

:::::
Mean

:::::
values

::::
and

:::::::
standard

::::::::
deviations

:::
(in

:::::::::
parentheses)

:::
for

:::::::::
thresholds

::
of

:::::
Imean:::::::::

(mmd−1),
:::::
Imax

::::::::
(mmd−1),

:::
and

::
Q

::::
(mm)

:::
for

::::
entire

:::::
events

::
of

::::::
rainfall,

::::::::
snowmelt,

:::
and

:::
the

:::
sum

::
of

::::::
rainfall

:::
and

:::::::
snowmelt

:::::::::::::::
(rainfall+snowmelt),

:::
and

:::::::::::
corresponding

:::::::::
performance

:::::::
statistics.

::::::
predictor

::::::
property

: :::::::
threshold

::
HR

: ::::
FAR

:
d

:::
PSS

::::
AUC

:::::
rainfall

: :::::
Imean

:::
3.76

::::
(0.33)

:::
0.56

::::
(0.14)

:::
0.33

::::
(0.03)

:::
0.56

::::
(0.10)

:::
0.23

::::
(0.13)

:::
0.62

::::
(0.01)

::::
Imax:

::::
11.06

::::
(0.66)

:::
0.46

::::
(0.16)

:::
0.18

::::
(0.02)

:::
0.57

::::
(0.15)

:::
0.28

::::
(0.15)

:::
0.65

::::
(0.01)

:
Q ::::

12.31

::::
(3.88)

:::
0.53

::::
(0.16)

:::
0.25

::::
(0.07)

:::
0.55

::::
(0.10)

:::
0.27

::::
(0.10)

:::
0.67

::::
(0.01)

:::::::
snowmelt

: :::::
Imean

:::
7.06

::::
(0.02)

:::
0.22

::::
(0.14)

:::
0.06

::::
(0.01)

:::
0.78

::::
(0.14)

:::
0.16

::::
(0.14)

:::
0.31

::::
(0.02)

::::
Imax:

::::
13.61

::::
(0.44)

:::
0.23

::::
(0.13)

:::
0.04

::::
(0.01)

:::
0.77

::::
(0.13)

:::
0.19

::::
(0.12)

:::
0.32

::::
(0.01)

:
Q :::::

122.38

:::::
(7.93)

:::
0.23

::::
(0.13)

:::
0.03

::::
(0.01)

:::
0.77

::::
(0.13)

:::
0.20

::::
(0.12)

:::
0.33

::::
(0.01)

:::::::::::::
rainfall+snowmelt

: :::::
Imean

:::
4.96

::::
(0.02)

:::
0.70

::::
(0.13)

:::
0.25

::::
(0.02)

:::
0.40

::::
(0.08)

:::
0.45

::::
(0.14)

:::
0.78

::::
(0.01)

::::
Imax:

::::
12.93

::::
(0.37)

:::
0.65

::::
(0.15)

:::
0.15

::::
(0.01)

:::
0.39

::::
(0.13)

:::
0.49

::::
(0.15)

:::
0.81

::::
(0.01)

:
Q ::::

17.20

::::
(0.14)

:::
0.71

::::
(0.15)

:::
0.23

::::
(0.02)

:::
0.38

::::
(0.10)

:::
0.48

::::
(0.13)

:::
0.81

::::
(0.01)
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Table A3.
:::::
K-fold

::::::::
validation

::::::
results.

:::::
Mean

:::::
values

::::
and

:::::::
standard

::::::::
deviations

:::
(in

:::::::::
parentheses)

:::
for

:::::::::
thresholds

::
of

:::::
Imean:::::::::

(mmd−1),
:::::
Imax

::::::::
(mmd−1),

:::
and

::
Q

:::::
(mm)

::
for

::::
UTL

:::::
events

::
of

::::::
rainfall,

::::::::
snowmelt,

:::
and

::
the

::::
sum

::
of

:::::
rainfall

:::
and

::::::::
snowmelt

:::::::::::::::
(rainfall+snowmelt),

:::
and

:::::::::::
corresponding

:::::::::
performance

:::::::
statistics.

:::::::
predictor

::::::
property

: :::::::
threshold

::
HR

: ::::
FAR

:
d

:::
PSS

::::
AUC

:::::
rainfall

: :::::
Imean

:::
4.04

::::
(1.47)

:::
0.45

::::
(0.13)

:::
0.33

::::
(0.10)

:::
0.66

::::
(0.08)

:::
0.12

::::
(0.08)

:::
0.59

::::
(0.01)

:::
Imax

::::
10.94

::::
(1.47)

:::
0.34

::::
(0.06)

:::
0.18

::::
(0.04)

:::
0.68

::::
(0.05)

:::
0.16

::::
(0.06)

:::
0.58

::::
(0.01)

:
Q ::::

10.21

::::
(2.22)

:::
0.46

::::
(0.09)

:::
0.29

::::
(0.04)

:::
0.62

::::
(0.09)

:::
0.17

::::
(0.11)

:::
0.59

::::
(0.01)

:::::::
snowmelt

: :::::
Imean

:::
7.14

::::
(0.26)

:::
0.21

::::
(0.10)

:::
0.06

::::
(0.02)

:::
0.79

::::
(0.10)

:::
0.15

::::
(0.09)

:::
0.31

::::
(0.02)

:::
Imax

::::
12.88

::::
(0.23)

:::
0.23

::::
(0.12)

:::
0.05

::::
(0.01)

:::
0.77

::::
(0.12)

:::
0.18

::::
(0.11)

:::
0.32

::::
(0.02)

:
Q ::::

99.95

::::
(4.67)

:::
0.22

::::
(0.13)

:::
0.04

::::
(0.01)

:::
0.78

::::
(0.13)

:::
0.18

::::
(0.13)

:::
0.32

::::
(0.02)

:::::::
snowmelt

: :::::
Imean

:::
5.35

::::
(0.85)

:::
0.61

::::
(0.22)

:::
0.23

::::
(0.04)

:::
0.47

::::
(0.17)

:::
0.38

::::
(0.18)

:::
0.76

::::
(0.01)

:::
Imax

::::
13.54

::::
(0.56)

:::
0.56

::::
(0.15)

:::
0.14

::::
(0.01)

:::
0.47

::::
(0.14)

:::
0.42

::::
(0.14)

:::
0.77

::::
(0.01)

:
Q ::::

15.83

::::
(0.44)

:::
0.63

::::
(0.13)

:::
0.25

::::
(0.02)

:::
0.45

::::
(0.10)

:::
0.38

::::
(0.12)

:::
0.76

::::
(0.01)
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Code and data availability. The landslide data and atmospheric data used in this study are freely available from the following links:

– Global Landslide Catalog (GLC): https://maps.nccs.nasa.gov/arcgis/home/item.html?id=eec7aee8d2e040c7b8d3ee5fd0e0d7b9415

– Global Fatal Landslide Database (GFLD): https://blogs.agu.org/landslideblog/2019/06/18/global-fatal-landslide-database-1/

– High Asia Refined Analysis version 2 (HAR v2): https://www.klima.tu-berlin.de/HARv2

The source code used in this study is freely available upon request.

Author contributions. All authors were involved in study conceptualization and writing of the manuscript. XW collected the data, carried

out the analyses, and produced the visualizations.420

Competing interests. The authors declare that they have no conflict of interest

Acknowledgements. This work was supported by the German Federal Ministry of Education and Research (BMBF) under the framework of

the “Climatic and Tectonic Natural Hazards in Central Asia (CaTeNA)” project (Grant Number FKZ 03G0878G).

29



References

Barbosa, N., Andreani, L., Gloaguen, R., and Ratschbacher, L.: Window-Based Morphometric Indices as Predictive Variables for Landslide425

Susceptibility Models, Remote Sensing, 13, 451, 2021.

Behling, R. and Roessner, S.: Multi-temporal landslide inventory for a study area in Southern Kyrgyzstan derived from RapidEye satellite

time series data (2009-2013), 2020.

Berti, M., Martina, M., Franceschini, S., Pignone, S., Simoni, A., and Pizziolo, M.: Probabilistic rainfall thresholds for landslide occurrence

using a Bayesian approach, Journal of Geophysical Research: Earth Surface, 117, 2012.430

Bookhagen, B. and Strecker, M. R.: Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes,

Geophysical Research Letters, 35, 2008.

Braun, A., Fernandez-Steeger, T., Havenith, H.-B., and Torgoev, A.: Landslide Susceptibility Mapping with Data Mining Methods—a Case

Study from Maily-Say, Kyrgyzstan, in: Engineering Geology for Society and Territory-Volume 2, pp. 995–998, Springer, 2015.

Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., and Dick, Ø. B.: Regional prediction of landslide hazard using probability analysis of435

intense rainfall in the Hoa Binh province, Vietnam, Natural hazards, 66, 707–730, 2013.

Carrara, A., Crosta, G., and Frattini, P.: Geomorphological and historical data in assessing landslide hazard, Earth Surface Processes and

Landforms: The Journal of the British Geomorphological Research Group, 28, 1125–1142, 2003.

Chen, F., Barlage, M., Tewari, M., Rasmussen, R., Jin, J., Lettenmaier, D., Livneh, B., Lin, C., Miguez-Macho, G., Niu, G.-Y., et al.: Modeling

seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model intercomparison study, Journal of440

Geophysical Research: Atmospheres, 119, 13–795, 2014.

Dai, F., Lee, C., and Ngai, Y. Y.: Landslide risk assessment and management: an overview, Engineering geology, 64, 65–87, 2002.

Dietz, A. J., Conrad, C., Kuenzer, C., Gesell, G., and Dech, S.: Identifying changing snow cover characteristics in central Asia between 1986

and 2014 from remote sensing data, Remote Sensing, 6, 12 752–12 775, 2014.

Fawcett, T.: An introduction to ROC analysis, Pattern recognition letters, 27, 861–874, 2006.445

Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Natural Hazards and Earth System Sciences, 18,

2161–2181, 2018.

Gariano, S. L., Brunetti, M. T., Iovine, G., Melillo, M., Peruccacci, S., Terranova, O., Vennari, C., and Guzzetti, F.: Calibration and validation

of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy, Geomorphology, 228, 653–665, 2015.

Giannecchini, R., Galanti, Y., Avanzi, G. D., and Barsanti, M.: Probabilistic rainfall thresholds for triggering debris flows in a human-modified450

landscape, Geomorphology, 257, 94–107, 2016.

Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: Rainfall thresholds for the initiation of landslides in central and southern Europe,

Meteorology and atmospheric physics, 98, 239–267, 2007.

Hamm, A., Arndt, A., Kolbe, C., Wang, X., Thies, B., Boyko, O., Reggiani, P., Scherer, D., Bendix, J., and Schneider, C.: Intercomparison of

Gridded Precipitation Datasets over a Sub-Region of the Central Himalaya and the Southwestern Tibetan Plateau, Water, 12, 3271, 2020.455

Hanssen, A. and Kuipers, W.: ON THE RELATIONSHIP BETWEEN THE FREQUENCY OF RAIN AND VARIOUS METEOROLOG-

ICAL PARAMETERS.(WITH REFERENCE TO THE PROBLEM OF OBJECTIVE FORECASTING)., Koninklijk Nederlands Meteo-

rologisch Instituut, 1965.

Havenith, H.-B., Strom, A., Torgoev, I., Torgoev, A., Lamair, L., Ischuk, A., and Abdrakhmatov, K.: Tien Shan geohazards database: Earth-

quakes and landslides, Geomorphology, 249, 16–31, 2015a.460

30



Havenith, H.-B., Torgoev, A., Schlögel, R., Braun, A., Torgoev, I., and Ischuk, A.: Tien Shan geohazards database: Landslide susceptibility

analysis, Geomorphology, 249, 32–43, 2015b.

Ilyasov, S., Zabenko, O., Gaydamak, N., Kirilenko, A., Myrsaliev, N., Shevchenko, V., and Penkina, L.: Climate profile of the Kyrgyz

Republic, The State Agency for Environmental Protection and Forestry under the Government of the Kyrgyz Republic and The United

Nations Development Programme: Bishkek, Kyrgyzstan, 2013.465

Jarraud, M.: Guide to meteorological instruments and methods of observation (WMO-No. 8), World Meteorological Organisation: Geneva,

Switzerland, 29, 2008.

Jia, G., Tang, Q., and Xu, X.: Evaluating the performances of satellite-based rainfall data for global rainfall-induced landslide warnings,

Landslides, 17, 283–299, 2020.

Khan, Y. A., Lateh, H., Baten, M. A., and Kamil, A. A.: Critical antecedent rainfall conditions for shallow landslides in Chittagong City of470

Bangladesh, Environmental Earth Sciences, 67, 97–106, 2012.

Kirschbaum, D. and Stanley, T.: Satellite-based assessment of rainfall-triggered landslide hazard for situational awareness, Earth’s future, 6,

505–523, 2018.

Kirschbaum, D., Stanley, T., and Zhou, Y.: Spatial and temporal analysis of a global landslide catalog, Geomorphology, 249, 4–15, 2015.

Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., and Lerner-Lam, A.: A global landslide catalog for hazard applications: method, results,475

and limitations, Natural Hazards, 52, 561–575, 2010.

Koren, V., Schaake, J., Mitchell, K., Duan, Q.-Y., Chen, F., and Baker, J.: A parameterization of snowpack and frozen ground intended for

NCEP weather and climate models, Journal of Geophysical Research: Atmospheres, 104, 19 569–19 585, 1999.

Leonarduzzi, E., Molnar, P., and McArdell, B. W.: Predictive performance of rainfall thresholds for shallow landslides in Switzerland from

gridded daily data, Water Resources Research, 53, 6612–6625, 2017.480

Li, D., Yang, K., Tang, W., Li, X., Zhou, X., and Guo, D.: Characterizing precipitation in high altitudes of the western Tibetan plateau with

a focus on major glacier areas, International Journal of Climatology, 40, 5114–5127, 2020.

Marra, F.: Rainfall thresholds for landslide occurrence: systematic underestimation using coarse temporal resolution data, Natural Hazards,

95, 883–890, 2019.

Marra, F., Nikolopoulos, E., Creutin, J., and Borga, M.: Space–time organization of debris flows-triggering rainfall and its effect on the485

identification of the rainfall threshold relationship, Journal of Hydrology, 541, 246–255, 2016.

Marra, F., Destro, E., Nikolopoulos, E. I., Zoccatelli, D., Creutin, J. D., Guzzetti, F., and Borga, M.: Impact of rainfall spatial aggregation on

the identification of debris flow occurrence thresholds, Hydrology and Earth System Sciences, 21, 4525–4532, 2017.

Maussion, F., Scherer, D., Mölg, T., Collier, E., Curio, J., and Finkelnburg, R.: Precipitation seasonality and variability over the Tibetan

Plateau as resolved by the High Asia Reanalysis, Journal of Climate, 27, 1910–1927, 2014.490

Minder, J. R., Letcher, T. W., and Skiles, S. M.: An evaluation of high-resolution regional climate model simulations of snow cover and albedo

over the Rocky Mountains, with implications for the simulated snow-albedo feedback, Journal of Geophysical Research: Atmospheres,

121, 9069–9088, 2016.

Mostbauer, K., Kaitna, R., Prenner, D., and Hrachowitz, M.: The temporally varying roles of rainfall, snowmelt and soil moisture for debris

flow initiation in a snow-dominated system, Hydrol. Earth Syst. Sci, 22, 3493–3513, 2018.495

Nikolopoulos, E., Borga, M., Creutin, J., and Marra, F.: Estimation of debris flow triggering rainfall: Influence of rain gauge density and

interpolation methods, Geomorphology, 243, 40–50, 2015.

31



Nikolopoulos, E., Destro, E., Maggioni, V., Marra, F., and Borga, M.: Satellite rainfall estimates for debris flow prediction: an evaluation

based on rainfall accumulation–duration thresholds, Journal of Hydrometeorology, 18, 2207–2214, 2017.

Nikolopoulos, E. I., Crema, S., Marchi, L., Marra, F., Guzzetti, F., and Borga, M.: Impact of uncertainty in rainfall estimation on the500

identification of rainfall thresholds for debris flow occurrence, Geomorphology, 221, 286–297, 2014.

Ou, T., Chen, D., Chen, X., Lin, C., Yang, K., Lai, H.-W., and Zhang, F.: Simulation of summer precipitation diurnal cycles over the Tibetan

Plateau at the gray-zone grid spacing for cumulus parameterization, Climate Dynamics, 54, 3525–3539, 2020.

Ozturk, U., Pittore, M., Behling, R., Roessner, S., Andreani, L., and Korup, O.: How robust are landslide susceptibility estimates?, Landslides,

pp. 1–15, 2020.505

Palmer, J.: A slippery slope: Could climate change lead to more landslides?, Eos, 101, https://doi.org/10.1029/2020EO151418, published on

23 November 2020, 2020.

Peres, D. J., Cancelliere, A., Greco, R., and Bogaard, T. A.: Influence of uncertain identification of triggering rainfall on the assessment of

landslide early warning thresholds, Natural Hazards and Earth System Sciences, 18, 633–646, 2018.

Piciullo, L., Gariano, S. L., Melillo, M., Brunetti, M. T., Peruccacci, S., Guzzetti, F., and Calvello, M.: Definition and performance of a510

threshold-based regional early warning model for rainfall-induced landslides, Landslides, 14, 995–1008, 2017.

Postance, B., Hillier, J., Dijkstra, T., and Dixon, N.: Comparing threshold definition techniques for rainfall-induced landslides: A national

assessment using radar rainfall, Earth Surface Processes and Landforms, 43, 553–560, 2018.

Prenner, D., Kaitna, R., Mostbauer, K., and Hrachowitz, M.: The value of using multiple hydrometeorological variables to predict temporal

debris flow susceptibility in an alpine environment, Water Resources Research, 54, 6822–6843, 2018.515

Pritchard, D. M., Forsythe, N., Fowler, H. J., O’Donnell, G. M., and Li, X.-F.: Evaluation of Upper Indus near-surface climate representation

by WRF in the high Asia refined analysis, Journal of Hydrometeorology, 20, 467–487, 2019.

Rodwell, M. J., Richardson, D. S., Hewson, T. D., and Haiden, T.: A new equitable score suitable for verifying precipitation in numerical

weather prediction, Quarterly Journal of the Royal Meteorological Society, 136, 1344–1363, 2010.

Rossi, M., Luciani, S., Valigi, D., Kirschbaum, D., Brunetti, M., Peruccacci, S., and Guzzetti, F.: Statistical approaches for the definition of520

landslide rainfall thresholds and their uncertainty using rain gauge and satellite data, Geomorphology, 285, 16–27, 2017.

Saponaro, A., Pilz, M., Wieland, M., Bindi, D., Moldobekov, B., and Parolai, S.: Landslide susceptibility analysis in data-scarce regions: the

case of Kyrgyzstan, Bulletin of Engineering Geology and the Environment, 74, 1117–1136, 2015.

Scherer, D., Fehrenbach, U., Lakes, T., Lauf, S., Meier, F., and Schuster, C.: Quantification of heat-stress related mortality hazard, vulnera-

bility and risk in Berlin, Germany, DIE ERDE–Journal of the Geographical Society of Berlin, 144, 238–259, 2013.525

Segoni, S., Piciullo, L., and Gariano, S. L.: A review of the recent literature on rainfall thresholds for landslide occurrence, Landslides, 15,

1483–1501, 2018.

Shahabi, H., Khezri, S., Ahmad, B. B., and Hashim, M.: Landslide susceptibility mapping at central Zab basin, Iran: A comparison between

analytical hierarchy process, frequency ratio and logistic regression models, Catena, 115, 55–70, 2014.

Stanley, T. and Kirschbaum, D. B.: A heuristic approach to global landslide susceptibility mapping, Natural hazards, 87, 145–164, 2017.530

Stanley, T., Kirschbaum, D. B., Pascale, S., and Kapnick, S.: Extreme Precipitation in the Himalayan Landslide Hotspot, in: Satellite Precip-

itation Measurement, pp. 1087–1111, Springer, 2020.

Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M., Mitchell, K., Ek, M., Gayno, G., Wegiel, J., and Cuenca, R.: Implementation and

verification of the unified NOAH land surface model in the WRF model, in: 20th conference on weather analysis and forecasting/16th

conference on numerical weather prediction, vol. 1115, pp. 2165–2170, American Meteorological Society Seattle, WA, 2004.535

32

https://doi.org/10.1029/2020EO151418


Tomasi, E., Giovannini, L., Zardi, D., and de Franceschi, M.: Optimization of Noah and Noah_MP WRF land surface schemes in snow-

melting conditions over complex terrain, Monthly Weather Review, 145, 4727–4745, 2017.

Torgoev, I., Alioshin, Y. G., and Torgoev, A.: Monitoring landslides in Kyrgyzstan., FOG-Freiberg Online Geoscience, 33, 2012.

Wang, Q., Wang, D., Huang, Y., Wang, Z., Zhang, L., Guo, Q., Chen, W., Chen, W., and Sang, M.: Landslide susceptibility mapping based

on selected optimal combination of landslide predisposing factors in a large catchment, Sustainability, 7, 16 653–16 669, 2015.540

Wang, X., Tolksdorf, V., Otto, M., and Scherer, D.: WRF-based Dynamical Downscaling of ERA5 Reanalysis Data for High Mountain Asia:

Towards a New Version of the High Asia Refined Analysis, International Journal of Climatology, 41, 743–762, 2021.

Wieczorek, G. F.: Landslides: investigation and mitigation. Chapter 4-Landslide triggering mechanisms, Transportation Research Board

Special Report, 1996.

Woodcock, F.: The evaluation of yes/no forecasts for scientific and administrative purposes, Monthly Weather Review, 104, 1209–1214,545

1976.

Zhou, X., Yang, K., Ouyang, L., Wang, Y., Jiang, Y., Li, X., Chen, D., and Prein, A.: Added value of kilometer-scale modeling over the third

pole region: a CORDEX-CPTP pilot study, Climate Dynamics, pp. 1–15, 2021.

Zhuo, L., Dai, Q., Han, D., Chen, N., and Zhao, B.: Assessment of simulated soil moisture from WRF Noah, Noah-MP, and CLM land

surface schemes for landslide hazard application, Hydrology and Earth System Sciences, 23, 4199–4218, 2019.550

Zimmermann, M.: Murganggefahr und Klimaänderung-ein GIS-basierter Ansatz, vdf Hochschulverlag AG, 1997.

33


