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Abstract.  

Reliable information on building stock and its vulnerability is important for understanding societal exposure to 

floods. Unfortunately, developing countries have less access to and availability of this information. Therefore, 

calculations for flood damage assessments have to use the scarce information available, often aggregated on a 15 

national or district level. This study aims to improve current assessments of flood damage by extracting individual 

structural building characteristics and estimate damage based on the buildings’ vulnerability. We carry out an 

Object-Based Image Analysis (OBIA) of high-resolution (11 cm ground sample distance) Unmanned Aerial 

Vehicle (UAV) imagery to outline shapes. We then use a Support Vector Machine Learning algorithm to classify 

the delineated buildings. We combine this information with local depth-damage curves to estimate the economic 20 

damages for three villages affected by the 2019 January river floods in the Southern Shire basin in Malawi, and 

compare this to a conventional approach using land use to denote exposure. The flood extent is obtained from 

satellite imagery (Sentinel-1), and corresponding water depths determined by combining this with elevation data. 

The estimated damages from the OBIA and aggregated land-use approach yield €10,140 and €15,782, 

respectively, highlighting the potential for detailed and local damage assessments using UAV imagery.  25 

1. Introduction 

Worldwide, flooding is one of the most common and damaging natural hazards in both monetary terms and loss 

of life (UNDRR, 2019). Estimating flood damage is essential for shaping flood risk management before and 

disaster management after a flood. This can be done a-priori to support strategic risk reduction, or after an event 

in order to support recovery. This latter one is knows as a Damage and Needs Assessment (DNA), which is usually 30 

based for the most part on ground truth data. For DNAs, household field surveys are conducted, as rapid Damage 

and Needs Assessments and Post Disaster and Needs Assessments (Jones, 2010). A-priori flood damage 

assessments are generally modelled and require extensive datasets on flood hazard characteristics, the exposed 

elements at risk, and the vulnerability of these elements (Budiyono et al., 2015; Alam, A. et al., 2018; UNDRR, 

2019).  Much work has focused on improving these damage estimates, quantifying the effect of different flood 35 

scenarios and its consequences (Murnane et al., 2017). Unfortunately, information on the exposure and 

vulnerability is often lacking in developing countries or less accessible (M. van den Homberg and Susha, 2018). 
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Therefore, calculations for flood damage assessments have to use the scarce data available, often aggregated on 

high national or district level. This lack of data complicates accurate and downscaled flood damage assessments 

(Amirebrahimi et al., 2016; Fekete, 2012). The lower spatial level is, however, required for most flood risk 40 

management applications. Building damage, in particular, remains hard to quantify, as this is usually a 

heterogeneous land-use category. This causes many uncertainties in the assessment about physical structure, 

content, and flood susceptibility (Wagenaar et al., 2016). Flood damage assessments are a standard procedure to 

identify economic losses in flood-prone areas, and growing populations and economies have increased the 

relevance of predicting the impact of impending disasters on the people that live in these areas (Merz et al., 2010). 45 

Such assessments can enable the allocation of resources for recovery and reconstruction by humanitarian decision-

makers when a disaster does strike (Díaz-Delgado and Gaytán Iniestra, 2014). For example, severe floods in 

January 2015 have demonstrated the need for improved flood damage assessments in Malawi. During this period, 

the worst flood disaster in terms of economic damage was recorded for 15 of its 28 districts, predominantly in the 

Southern Region. The total damage was estimated to be US$ 286.3 million, with the housing sector accounting 50 

for almost half of the total damage with US$ 136.4 million (Government of Malawi, 2015). More recently, the 

Chikwawa district was subjected to extensive flooding because of continuous rainfall by tropical cyclone 

Desmond in January 2019. 

 

Several studies have suggested that flood damage assessments could be improved by incorporating the 55 

vulnerability of building structures. Blanco-Vogt et al., (2015) summarize different methods to retrieve building 

characteristics and estimate flood vulnerability based on building typologies in a semi-urban environment. 

Different building parameters are discussed that could affect the building susceptibility to flooding, including 

height, size, form, roof structure and the topological relation to neighbouring buildings and open space. 

Typologies are created by taking the remotely sensed data and relating this to potential flood impact. They note 60 

that these typologies can be used to link buildings to more detailed damage curves and discuss the challenges in 

terms of data resolution and techniques in remote sensing. The research of De Angeli et al., (2016) builds on the 

method of Blanco-Vogt et al., (2015) by developing a flood damage model that differentiates the urban area (using 

building clusters based on building taxonomies), instead of using a single homogenous land-use class. Remotely 

sensed data were used to derive exposure and vulnerability information after which it was combined with available 65 

building information. The damage was validated, and the model was able to accurately assess damage estimates 

in an urban setting. Nonetheless, the authors state that a generalization of the procedure needs to be studied further.

  

Remote sensing has the potential to generate information on the exposure and vulnerability input for damage 

assessments. Numerous studies have been carried out for mapping land cover, such as built-up areas, with varying 70 

methods and spatial scales (Mallupattu and Sreenivasula Reddy, 2013; Ai et al., 2020). With new innovations in 

the resolution of imagery, also smaller-scale studies can be conducted where remote sensing can be applied to 

retrieve information on object-level (Klemas, 2015; Englhardt et al., 2019). In a review by De Ruiter et al., (2017) 

it is stated that common flood vulnerability studies that use land-cover typologies could be improved by 

incorporating object-based approaches. For example, by developing vulnerability curves for different wall-75 

material types. A technique to derive useful information from remotely sensed image data is Object-Based Image 

Analysis (OBIA). OBIA has the potential to identify exposed elements and its characteristics accurately when 
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incorporated into a flood damage assessment but there is little literature combining the methods. The process 

involves grouping pixels into objects based on their spectral properties or external variables, after which they are 

combined into  spatial units for image analysis such as image classification (Blaschke, 2010). Spectral properties 80 

to group these objects could, for example, be the mean value or standard deviation of spectral bands of the image. 

Using this method, instead of a pixel-based classification, over-classification or a ‘salt and pepper look’ can be 

avoided as pixels are not defined individually (Blaschke, 2010). 

 

A conventional workflow to conduct an OBIA exists of two major steps: (1) segmentation and (2) feature 85 

extraction and classification. The accuracy of this approach is improving with the emergence of higher resolution 

imagery. More specifically, the literature demonstrates that the relationship between the objects under 

consideration and the spatial resolution is critical for the accuracy of segmentation and the OBIA in general 

(Blaschke, 2010; Belgiu and Drǎguţ, 2014; Xu et al., 2019). Although feature classifications can be done 

manually, this process would be time-consuming and tedious for large areas. Machine Learning techniques can 90 

provide similar results and several statistical methods can be applied that use the information from the designated 

samples in the classification. Certain techniques exhibit better results than others depending on the case study 

area, the imagery, or the size of the training set. In a review by Ma et al., (2017) it was concluded, for example, 

that in the case of land-cover mapping using OBIA, Random Forests and Support Vector Machines perform best 

in agricultural areas for high-resolution imagery. 95 

 

From the above it is clear that exposure and vulnerability components are underrepresented in current flood 

damage assessments, especially in data-scarce areas. In this research, we aim to bridge the gap in data requirement 

by using automated object recognition and machine learning of high-resolution images. We apply an OBIA to 

delineate the outlines of buildings and use the machine learning to characterize the buildings. After which 100 

classification of building types can be made to implement stage-dependent damage curves based on building 

material and floodwater characteristics. Remotely sensed images are collected by Unmanned Aerial Vehicle 

(UAV) that can reach key areas, and the approach is applied to three villages in a flood-prone district in the Lower 

Shire basin in Malawi. By comparing this method to a conventional land-use based approach using aggregated 

exposure data, recommendations can be made for future assessments.  105 

 

2. Data and methods 

This research has been divided into three parts following the general procedure of a flood damage assessment 

(Merz et al., 2010; de Moel and Aerts, 2011; Jongman et al., 2012). Flood risk is defined as a combination of the 

elements: hazard (flood extent and depth), exposure (exposed assets) and the conditions of vulnerability that are 110 

present (the susceptibility of buildings to floods) (UNDRR, 2019). The first part deals with the classifications of 

elements by creating house typologies by combining information from an Object-Based Image Analysis (OBIA) 

of high-resolution UAV imagery with a field survey. The second part focusses on analyzing the detected building 

exposure and assessing the corresponding vulnerability of the objects. In the final part, the data from the steps 

mentioned above is related to the flood impact corresponding to a specific flood event in the case study area. 115 

Based on Sentinel-1 satellite imagery, a flood extent is created, and its related water depth is estimated. The 
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economic damage of the elements is calculated using local building-specific stage-damage curves. We evaluate 

the influence of building size, water depth and damage curve on our damage assessment model using a one-at-a-

time sensitivity analysis, as applied in Ke et al. (2012).  

  120 

To assess the added value of using UAV data on flood damage assessments, the information from an OBIA 

conducted on  high-resolution optical imagery was incorporated into an flood damage assessment and compared 

to a convential assessment based on disaggregated census data and homogenous land-use pixels. For the 

conventional damage assessment, building stock information was extracted from the Malawi National Statistical 

Office (NSO) and used to create corresponding stage-damage curves (Malawi Statistical Office, 2017). This 125 

process will from now on be referred to as the ‘pixel-based’ approach. Our proposed damage assessment combines 

the information from an OBIA with local data on building stock to calculate structural damages based on the mid-

January 2019 flood. This process will from now on, be referred to as the ‘object-based’ approach.  The two 

different models share similarities on the impact of the specific flood event but are inherently different in their 

approach on the classification of elements and their flood susceptibility. In the terminology of the UNDRR, 130 

(2019), this translates into different input data for the exposure and vulnerability components. The sensitivy of 

the damage parameters are analysed to determine the most influencing factors in the flood damage assessment 

models. Figure 1 visualizes the method.  

 

There is no specific empirical damage data available for the area covered by the UAV imagery. However, the Red 135 

Cross and Red Crescent Societies issued an  Emergency Plan of Action (EPoA) after the 2019 January river floods 

in Malawi. Based on preliminary assessment by volunteers on the ground,  one of the most affected Traditional 

Authorities is Makhuwira with a total of 2,434 collapsed houses. In Chikwawa, a total of of 15,974 people were 

affected, 3,154 houses damaged or destroyed, and 5,078 people reported to be displaced across at least seven 

camps set up by communities and government. Most of the affected houses were semi-permanent structures 140 

(IFRC, 2019), which are also common in our study area.  
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Figure 1. Workflow of the two approaches of flood damage estimation. The left panel shows the object-based approach 

and the right panel shows the pixel-based approach. Abbreviations: Synthetic-aperture radar (SAR), Object-Based 145 

Image Analysis (OBIA), Remote Sensing (RM). The inundation (hazard) map is shown on © Google Satellite. The 

OBIA and land-use map are created using UAV imagery from the Malawi Red Cross Society.  

 

2.1 Input data  

UAV optical imagery was collected in November 2018 by The Netherlands Red Cross (NLRC) and the Malawi 150 

Red Cross Society (MRCS) for mapping and flood simulation purposes in the Lower Shire Basin. van den 

Homberg et al. (2020) give an extensive description of the UAV data collection and UAV used. A Digital Surface 

Model (DSM) was generated using the collected imagery. Other remote sensing data were acquired from open-

source databases, including the Shuttle Radar Topography Mission (SRTM) DEM collected by NASA and the 

SAR Sentinel-1 imagery collected by Copernicus (Farr & Kobrick, 2000). The High-Resolution Settlement Layer 155 

(HRSL) provides an estimate of the settlement extent and population density and was developed by the 

Connectivity lab at Facebook in combination with the Centre for International Earth Science Information Network 

(CIESIN) by using computer vision techniques to qualify optical satellite data with a resolution of 0.5m (CIESIN, 

2016). The OpenStreetMap (OSM) contains a features layer of manually delineated objects and was used for 

validation purposes ( © OpenStreetMap contributors, 2019). Table 1 summarizes the various datasets. 160 

 

Table 1: Available datasets in this research. Abbreviations: : Digital Elevation Model (DEM), Digtital Surface Model 

(DSM), Ground Range Detected (GRD), Malawi Red Cross Society (MRCS), OpenStreetMap (OSM), Shuttle Radar 

Topography Mission (SRTM) Synthetic-aperture radar (SAR). 

 Dataset Type Resolution 

(horizontal) 

Data repository Acquisition 

Remote sensing     
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 HRSL Land 

cover 
30m 

CIESIN 2016 

 Satellite DEM 30m SRTM, Earth Explorer Unknown 

 Sentinel-1 (GRD) SAR 23m Copernicus Scihub 24-01-2019 

 UAV Optical 0.11m MRCS 11-2018 

 UAV DSM 0.25m MRCS 11-2018 

Geospatial data     

 OSM Vector Object  OpenStreetMap n/a 

 165 

2.1.1 Field survey  

To gain information about the building stock present in the case study area, Teule et al. (2019) conducted a field 

survey on structures and their material in 4 villages in, or surrounding, Traditional Authority Makhuwira, 

including Jana, Nyambala and Nyangu (Fig. 2). In total, 50 buildings were sampled and used as representative 

buildings in estimating the susceptibility of building material types in the area. Fig. 3 shows an example. The 170 

survey collected characteristics of potential flood vulnerability parameters, including size, height, roof material, 

wall material, and inventory of the house.  

 

Figure 2: The geographical location of Malawi (left) and the District of Chikwawa (right). © OpenStreetMap 

contributors, 2019. Distributed under a Creative Commons BY-SA License. 
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Figure 3: Image from one of the sample buildings taken in the case study area (Teule et al., 2019) A clear contrast 175 
between building material is visible between the two structures: hatched roofs and unburnt bricks versus iron sheeted 

roofs and burnt bricks. 

2.2 Object-Based Image Analysis (OBIA) 

The OBIA consisted of the following steps. First, validation and training samples were collected from the villages 

in the case study area by manually delineating objects. We manually delineated a total of 144 building to serve as 180 

training and 556 as  validation. This step was followed by segmenting the high-resolution imagery and classifying 

the vectorized objects. We selected the open-source geo-software Orfeo Toolbox (OTB). This toolbox is a library 

for image processing initiated by the CNES (French Space Agency) that includes numerous algorithms created 

for the purpose of segmentation and classification (Grizonnet et al., 2017). Further development of the toolbox is 

underway. 185 

 

Segmentation was performed using the Mean Shift Clustering algorithm utilized by OTB. The mean-shift 

algorithm exploited by Orfeo relates to the work of Michel et al., (2015), in which the goal of image segmentation 

is to partition large images into semantically meaningful regions. The following parameters were set: (1) the 

spatial radius or the neighborhood distance was set to 1.5m; (2) the range expressed in radiometry unit in the 190 

multispectral space to 5m; and (3) the minimum size of a region in segmentation 5m² in relation to minimum 

building sizes. The Support Vector Machine (SVM) algorithm from the same Orfeo library served to classify the 

vectorized objects from the segmentation. The SVM is a kernel-based machine learning algorithm that has been 

effectively used to classify remotely sensed data (Mountrakis et al., 2011). The classifier was trained on samples 

that represented the common features in the selected images and are summarized in Table 2.  An example of the 195 

output of this process is shown in Fig. 4. 
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Table 2: Samples used as input for training the SVM classifier with mean value ranges of the spectral bands (nm). 

Value Label Samples Mean B0 Mean B1 Mean B2 

1 Vegetation 28 121-164 135-165 101-136 

2 Metal 27 207-241 207-244 205-245 

3 Thatch 31 225-241 201-228 184-213 

4 Bare 34 171-220 155-197 145-197 

5 Shadow 24 113-154 114-150 113-137 

 200 

    

Figure 4: Steps of  the OBIA: (a) Original UAV imagery, (b) result of mean-shift segmentation, (c) classification using 

SVM classifier. The image contains UAV imagery collected by the Malawi Red Cross Society (MRCS), collected in 

November 2018. 

After the segmented objects were classified, a filtering process was conducted in which objects were removed 205 

based on their respective height and category. By keeping the two categories that represent buildings with a height 

over 0.5 m, buildings can be extracted, and potential misses are excluded from the damage calculation. This height 

was chosen as a value between the height of the ground and a one-story building. The mean height from the DSM 

was added to the objects by creating centric points of each segment and extracting the elevation values to these 

points from the UAV DSM map. To derive the height of these objects, a baseline DEM was constructed and 210 

subtracted from the mean DSM value. For this, the cells classified as ‘Metal’and ‘Thatch’ were removed from the 

DEM. Next, ground reference points were placed using visual interpretation to make sure no bushes or trees were 

selected. The elevation of these ground reference points were correspondingly used to interpolate an elevation 

surface using IDW (inverse distance weighting) and the elevation of this interpolated surface was used to 

determine the height of the ‘Metal’ and ‘Thatch’ cells by determining the difference with the original DEM 215 

elevation.   

Made with QGIS using UAV imagery collected by the Malawi Red Cross Society (MRCS). 
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To evaluate the performance of the OBIA model, a map with 556 manually detected reference objects was 

compared to a map with predicted buildings from the classification. For this purpose, a confusion matrix was 

created where a prediction can be either a True Positive (TP), False Positive (FP), True Negative (TN), or False 220 

Negative (FN). In which, TP (True Positive) is the number of cases detected both manually and with the automatic 

approach. FP (False Positive) is the number of cases detected by the automatic approach but not manually. TN 

(True Negative) is the number of cases detected manually but not by the automatic approach. FN (False Negative) 

is the number of undetected cases. The statistical parameters that were used to test the classification performance 

are the accuracy, F1-Score, and the Cohen Kappa. The overall accuracy (𝐴) was calculated given Eq. (1): 225 

 

 𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1) 

 

To test the classification performance per class, the F1-Score was used. This statistic is the weighted mean of both 

Precision (𝑃) and Recall (𝑅), where 0 indicated the lowest possible score and 1 a perfect score. The parameters 

are calculated with the following equations:  230 

 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃 ∗ 𝑅

𝑃 + 𝑅
 (4) 

 

 

To evaluate the building area, predicted buildings were chosen that have partial or complete overlap with the 235 

reference buildings. From this selection, the Relative Error (RE) was calculated per building typology. In this 

case, the absolute error is normalized by dividing it by the magnitude of the actual value. The RE is calculated 

through the following expression:  

 

 𝑅𝐸 = 
∑ |𝜃^ − 𝜃𝑖|

𝑁

𝑛=1

∑ |𝜃𝑖|𝑁
𝑖=1

 (5) 

 240 

Where 𝜃^ is the predicted value and 𝜃𝑖 is the actual value and N is the sample size. 

2.3 Flood hazard calculation 

To represent the flood hazard, we derive water depths from the January 2019 flood event. This approach takes the 

following three main steps: (1) extracting SAR data and processing it using SNAP software (SNAP, 2019) to 

create a flood extent map, (2) preparation of the data in ArcGIS and (3) using the available SRTM DEM to estimate 245 

the water surface elevation and extracting the flood water depth.  
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In the first step, pre-processing of the data was performed through calibration and speckle filtering. Post-

processing was conducted by geometric correction using the terrain correction function. As the pixel values in 

SAR imagery can be related to the radar backscatter of the area where it was taken, calibration is necessary to 250 

transform the pixels from the digital values recorded by the satellite into backscatter coefficients. This process 

creates a new product with calibrated values of the backscatter coefficient. The derived product underwent 

additional speckle filtering to remove the noise from the image using the ‘Lee filter’. In the binarization process, 

water and non-water are separated throughsetting a threshold by analyzing the backscatter coefficient histogram 

and manually determining the peak characteristics of land and water areas. After this process, flooded areas could 255 

be determined by setting a threshold value of 0.0022 which was defined based on the historgram plot of pixel 

values for reflectivity.  

 

The next step was to prepare the image in ArcGIS. The water was vectorized using the ‘Raster to vector’ tool and 

aggregated with the ‘Aggregate polygons’ tool based on a neighborhood of 100 meters. Single-pixel polygons 260 

were removed to exclude noise from the flood map. Any empty spaces in the polygon were filled using the ‘Union’ 

and ‘Dissolve’ tools. These filled spaces can be the result of beneath-vegetation flood areas (Shen et al., 2019) 

that can be missed by the SAR processing (Shen et al., 2019). They are removed in the next, final step if they are 

a result of actual topographic factors, such as local hills.  

 265 

The final step in this approach follows the research of Cian et al., (2018) and S. Cohen et al., (2018), where the 

flood boundaries along the water surface are used to estimate the elevation of the water surface. The boundaries 

of the derived flood extent were turned into points with the ‘raster to point’ tool, after which the elevation values 

were extracted from the DEM. The water surface was then computed using the ‘Inverse Distance Weighting 

(IDW)’ tool from ArcGIS. Essentially, this means that pixels inside of the flood extent get the elevation value of 270 

the closest elevation points along the boundary. The water depth can then be calculated by deducting the initial 

DEM values from the assigned water surface values. 

 

To evaluate the the water depth interpolation method,  the result is compared with a flood hazard map obtained 

from running a hydraulic model that was run for a subsection of the Shire river in a study by Copier et al., (2019). 275 

The model was run using Hydrologic Engineering Center's River Analysis System (HEC-RAS) software 

(Hydrologic Engineering Center, 1998). The Root Mean Square Error (RMSE) is used to compare the different 

models using the UAV DSM (Cohen et al., 2018). 

2.4 Damage estimation 

To estimate the damage for the pixel-based approach, the built-up area will be estimated by taking the built-up 280 

area of the pixel according to average density percentages and building sizes. This data will be collected by visual 

interpretation of the UAV imagery. The damage is calculated through the following expression: 

 

 𝐷ₚ[€] =  ∑ 𝑑𝑎𝑚𝑎𝑔𝑒(𝑖ₚ) ∗ 𝑎(𝑖ₚ) ∗ 𝑟(𝑖ₚ) ∗ 𝑟𝑐(𝑖ₚ)[€]

3

𝑖=1

 (6) 
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 285 

Where:  

- 𝑖ₚ = the building typology as determined by the building stock description of the Malawi National 

Statistical Office (2018); 

- 𝑑𝑎𝑚𝑎𝑔𝑒(𝑖ₚ) is the damage per pixel in euros calculated with the adjusted stage-damage curve, and using 

as input the water depth [m] in the considered pixel; 290 

- 𝑎(𝑖ₚ) is the size of the object in area m²;  

- 𝑟(𝑖) is the ratio of the typology according to the national survey; 

- 𝑟𝑐(𝑖) is the replacement cost per m² based on the typology (𝑖). These estimates are collected through 

interviews and focus group discussions in the case study area (Teule et al., 2019). 

For the object-based approach the damage can be calculated through the following expression: 295 

 

 𝐷ₒ[€] =  ∑ 𝑑𝑎𝑚𝑎𝑔𝑒(𝑖ₒ) ∗ 𝑎(𝑖ₒ) ∗ 𝑟𝑐(𝑖ₒ)[€]

2

𝑖=1

 (7) 

 

Where:  

- 𝑖ₒ = the building typology as determined by the OBIA and field survey; 

- 𝑑𝑎𝑚𝑎𝑔𝑒(𝑖ₒ)  is the damage per object in euros calculated with the adjusted stage-damage curve, and 300 

using as input the water depth [m] in the considered object; 

 

Based on the building typologies found in both the national and our local survey, damage curves were constructed 

by aggregating the curves from the CAPRA library and adjusting them with the information from Maiti (2007). 

We follow Maiti (2007), in assuming that that structures constructed with a mud wall tend to collapse at a water 305 

depth of 1 meter. 

 

For the pixel-based approach, the description in fourth Integrated Household Survey 2016-2017 (IHS4) of 

traditional, semi-permanent and permanent buildings is used to aggregate the material-specific damage curves 

from the CAPRA library. This means, for example, that that the materials used to describe a traditional building 310 

are used to construct the curve, being: unfired mud brick, grass thatching for roofs or rough poles for roof beams 

(Malawi Statistical Office, 2017). The distribution of these three building types in Chikwawa, found in the IHS4, 

are used to calculate the damage for a flooded pixel. For the object-based approach, the results from the field 

survey are used to create damage curves for the building typologies determined by aerial observation and the 

OBIA. In this case, the local distribution found in buildings materials is used to aggregate the curves from the 315 

CAPRA library based on percentages.  

 

To quantify how the damage parameters can influence the damage estimate, a one-at-a-time sensitivity analysis 

will be conducted by increasing and decreasing the different damage parameters with the mean of the respective 

relative errors. The sensitivity value (SV) will be used to represent the sensitivity and can be calculated by dividing 320 

the largest resulting damage by the smallest resulting damage (Koks et al., 2015).  

 

https://doi.org/10.5194/nhess-2020-417
Preprint. Discussion started: 15 January 2021
c© Author(s) 2021. CC BY 4.0 License.



12 

 

3 Results  

3.1 Field observations 

As a result of the information collected through the building survey, structures are grouped into two types. This 325 

is based on the similarity of their flood vulnerability and their distinctive aerial features. A total of 50 samples 

was taken to represent building stock. No buildings were found that have a wall structuring resembling wood, 

reed or concrete. In addition, no structures were found having tiles or any other material as the roof, nor any 

having more than two levels.  

3.1.1 Metal-roofs 330 

The first type is composed of burnt and, in a small number of cases (10%), unburnt bricks. This type is less 

vulnerable to flooding compared to the other type due to its material being less susceptibility to building failure. 

Its main distinctive aerial feature is a metal sheet roof, but the results of the OBIA and the field survey also indicate 

that this type of building is often larger than thatch-roofed buildings.  

3.1.2 Thatch-roofs 335 

The second type is generally composed of less formal building material, with its main distinctive feature being a 

thatch roof. The results of the survey seem to indicate a relatively equal distribution between the buildings 

materials, but as unburnt bricks and mud walls are more susceptible to building failure, this type is considered 

more vulnerable to flooding.  

3.2 Damage curves and maximum damage functions  340 

Two damage curves are created for the object-based approach based on typologies corresponding with the field 

survey and three for the typologies in the building stock description of the national survey that are used in the 

pixel-based approach (Fig. 5). 

 

 345 

Figure 5: Constructed damage curves for the two typologies derived from field and aerial observation (left-hand panel), 

and three typologies derived from the description of building stock at district level (right-hand panel) (Malawi National 

Statistical Office, 2017). The water depth is the flood water relative to the ground floor. 
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The maximum damage values per square meters can be found in Table 3. These values are estimated based on the 

different kind of materials and the costs of building the structure in Southern Malawi and were validated by local 350 

authorities  

 

Table 3: Estimated maximum damage values per m² based on local knowledge of replacement costs (Teule et al., 2019).  

Typology €/m² 

Permanent 15.20 

Semi-permanent 10.60 

Traditional 4.40 

Metal-roofed 13.00 

Thatch-roofed 9.70 

 

3.3 Flood inundation 355 

The average water depth from the flood event at the case study location was 1.17 meter for the surface water 

interpolation and 1.22 meter for the hydraulic model run using the UAV DSM (Copier ref). The maximum 

estimated water depth for both approaches was about 3 meter (3.30 and 2.79 meters, respectively). The RMSE 

was calculated to be 0.73 meters. The results show that for a flood depth of approximately 3 meters, the surface 

water interpolation method deviated from the hydraulic model by <0.75 meters on average.  360 

 

The same method for the total case study area with the SRTM DEM produced a water depth map with an average 

water depth of 1.26 meter and a maximum water depth of 7 meters (Fig. 6). Objects in the inundated area were 

assigned the water depth in the corresponding cell. 
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 365 

 

Figure 6: The flood inundation extent for the case study area using the SRTM DEM (left) and the derived water depth 

map using surface water interpolation (right). The inundation maps are shown on © Google Satellite. 

3.4 OBIA quality assessment 

The implementation of the OBIA model had a varying degree of success according to the statistical tests. Table 4 370 

shows that classification is more reliable for classifiers that have a clear spectral difference with surrounding 

elements, such as shadow and metal roofs, whereas bare ground and thatched roofs are less easy to distinguish. 

These spectral difference resulted in a higher F1-Score for buildings with a metal roof (89%) compared to those 

with a thatched roof (53%). With the F1-score being the harmonic mean of the Precision and Recall, this metric 

captures both the false negatives and the false positives of the classification proces. The lower F1-score for 375 

detected thatch roofs could be attributed to their tendency to blend in with the environment because of their 

relatively similar spectral properties. With the addition of the height threshold for objects, the individual F1-scores 

for buildings were improved to 90% for metal-roofed buildings and 72% for thatched-roofed buildings. The 

increased F1-score for thatched-roof buildings indicates that having additional and accurate information on the 

height of the objects has a large effect on the individual classification accuracy. The overall accuracy of the initial 380 

run shows a value of 77.45%, indicating the amount of correctly classified objects out of the total amount of 

samples. This value also increases up to 80% with the addition of a height threshold for objects, though this 

increase is also partly due to the exclusion of poorly performing classes such as ‘Bare ground’. 

  

Made with QGIS using © Google Satellite   
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Table 4: Evaluation of the performance accuracy of the OBIA classification. *addition of height threshold by 385 
subtracting the extracted DSM and DEM values. 

Label F1-score F1-score* Accuracy (%) Accuracy (%)* 

Vegetation 0.91 - 

77.45 80.19% 

Metal 0.89 0.90 

Thatch 0.53 0.72 

Bare ground 0.49 - 

Shadow 0.90 - 

 

 

The building objects from the OBIA are a direct result of the segmentation process, and the relative error seems 

to reflect the same pattern as the classification process. This means that buildings with a thatch roof tend to be 390 

harder to detect because the model groups pixels together that represent different objects, such as bare ground and 

the thatch roof. For both typologies, the relative error between observed and predicted building area can be 

observed in Figure. 7. For the thatch roof buildings, 50% of the predictions are found with RE lower than 30%. 

For the metal-roofed buildings, this same percentage of predictions are found with a RE lower than 7.5%. 

Generally, metal-roofed buildings tend to be larger in size than thatch-roofed buildings, with a mean building size 395 

of 39 m² and 21 m², respectively. For both typologies, the RE tends to decrease as building size increases. This 

seems to be in line with literature where it is stated that if objects get closer to the size of the available spatial 

resolution, errors are more likely to occur (Blaschke, 2010). 

  

Figure 7: Building area and relative error for both typologies (metal and thatch) in the case study area. 400 

3.5 Damage estimates 

By overlaying the separate components of the flood damage assessment, the estimated damages were calculated 

for both approaches. Compared to a conventional pixel-based approach, the object-based approach provides a 
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lower estimation of the exposed built-up area, of about two-thirds (Table 5). As a result, this influences the 

resulting damage. The flooded built-up area for the land-use based approach and the object-based approach was 405 

estimated at 2,541 m² and 3,952 m², respectively. This resulted in estimated flood damage of approximately 

€10,140 and €15,728, respectively (Table 5). 

 

Table 5: Flooded buildings and built-up area according to (1) the object-based approach, (2) pixel-based approach and 

(3) the available OSM map, and area and total damage according to (1) the object-based approach, (2) pixel-based 410 
approach. 

Villages Number of flooded buildings Flooded built-up area (m2) Total damage (€) 

 Object Pixel OSM Object Pixel OSM Object Pixel 

1 9 11 10 371 338 348 1,286 1,754 

2 54 92 61 1,424 2,768 1,321 6,215 10,043 

3 21 28 26 746 846 732 2,639 3,931 

Total 84 132 97 2,541 3,952 2,401 10,140 15,728 

 

 

Although building densities and average buildings sizes were extracted from the same UAV imagery, a difference 

can be observed in the flooded built-up area between the two approaches. This is likely a result of the inability of 415 

land-use pixels to account for spatial variability of the buildings objects inside a certain area. Similar research on 

German flood events exemplifies that significant uncertainties are present in flood damage assessments due to 

information lacking on the number of flooded buildings and the distribution of building use within the flooded 

area (Merz et al., 2004). 

3.6 Sensitivity analysis 420 

By varying the building size and water depth parameters with the mean of the respective relative errors, the 

sensitivity of the damage parameters for both approaches were estimated. As there is no information on the 

uncertainty of the damage curve values from the Evaluación de Riesgos Naturales (ERN) database, the influence 

of this parameter is derived by using only the lowest and highest damage curve from the building types. For 

example, the lower damage bound for the damage curve sensitivity value in the object-based approach is computed 425 

by using only the Metal damage curve and the higher bound using the Thatch damage curve. Table 6 shows that 

the largest variance in resulting damage is caused by this variance of the damage curves.  

 

Table 6: The sensitivity values (SV) of the different damage parameters for the pixel- and object-based approach. 

Kolom1 
Pixel-

based 

Object-

based 

Parameter SV 

Building size 1.43 1.21 

Water depth 1.46 1.56 

Damage curve 1.71 1.9 
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 430 

Similar results have been found by Ke et al., (2012) in an urban flood damage assessment, where the damage 

function has the largest influential degree of damage followed by the value of the elements at risk. Another study 

by de Moel et al., (2012) also notes that the most influential parameter in the uncertainty of flood damage estimates 

is the shape of the depth-damage curves. It can be observed that the parameters involved in flood damage 

estimation include an amount of uncertainty, and this propagates in the total estimated damage. As the hazard 435 

component in both calculations remained equal, the differences can be attributed to the sensitivity of the damage 

parameters on the building types and damage curve parameters. Moreover, it can be observed that the sensitivity 

value of building size is lower in the object-based approach compared to the pixel-based approach, which can be 

attributed to less uncertainty in total building area that is flooded. 

 440 

4 Discussion 

Although this research has uncovered several important factors in the estimation of flood damage based on 

building detection, the issue deserves further additional research. First, the method was created for a specific case 

study area with little variation in building types. Building extraction is herein limited to the available data source. 

For urban areas, classification confusion might occur due to the heterogeneity of building types and structural 445 

properties. This complication could yield more uncertainties in assigning appropriate damage curves to buildings, 

especially as large discrepancies in potential flood damage exist between urban and rural areas in developing 

countries (Englhardt et al., 2019). Another distinction should be made between when studying areas with river-

floods or flash-floods, as capturing the latter with Earth Observation data becomes a challenging task due to the 

frequency SAR acquisitions can be made (Mouratidis & Sarti, 2013).  450 

The second aspect refers to the additional field survey. The acquired samples provide insight into the relations 

between the local elements and the remotely sensed characteristics. However, a larger number of samples would 

be necessary to provide a statistically sound justification of the assumption on this relation. Obtaining field 

observations could become a difficult task if the method is scaled up, but a promising line of research could be 

the implementation of services like Mapillary or Google Street View for this purpose. Combining the findings 455 

from this kind of research with field surveys can, therefore, complement the conventional methods by aggregating 

accurate estimates on building sizes, density, and characteristics. This would decrease the amount of uncertainty 

incorporated in potential scaled-up assessments. The HRSL provides an impressive first glance at exposed 

settlements and can be used as a base layer to project the distributions of building exposure and vulnerability 

found in this study. This method resembles the study of De Angeli et al., (2016), in which clusters are created 460 

using representative buildings. In this case, field observations from drones and services like Mapillary can be 

combined to create representative villages or towns.  

 

Finally, the other sources of uncertainty accompanied by the damage estimation need to be further studied. 

Although they do not directly relate to the results of the exposure estimation, the sensitivity analysis in this 465 

research confirms that parameters such as floodwater characteristics, maximum damage values, and the applied 

damage curves have a significant effect on the total flood damage. To validate the water depth estimation, the 

effects of using a coarser resolution SRTM DEM in surface water interpolation should be tested. Preferably, 
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validation data from hydraulic models is used that corresponds to the flood event that is extracted from satellite 

imagery. This way, differences due to discharge uncertainties are limited. Also, the aggregation of damage curves 470 

based on building material could yield uncertainties in the resulting flood vulnerability. For a more accurate 

appropriation of the damage susceptibility, individual building types could be subjected to detailed survey studies 

that include historic flood events and damage with the corresponding building material.   

5 Conclusions and outlook 

The purpose of this research was to create a flood damage model based on the automated recognition of buildings 475 

and their characteristics through UAV image processing. By doing so, improvements on the exposure and 

vulnerability component of flood damage assessments were assessed and evaluated by comparing this new 

approach to a conventional one based on pixel-based  information. The two flood damage models were applied in 

a rural and flood-prone area in Southern Malawi, with a building stock consisting of mostly semi-permanent 

structures  structures.  480 

 

In terms of direct structural damage considering the replacement costs of buildings in the study area, the flood 

damage based on homogenous land-use pixels is about 50% higher than the object-based approach (15k € vs 10k 

€). The calculation is found to be most sensitive to the damage curve that is used, with a sensitivity value (highest 

divided by lowest estimate) of 1.71 and 1.90. However, uncertainty in building exposure still results in sensitivities 485 

of 1.43 for a pixel-based approach and 1.21 for an object-based approach. This illustrates that accurate information 

on exposure is essential in accurately estimating potential flood damage.  

 

The effects of including high-resolution elevation information in the OBIA were examined by including a height 

threshold for classified objects. Individual F1-scores of the object-based classification were improved from 0.89 490 

to 0.90 for metal-roofed buildings and 0.53 to 0.72 for thatch-roofed buildings. These results show that the 

integration of accurate elevation data can improve standard classification schemes based solely on spectral bands. 

The relative error on the area of the detected buildings tends to be lower for larger buildings and buildings with a 

clear spectral difference with the surrounding area. The water depth, derived by interpolating the surface water 

boundaries of a remotely sensed flood extent, deviated on average 0.73 meters from a hydraulic model for a 495 

maximum water depth of approximately 3 meters. This validation was conducted for a subset of the case study 

river using a high-resolution DSM.  

 

Based on the results of this study we find that the primary utility of high-resolution UAV imagery in flood damage 

assessment is to spatially locate buildings in inundated areas and retrieve their characteristics by creating 500 

typologies in combination with local observations. These characteristics can be used to apply damage curves that 

represent the local building stock instead of using aggregated information that implies homogeneous land cover 

for large regions. Furthermore, the number of buildings and their respective area and occupancy type can be 

derived to estimate flood damage more precisely. This improvement in data availability has the potential to aid 

humanitarian decision-makers in choosing appropriate policies with regard to flood protection or determining 505 

threshold levels for effective early-action measures in the case of flooding.  
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