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Abstract.  

Reliable information on building stock and its vulnerability is important for understanding societal exposure to 

floods. Unfortunately, developing countries have less access to and availability of this information. Therefore, 

calculations for flood damage assessments have to use the scarce information available, often aggregated on a 15 

national or district level. This study aims to improve current assessments of flood damage by extracting individual 

structural building characteristics and estimate damage based on the buildings’ vulnerability. We carry out an 

Object-Based Image Analysis (OBIA) of high-resolution (11 cm ground sample distance) Unmanned Aerial 

Vehicle (UAV) imagery to outline shapes.building footprints. We then use a Support Vector Machine Learning 

algorithm to classify the delineated buildings. We combine this information with local depth-damage curves to 20 

estimate the economic damages for three villages affected by the 2019 January river floods in the Southern Shire 

basin in Malawi, and compare this to a conventional, pixel-based, approach using aggregated land use to denote 

exposure. The flood extent is obtained from satellite imagery (Sentinel-1), and corresponding water depths 

determined by combining this with elevation data. The results show that OBIA results in building footprints much 

closer to OpenStreetMap data, where the pixel-based approach overestimates. Correspondingly, the estimated 25 

damages from the OBIA and aggregated land-use approach yield €are lower (€10,140 and €) compared to the 

pixel-based approach (€15,782, respectively, highlighting). A sensitivity analysis illustrates that uncertainty in the 

derived damage curves is larger than in the hazard or exposure data. This research highlights the potential for 

detailed and local damage assessments using UAV imagery to determine exposure and vulnerability in flood 

damage and risk assessments.  30 

1. Introduction 

Worldwide, flooding is one of the most common and damaging natural hazards in both monetary terms and loss 

of life (UNDRR, 2019). Estimating flood damage is essential for shaping flood risk management before and 

disaster managementresponse after a flood. This can be done a-priori to support strategic risk reduction by, for 

example, increasing awareness in areas that are high in potential damage and therefore reduce vulnerability , or 35 

after ana given flood event in order to supportquickly derive estimates of building damages to help with recovery. 

and prioritize actions. This latter one is knowsknown as a Damage and Needs Assessment (DNA), which is usually 
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based for the most part on data collected on the ground truth data. For DNAs, household field surveys are 

conducted, as rapid Damage and Needs AssessmentsDNAs and Post Disaster and Needs Assessments (Jones, 

2010). A-priori flood damage assessments are generally modelled and require extensive datasets on flood hazard 40 

characteristics, the exposed elements at risk, and the vulnerability of these elements (Budiyono et al., 2015; Alam, 

A. et al., 2018; UNDRR, 2019).  Much work has focused on improving these damage estimates, quantifying the 

effect of different flood scenarios and its consequences (Murnane et al., 2017; Jongman et al., 2012; de Moel et 

al., 2015). Unfortunately, sufficient information on the exposure and vulnerability is often lacking or less 

accessible in developing countries or less accessible (M. van den Homberg and Susha, 2018). Therefore, 45 

calculations for flood damage assessments have tomust use the scarce data available, often aggregated on high 

national or district level. This lack of data complicates accurate and downscaled flood damage assessments, as 

shown in studies by (Amirebrahimi et al., (2016;) and Fekete,  (2012). The lower spatial level is, however, required 

for most flood risk management applications. BuildingEspecially building damage, in particular, remains hard to 

quantify, as this is usually a heterogeneous land-use categoryexisting classification categories often neglect spatial 50 

heterogeneity. This causes many uncertainties in the assessment about physical structure, content, and flood 

susceptibility (Wagenaar et al., 2016). Flood damage assessments are a standard procedure to identify potential 

economic losses in flood-prone areas, and. With growing populations and economies have increased, the relevance 

of predicting the impact of impending disasters on the people that live in these areasneed to accurately estimate 

flood damage is gaining greater importance (Merz et al., 2010). Such assessments can enable the allocation of 55 

resources for recovery and reconstruction by humanitarian decision-makers when a disaster does strike (Díaz-

Delgado and Gaytán Iniestra, 2014). For example, severe floods in January 2015 have demonstrated the need for 

improved flood damage assessments in Malawi. During this period, the worst flood disaster in terms of economic 

damage was recorded for 15 of its 28 districts, predominantly in the Southern Region. The total damage was 

estimated to be US$ 286.3 million, with the housing sector accounting for almost half of the total damage with 60 

US$ 136.4 million (Government of Malawi, 2015). More recently, the Chikwawa district was subjected to 

extensive flooding because of continuous rainfall by tropical cyclone Desmond in January 2019. 

 

Several studies have suggested that flood damage assessments could be improved by incorporating the 

vulnerability of building structures. Blanco-Vogt et al., (2015) summarize different methods to retrieve building 65 

characteristics and estimate flood vulnerability based on building typologiestypes in a semi-urban environment. 

Different building parameters are discussed that could affect the building susceptibility to flooding, including 

height, size, form, roof structure and the topological relation to neighbouring buildings and open space. 

TypologiesTypes are created by taking the remotely sensed data and relating this to potential flood impact. They 

note that these typologiestypes can be used to link buildings to more detailed damage curves and discuss the 70 

challenges in terms of data resolution and techniques in remote sensing. The research of De Angeli et al., (2016) 

builds on the method of Blanco-Vogt et al., (2015) by developing a flood damage model that differentiates the 

urban area (using building clusters based on building taxonomies and footprints), instead of using a single 

homogenous land-use class. Remotely sensed data were used to derive exposure and vulnerability information 

after which it was combined with available building information. The damage was validated, and the model was 75 

able to accurately assess damage estimates in an urban setting., with the total average damage deviating from the 
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refund claims with a percentage error lower than 2%. Nonetheless, the authors state that a generalization of the 

procedure needs to be studied further. 

  

Remote sensing has the potential to generate information on the exposure and vulnerability input for damage 80 

assessments. Numerous studies have been carried out for mapping land cover, such as built-up areas, with varying 

methods and spatial scales (Mallupattu and Sreenivasula Reddy, 2013; Ai et al., 2020). With new innovations in 

the resolution of imagery, also smaller-scale studies can be conducted where remote sensing can be applied to 

retrieve information on object-level (Klemas, 2015; Englhardt et al., 2019). In a review by De Ruiter et al., (2017) 

it is stated that common flood vulnerability studies that use land-cover typologiestypes could be improved by 85 

incorporating object-based approaches. For, for example, by developing vulnerability curves for different wall-

material types. A technique to derive useful information from remotely sensed image data is Object-Based Image 

Analysis (OBIA). OBIA has the potential to identify exposed elements and its characteristics accurately when 

incorporated into a flood damage assessment but there is little literature combining the methods. The process 

involves grouping pixels into objects based on their spectral properties or external variables, after which they are 90 

combined into  spatial units for image analysis such as image classification (Blaschke, 2010). Spectral properties 

to group these objects could, for example, be the mean value or standard deviation of spectral bands of the image. 

Using this method, instead of a pixel-based classification, over-classification or a ‘salt and pepper look’ can be 

avoided as pixels are not defined individually (Blaschke, 2010). 

 95 

A conventional workflow to conduct an OBIA existsconsists of two major steps: (1) segmentation and (2) feature 

extraction and classification. The accuracy of this approach is improving with the emergence of higher resolution 

imagery. More specifically, the literatureLiterature demonstrates that the relationship between the objects under 

consideration and the spatial resolution is critical for the accuracy of segmentation and the OBIA in general, 

improving with the emergence of higher resolution imagery (Blaschke, 2010; Belgiu and Drǎguţ, 2014; Xu et al., 100 

2019). Although feature classifications can be done manually, this process would be time-consuming and tedious 

for large areas. Machine Learning techniques can provide similar results and several statistical methods can be 

applied that use the information from the designated samples in the classification. Certain techniques exhibit better 

results than others depending on the case study area, the imagery, or the size of the training set. In a review by 

Ma et al., (2017) it was concluded, for example, that in the case of land-cover mapping using OBIA, Random 105 

Forests and Support Vector Machines perform best in agricultural areas for high-resolution imagery. 

 

From the above it is clear that exposure and vulnerability components are underrepresented in current flood 

damage assessments, especially in data-scarce areas. In this research, we aim to bridge the gap in data requirement 

by using automated object recognition and machine learning ofclassification from high-resolution images. We 110 

apply, based on an OBIA workflow, is used to delineate the outlines of buildings and use the machine learning to 

and characterize the buildings. After which classification of building types can be made to implement stage-

dependent damage curves based on building material and floodwater characteristics. Remotely sensed images are 

collected by Unmanned Aerial Vehicle (UAV) that can reach key areas, and the approach buildings in a flood 

damage assessment. This object-based approach is applied to the 2019 January flood event for three villages in a 115 

flood-prone district in the Lower Shire basin in Malawi. By comparing this method and compared to a 
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conventional land-use based approach using aggregated exposure data, recommendations can be made for future 

assessments.  

 

2. Data and methods 120 

This research has been divided into three parts following the general procedure of a flood damage assessment 

(Merz et al., 2010; de Moel and Aerts, 2011; Jongman et al., 2012). Flood risk is defined as a combination of the 

elements: hazard (flood extent and depth), exposure (exposed assets) and the conditions of vulnerability that are 

present (the susceptibility of buildings to floods) (UNDRR, 2019). The first part deals with the classifications of 

elements by creating house typologies by combining information from an Object-Based Image Analysis (OBIA) 125 

of high-resolution UAV imagery with a field survey. The second part focusses on analyzing the detected building 

exposure and assessing the corresponding vulnerability of the objects. In the final part, the data from the steps 

mentioned above is related to the flood impact corresponding to a specific flood event  in the case study area. 

Based on Sentinel-1 satellite imagery, a flood extent is created, and its related water depth is estimated. The 

economic damage of the elements is calculated using local building-specific stage-damage curves. We evaluate 130 

the influence of building size, water depth and damage curve on our damage assessment model using a one-at-a-

time sensitivity analysis, as applied in Ke et al. (2012).  

  

To assess the added value of using UAV data on flood damage assessments, the information from an OBIA 

conducted on  high-resolution optical imagery was incorporated into an flood damage assessment and compared 135 

to a convential assessment based on disaggregated census data and homogenous land-use pixels. For (pixel-based 

approach). By doing so, this study aims to: 

• create a framework to incorporate OBIA in flood damage assessments.  

• Assess the added value of high-resolution UAV imagery in creating object-level exposure and 

vulnerability data. 140 

• Compare flood damage estimates between an object-based and conventional damage pixel-based 

approach. 

 

In the next chapters we will introduce the case study area and the data, methods and results related to the pixel -

based and object-based approach. In addition, a sensitivity analysis is performed to illustrate which components 145 

of the risk assessment, building stock are most important when it comes to uncertainty in damage estimates. 

 

1.1 Study Area  

Malawi is a landlocked country in sub-Saharan Africa, bordered by Zambia to the Northwest, Tanzania to the 

Northeast, and Mozambique on the East, South, and West. The country is vulnerable to a range of natural hazards 150 

including tropical storms, earthquakes, droughts, and floods. Especially floods affect many sectors from 

agriculture to sanitation, environment, and education. A major contributing factor to this risk is the variable and 

erratic rainfall, which often causes flooding in lower-lying areas after falling in the highlands. Between 1946 and 

2013, floods accounted for 48% of the major disasters in Malawi. With a large rural population mostly relying on 
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agriculture, these disasters have a large impact on the national economy and food security of the population (World 155 

Bank, 2015). 

 

The Southern District of Chikwawa is one of the poorest and most flood-prone in the country. In addition to being 

exposed to flooding frequently, the district is characterized by a largely rural population and home to highly 

vulnerable communities in terms of economic diversification, employment opportunities and access to social 160 

services (Trogrlić et al., 2017). The Shire River is the largest river in the country and starts from lake Malawi 

flowing towards Chikwawa and into the low-lying Mozambique plain, as shown in Figure 1. In the district of 

Chikwawa, our study area, the river meets a large flood plain called the Elephants Marshes. This floodplain is 

characterized by stagnant flows, with the marsh varying in size depending on the flow of the river. When rainfall 

is high, large areas may be underwater. 165 

 

In 2015, Malawi underwent some of the worst flooding ever recorded in the country, affecting 1,101,364 people, 

displacing 230,000, and killing 106. In the aftermath, it became clear that the housing sector accounted for most 

of the total damage with almost 40% followed by agriculture with approximately 20%. The worst affected districts 

were in the Southern region, being the districts of Chikwawa and Nsjanje, and the disaster sparked a discussion 170 

about a more responsible policy towards this type of events. One of the lessons learnt from this event was that the 

lack of disaggregated (spatial) data and information management slowed down the disaster response and could 

eventually slow down recovery efforts as well (PDNA, 2015).  

 

Figure 1: the geographical location of Malawi (left) and the District of Chikwawa (right). © Google Maps, 2021. 
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Between the 22nd and 26th of January 2019, the Chikwawa district was extracted from the Malawi National 175 

Statistical Office (NSO) and used to create corresponding stage-damage curves (Malawi Statistical Office, 2017). 

This process will from now on be referred to as the ‘pixel-based’ approach. Our proposed damage assessment 

combines the information from an OBIA with local data on building stock to calculate structural damages based 

on the mid-January 2019 flood. This process will from now on, be referred to as the ‘object-based’ approach.  The 

two different models share similarities on the impact of the specific flood event but are inherently different in 180 

their approach on the classification of elements and their flood susceptibility. In the terminology of the UNDRR, 

(2019), this translates into different input data for the exposure and vulnerability components. The sensitivy of 

the damage parameters are analysed to determine the most influencing factors in the flood damage assessment 

models. Figure 1 visualizes the method.  

 185 

again subjected to extensive flooding because of continuous rainfall by Tropical Cyclone Desmond. There is no 

specific empirical damage data available for theour case study area covered by the UAV imagery. However, the 

International Federation of Red Cross and Red Crescent Societies (IFRC) issued an  Emergency Plan of Action 

(EPoA) after the 2019 January river floods in Malawi. Based on preliminary assessment carried out by staff 

members and volunteers on the ground, from the Village Civil Protection Committee (VCPC) and Malawi Red 190 

Cross Society (MRCS), one of the most affected is the Traditional Authorities isAuthority of Makhuwira with a 

total of 2,434 collapsed houses. (IFRC, 2019). In Chikwawa, a total of of 15,974 people were affected, 3,154 

houses damaged or destroyed, and 5,078 people reported to be displaced across at least seven camps set up by 

communities and government. Most of the affected houses were semi-permanent structures (IFRC, 

2019),buildings, which are also common in our study area. (IFRC, 2019).  195 

 

 

Figure 1. Workflow of the two approaches of flood damage estimation. The left panel shows the object-based approach 

and the right panel shows the pixel-based approach. Abbreviations: Synthetic-aperture radar (SAR), Object-Based 

Image Analysis (OBIA), Remote Sensing (RM). The inundation (hazard) map is shown on © Google Satellite. The 200 
OBIA and land-use map are created using UAV imagery from the Malawi Red Cross Society.  
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2. InputMaterials 

In order to determine the hazard, exposure and vulnerability for both the pixel- and object-based approach, a 

variety of data sources have been used. This section describes these data sources, including remote sensing and 

other geospatial data (including UAV imagery), local survey, regional building statistics and the datasets used for 205 

the construction of (local) damage curves.    

2.1 Remote sensing data  

UAV optical imagery was collected in November 2018 by The Netherlands Red Cross (NLRC) and the Malawi 

Red Cross Society (MRCS) for mapping and flood simulation purposes in the Lower Shire Basin. A fixed-wing 

UAV (Smartplane Freya) with 0.3 m2 wing area, weighing around 1.5 kg, and a RICOH GR II camera was used 210 

to obtain the UAV imagery. The drone usually flew around 300 meters altitude, having a flight time of around 60 

minutes per battery and with a sidelap and overlap of each 70%. The flights were carried out without Ground 

Control Points (GCP). van den Homberg et al. (2020) give an extensivea detailed description of the UAV model 

and data collection and UAV . Agisoft Photoscan and Metashape software was used. A to stitch the images of the 

optical imagery and extract a Digital Surface Model (DSM) was generated usingfrom the 215 

collectedstereophotogrammetry. The extent of the flight coverage is shown in Figure 1. 

 

In addition to UAV imagery. Other, other remote sensing data were acquired from open-source databases, 

including the Shuttle Radar Topography Mission (SRTM) DEMdigital elevation model (DEM) collected by 

NASA and the SAR Sentinel-1 imagery collected by Copernicus (Farr & Kobrick, 2000). The High-Resolution 220 

Settlement Layer (HRSL) provides an estimate of the settlement extent and population density and was developed 

by the Connectivity lab at Facebook in combination with the Centre for International Earth Science Information 

Network (CIESIN) by using computer vision techniques to qualify optical satellite data with a resolution of 0.5m 

(CIESIN, 2016). The OpenStreetMap (OSM) contains a features layer of manually delineated objects and was 

used for validation purposes ( ©(© OpenStreetMap contributors, 2019). Table 1 summarizes the various datasets. 225 

 

 

 

 

Table 1: Availableavailable datasets in this research. Abbreviations: : Digital Elevation Model (DEM), DigtitalDigital 230 
Surface Model (DSM), Ground Range Detected (GRD), Malawi Red Cross Society (MRCS), OpenStreetMap (OSM), 

Shuttle Radar Topography Mission (SRTM) Synthetic-aperture radar (SAR). 

 Dataset Type Resolution 

(horizontal) 

Data repository Acquisition Used for 

Remote sensing      

 
HRSL 

Land 

cover 
30m CIESIN 2016 Exposure 

(pixel-based)  

 
Satellite DEM 30m 

SRTM, Earth 

Explorer 
Unknown Flood hazard  

Inserted Cells
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 Sentinel-1 

(GRD) 
SAR 23m 

Copernicus 

Scihub 
24-01-2019 Flood hazard 

 
UAV Optical 0.11m MRCS 11-2018 

Exposure / 

vulnerability 

(object-based) 

 
UAV DSM 0.25m MRCS 11-2018 

Exposure / 

vulnerability 

(object-based) 

Geospatial data      

 OSM Vector Object  OpenStreetMap n/a OBIA 

validation 
 

2.1.1 Field survey  

2.2 Building data 235 

To gain information about the building stock present in the case study area, Teule et al. (2019) conducted a field 

survey on structures and their material in 4 villages in, or surrounding, the Traditional Authority Makhuwira, 

(including Jana, Nyambala and Nyangu (Fig. 2).). The data was collected by randomly selecting buildings in the 

vicinity of these interviews. In total, 50 buildings were sampled and used asassumed to be representative buildings 

in estimating the susceptibility of different building material typescharacteristics present in the area. Fig. 3The 240 

OSM data layer reports on a total of around 1350 buildings in the villages selected for our analysis. Figure 2 shows 

an example of one the sample buildings. The survey collected characteristics of potential flood vulnerability 

parameters, including size, height, roof material, wall material, and inventory of the house. These parameters were 

selected based on key features that characterize building types in the region along with their spectral differences, 

making them easier to detect from remote imagery.  245 
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Figure 3: Image2: image from one of the sample buildings taken in the case study area (taken by T. Teule et al., (23-06-

2019)). A clear contrast between building material is visible between the two structures: hatchedbuildings: thatched 

roofs and unburnt bricks walls (middle building) versus iron sheeted roofs and burnt bricks. 250 

Figure 2: The geographical location of Malawi (left) and the District of Chikwawa (right). © OpenStreetMap 

contributors, 2019. Distributed under a Creative Commons BY-SA License. 



 

10 

 

2.2 Object-Based Image Analysis (OBIA) 

The OBIA consisted of the following steps. First, validation and training samples were collected from the villages 

in the case study area by manually delineating objects. We manually delineated a total of 144 building to serve as 

training and 556 as  validation. This step was followed by segmenting the high-resolution imagery and classifying 

the vectorized objects. We selected the open-source geo-software Orfeo Toolbox (OTB). This toolbox is a library 255 

for image processing initiated by the CNES (French Space Agency) that includes numerous algorithms created 

for the purpose of segmentation and classification (Grizonnet et al., 2017). Further development of the toolbox is 

underway. 

 

Segmentation was performed using the Mean Shift Clustering algorithm utilized by OTB. The mean-shift algorithm 260 
exploited by Orfeo relates to the work of Michel et al., (2015), in which the goal of image segmentation is to partition 

large images into semantically meaningful regions. The following parameters were set: (1) the spatial radius or the 

neighborhood distance was set to 1.5m; (2) the range expressed in radiometry unit in the multispectral space to 5m; 

and (3) the minimum size of a region in segmentation 5m² in relation to minimum walls (left building sizes. The Support 

Vector Machine (SVM) algorithm from the same Orfeo library served to classify the vectorized objects from the 265 
segmentation. The SVM is a kernel-based machine learning algorithm that has been effectively used to classify remotely 

sensed data (Mountrakis et al., 2011). The classifier was trained on samples that represented the common features in 

the selected images and are summarized in Table 2.  An example of the output of this process is shown in Fig. 4.). 

In addition to the local field survey data, building stock used in the pixel-based approach was extracted from the 

Integrated Household Survey 2016-2017 (IHS4), conducted by the Malawi National Statistical Office (NSO) 270 

(Malawi Statistical Office, 2017). This report describes the distribution of three main building types by 

aggregating data to a regional level. A distinction is made based on their building material: 

• A permanent building has a roof made of iron sheets, tiles, concrete or asbestos, and walls made of burnt 

bricks, concrete or stones. 

• A semi-permanent building is a mix of permanent and traditional building materials and lacks the 275 

construction materials of a permanent building for walls or the roof. That is, it is built of non-permanent 

walls such as sun-dried bricks or non-permanent roofing materials such as thatch. Such a description 

would apply to a building made of red bricks and cement mortar but roofed with grass thatching. 

• A traditional building is made from traditional housing construction materials such as mud walls, 

grass/thatching for roofs, or rough poles for roofbeams. 280 

 

The ratio of the different dwellings in the district of Chikwawa is summarized in table 2. From this 

information, a trend can be observed towards a ratio with more formal buildings. The most recent statistics – 

being the building stock information from 2016-2017 – is used in the pixel-based flood damage assessment. 

 285 

Table 2: Ratios of building stock in the Chikwawa district of Southern Malawi (Malawi National Statistical Office, 

2018). 

 Permanent (%) Semi-permanent (%) Traditional (%) 

Building stock 2010 - 2012 25.5 15 59.5 

Building stock 2016 - 2017 33.7 33.8 32.5 
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2.3 Damage curve data  

Stage-dependent damage curves are created for different building types by extracting material-specific 290 

vulnerability functions from the CAPRA platform. This platform contains a library with pre-defined analytical 

vulnerability functions, including different construction materials, calibrated with expert-supplied parameters 

(CAPRA, 2012). These curves express relative damage as a percentage with respect to water depth. Several 

examples in the library include concrete, wood, reed, masonry and earth (unfired) materials.  

 295 

In addition to the vulnerability curves, maximum building damage values were estimated based on the different 

kind of materials and the costs of buildings found in Southern Malawi (Table 5). The values were validated by 

local authorities in the case study area during interviews by Teule et al., (2019). 

3. Methods 

This section describes the two flood damage assessment methods compared: first, the conventional, pixel-based 300 

method, and second the proposed object-based method, after which their distinctive components are discussed in 

more detail.  

3.1 Flood damage assessment 

Figure 3 presents the workflow applied in this study to derive the flood damage estimates from the January 2019 

flood event in the case study area. Following the general procedure of a flood damage assessment, both approaches 305 

can be divided into three separate components: hazard, exposure and vulnerability (Merz et al., 2010; de Moel 

and Aerts, 2011; Jongman et al., 2012), see Figure 3. In this research, we define the hazard as the flood extent and 

depth of a flood event, exposure as the exposed buildings to this flood and vulnerability as the susceptibility of 

these buildings to flooding.  

 310 

For the pixel-based approach, the HRSL land-use map, containing homogenous land-use pixels, is used to 

determine the built-up area. Building stock information from Table 2 is used to create corresponding stage-damage 

curves for the defined building types (Malawi Statistical Office, 2017).  

 

For the object-based assessment, we combine information from an OBIA of high-resolution UAV imagery with 315 

the stage-damage curves created from the field observations. Building footprints are detected and classified based 

on their aerial features to identify local building types. Local stage-damage curves are then assigned to these types 

by assessing the vulnerability of buildings found in the field survey.  

 

Both flood damage assessments are inherently different on the classification of exposed elements and their flood 320 

susceptibility. In the terminology of the UNDRR, (2019), this translates into different input data for the exposure 

and vulnerability components.  

 

The two different approaches share the same hazard component, being the 2019 flood event. Based on Sentinel-1 

satellite imagery, a flood extent is created, and its related water depth is estimated. The economic damage is 325 
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calculated by combining the flood impact with the different sets of exposure data and damage curves (Figure 3). 

In order to determine the relative influence of the different components on the resulting risk, we evaluate the 

influence of building size, water depth and damage curve on our damage assessment model using a one-at-a-time 

sensitivity analysis, as applied in Ke et al. (2012).  

 330 

 

Figure 3: Workflow of the two approaches of flood damage estimation. The left panel shows the object-based approach, 

the right panel shows the pixel-based approach. Abbreviations: Synthetic-aperture radar (SAR), Shuttle Radar 

Topography Mission (SRTM) digital elevation model (DEM), Object-Based Image Analysis (OBIA), High-Resolution 

Settlement Layer (HRSL), OpenStreetMap (OSM). The inundation (hazard) map is shown on © Google Satellite. The 335 
OBIA and land-use map are created using UAV imagery from the Malawi Red Cross Society.  

Table 2: Samples used as input for training the SVM classifier with mean value ranges of the spectral bands (nm). 

Value Label Samples Mean B0 Mean B1 Mean B2 

1 Vegetation 28 121-164 135-165 101-136 

2 Metal 27 207-241 207-244 205-245 

3 Thatch 31 225-241 201-228 184-213 

4 Bare 34 171-220 155-197 145-197 

5 Shadow 24 113-154 114-150 113-137 
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Figure 4: Steps of  the OBIA: (a) Original UAV imagery, (b) result of mean-shift segmentation, (c) classification using 340 
SVM classifier. The image contains UAV imagery collected by the Malawi Red Cross Society (MRCS), collected in 

November 2018. 

After the segmented objects were classified, a filtering process was conducted in which objects were removed 

based on their respective height and category. By keeping the two categories that represent buildings with a height 

over 0.5 m, buildings can be extracted, and potential misses are excluded from the damage calculation. This height 345 

was chosen as a value between the height of the ground and a one-story building. The mean height from the DSM 

was added to the objects by creating centric points of each segment and extracting the elevation values to these 

points from the UAV DSM map. To derive the height of these objects, a baseline DEM was constructed and 

subtracted from the mean DSM value. For this, the cells classified as ‘Metal’and ‘Thatch’ were removed from the 

DEM. Next, ground reference points were placed using visual interpretation to make sure no bushes or trees were 350 

selected. The elevation of these ground reference points were correspondingly used to interpolate an elevation 

surface using IDW (inverse distance weighting) and the elevation of this interpolated surface was used to 

determine the height of the ‘Metal’ and ‘Thatch’ cells by determining the difference with the original DEM 

elevation.   

 355 

To evaluate the performance of the OBIA model, a map with 556 manually detected reference objects was 

compared to a map with predicted buildings from the classification. For this purpose, a confusion matrix was 

created where a prediction can be either a True Positive (TP), False Positive (FP), True Negative (TN), or False 

Negative (FN). In which, TP (True Positive) is the number of cases detected both manually and with the automatic 

approach. FP (False Positive) is the number of cases detected by the automatic approach but not manually. TN 360 

(True Negative) is the number of cases detected manually but not by the automatic approach. FN (False Negative) 

is the number of undetected cases. The statistical parameters that were used to test the classification performance 

are the accuracy, F1-Score, and the Cohen Kappa. The overall accuracy (𝐴) was calculated given Eq. (1): 

Made with QGIS using UAV imagery collected by the Malawi Red Cross Society (MRCS).  
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 𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1) 

 365 

To test the classification performance per class, the F1-Score was used. This statistic is the weighted mean of both 

Precision (𝑃) and Recall (𝑅), where 0 indicated the lowest possible score and 1 a perfect score. The parameters 

are calculated with the following equations:  

 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 370 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃 ∗ 𝑅

𝑃 + 𝑅
 (4) 

 

 

To evaluate the building area, predicted buildings were chosen that have partial or complete overlap with the 

reference buildings. From this selection, the Relative Error (RE) was calculated per building typology. In this 

case, the absolute error is normalized by dividing it by the magnitude of the actual value. The RE is calculated 375 

through the following expression:  

 

 𝑅𝐸 = 
∑ |𝜃^ − 𝜃𝑖|

𝑁

𝑛=1

∑ |𝜃𝑖|𝑁
𝑖=1

 (5) 

 

3.2 Hazard: flood area and water depth estimation 

Where 𝜃^ is the predicted value and 𝜃𝑖 is the actual value and N is the sample size. 380 

2.3 Flood hazard calculation 

To represent the flood hazard, we derive water depths from the January 2019 flood event using the workflow 

presented in Figure 4. This approach takes the following three main steps: (1) extracting SAR data and processing 

it using SNAP software (SNAP, 2019) to create a flood extent map, (2) preparation of the data in ArcGIS and (3) 

using the available SRTM DEM to estimate the water surface elevation and extracting the flood water depth.385 

  

 

In the first step, pre-processing of the data was performed through calibration and speckle filtering. Post-

processing was conducted by geometric correction using the terrain correction function. As the pixel values in 

SAR imagery can be related to the radar backscatter of the area where it was taken, calibration is 390 

necessaryExtracting of SAR data and its processing was based on the SNAP flood mapping workflow (McVittie, 

2019). This involved pre-processing of the SAR-imagery through calibration to transform the pixels from the 
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digital values recorded by the satellite into backscatter coefficients. This process creates a new product with 

calibrated values of the backscatter coefficient. The derived product underwent additional, speckle filtering to 

remove the noise from the image using the ‘Lee filter’. In the binarization process, water to remove thermal noise 395 

and geometric correction using the terrain correction function. Water and non-water are separated 

throughsettingthrough setting a threshold by analyzing the backscatter coefficient histogram and manually 

determining the peak characteristics of land and water areas. After this process, floodedFlooded areas could then 

be determined by setting a threshold value of 0.0022 which was defined based on the historgramhistogram plot of 

pixel values for reflectivity.  400 

 

The next stepflood raster map was to prepare the imagefurther prepared in ArcGIS. The by vectoring the resulting 

water was vectorizedpixels using the ‘Raster to vector’ tool and aggregatedaggregating with the ‘Aggregate 

polygons’ tool based on a neighborhood of 100 meters. Single-pixel polygons were removed to exclude noise 

from the flood map. Any and any empty spaces in the polygon were filled using the ‘Union’ and ‘Dissolve’ tools. 405 

These filled spaces can be the result of beneath-vegetation flood areas (Shen et al., 2019) that can be missed by 

the SAR processing (Shen et al., 2019). TheyNegative values are removed in the next, final step if they are a result 

of actual topographic factors, such as local hills.  

 

The final step in this approach follows the research of Cian et al., (2018) and S. Cohen et al., (2018), where the 410 

flood boundaries along the water surface are used to estimate the elevation of the water surface. The boundaries 

of the derived flood extent were turned into points with the ‘raster to point’ tool, after which the elevation values 

were extracted from the DEM. The water surface was then computed using the ‘Inverse Distance Weighting 

(IDW)’ tool from ArcGIS. Essentially, this means that pixels inside of the flood extent get the elevation value of 

the closest elevation points along the boundary. The water depth can then be calculated by deducting the initial 415 

DEM values from the assigned water surface values. Figure 4 visualizes the workflow and the resulting output.  
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To evaluate 

Figure 4: the workflow representing the extraction SAR satellite imagery and deriving its corresponding water depth. 

The flood polygon is shown on SRTM DEM and the water depth map is shown on © Google Satellite. 420 

 

To validate the surface water interpolation method,  the result is compared with a flood hazard map obtained from 

running a hydraulic 1D steady model that was run for a subsection of the Shire river (Maparera River) in a study 

by Copier et al., (2019). The segment covers an area of 2.1 km2 in which the river has a total length of 2.2 km. 

The model was run using Hydrologic Engineering Center's River Analysis System (HEC-RAS) software 425 

(Hydrologic Engineering Center, 1998). The Root Mean Square Error (RMSE) is used to compare the different 

models using the UAV DSMDue to a lack of historical data, the discharge values used as input for the model are 

estimated to match the case study area’s water flowing abilities without creating an extreme overflow. The 

discharge value was set to 50 m3/s and the Manning coefficient was set to 0.05. For both the surface water 

interpolation method and the hydraulic model run, the UAV DSM is used as input. The Root Mean Square Error 430 

(RMSE) is used to evaluate the output from both approaches (Cohen et al., 2018). By doing so, it can be 

determined to what extent the output of both approaches deviate in terms of water depth estimation.  

2.4 Damage estimation 

3.3 To estimate the damage for the pixel-based approach, the built-up area will beExposure 

Pixel-based approach 435 

For the pixel-based approach, the built-up area is estimated by taking the built-up area of the pixel according to 

average density percentages and building sizes. This density is determined by visual interpretation of the UAV 

imagery. The percentages found in distribution of building types reported by the IHS4 are used to calculate the 

damage corresponding to one pixel-unit.  

 440 



 

17 

 

Object-based approach 

The OBIA consisted of the following steps (Figure 6). First, validation and training samples were collected from 

the villages in the case study area by manually delineating objects. We manually delineated a total of 144 building 

to serve as training and 556 as validation. This step was followed by segmenting the high-resolution imagery and 

classifying the vectorized objects. We selected the open-source geo-software Orfeo Toolbox (OTB). This toolbox 445 

is a library for image processing initiated by the CNES (French Space Agency) that includes numerous algorithms 

created for the purpose of segmentation and classification (Grizonnet et al., 2017). 

 

Segmentation was performed using the Mean Shift Clustering algorithm utilized by OTB. The mean-shift 

algorithm exploited by Orfeo relates to the work of Michel et al., (2015), in which the goal of image segmentation 450 

is to partition large images into semantically meaningful regions. The following parameters were set: (1) the 

spatial radius or the neighborhood distance was set to 1.5m; (2) the range expressed in radiometry unit in the 

multispectral space to 5m; and (3) the minimum size of a segmented region to 5m², in relation to minimum 

building sizes. The Support Vector Machine (SVM) algorithm from the same Orfeo library served to classify the 

vectorized objects from the segmentation. The SVM is a kernel-based machine learning algorithm that has been 455 

effectively used to classify remotely sensed data (Mountrakis et al., 2011). The classifier was trained on samples 

that represented the common features in the selected images and are summarized in Table 3.  An example of the 

output of this process is shown in Figure 5. 

 

Table 3: samples used as input for training the SVM classifier with mean value ranges of the spectral bands (nm). 460 

Value Label Samples Mean B0 Mean B1 Mean B2 

1 Vegetation 28 121-164 135-165 101-136 

2 Metal 27 207-241 207-244 205-245 

3 Thatch 31 225-241 201-228 184-213 

4 Bare ground 34 171-220 155-197 145-197 

5 Shadow 24 113-154 114-150 113-137 
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Figure 5: steps of the OBIA: (a) Original UAV imagery, (b) result of mean-shift segmentation, (c) classification using 

SVM classifier. The image contains UAV imagery collected by the Malawi Red Cross Society (MRCS), collected in 

November 2018. 465 

After the segmented objects were classified, a filtering process was conducted in which objects were removed 

based on their respective height and category. By keeping the two categories that represent buildings with a height 

over 0.5 m, buildings can be extracted, and potential misses are excluded from the damage calculation. This height 

was chosen as a value between the height of the ground and a one-story building. The mean height from the DSM 

was added to the objects by creating centric points of each segment and extracting the elevation values to these 470 

points from the UAV DSM map. To derive the height of these objects, a baseline DEM was constructed and 

subtracted from the mean DSM value. For this, the cells classified as ‘Metal’ and ‘Thatch’ were removed from 

the DEM. Next, ground reference points were placed using visual interpretation to make sure no bushes or trees 

were selected. The elevation of these ground reference points was correspondingly used to interpolate an elevation 

surface using IDW (inverse distance weighting) and the elevation of this interpolated surface was used to 475 

determine the height of the ‘Metal’ and ‘Thatch’ cells by determining the difference with the original DEM 

elevation.  

Made with QGIS using UAV imagery collected by the Malawi Red Cross Society (MRCS). 
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Figure 6: conceptual model of the building classification using automatic extraction methods. 

 480 

To evaluate the performance of the OBIA model, a map with 556 manually delineated/labelled reference buildings 

was compared to a map with predicted buildings from the classification. For this purpose, a confusion matrix was 

created where a prediction can be either a True Positive (TP), False Positive (FP), True Negative (TN), or False 

Negative (FN) (Gutierrez et al., 2020). In which, TP (True Positive) is the number of cases detected both manually 

and with the automatic approach. FP (False Positive) is the number of cases detected by the automatic approach 485 

but not manually. TN (True Negative) is the number of cases detected manually but not by the automatic approach. 

FN (False Negative) is the number of undetected cases. The statistical parameters that were used to test the 

classification performance are the accuracy and F1-Score. The overall accuracy (𝐴) was calculated given Eq. (1): 

 

 𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1) 

 490 

To test the classification performance per class, the F1-Score was used. This statistic is the weighted mean of both 

Precision (𝑃) and Recall (𝑅), where 0 indicated the lowest possible score and 1 a perfect score. The parameters 

are calculated with the following equations:  

 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 495 
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 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃 ∗ 𝑅

𝑃 + 𝑅
 (4) 

 

 

To evaluate the building area, predicted buildings were chosen that have partial or complete overlap with the 

reference buildings. From this selection, the Relative Error (RE) was calculated per building type. In this case, the 

absolute error is normalized by dividing it by the magnitude of the value of the reference buildings. The RE is 500 

calculated through the following expression:  

 

 𝑅𝐸 = 
∑ |𝜃^ − 𝜃𝑖|

𝑁

𝑛=1

∑ |𝜃𝑖|𝑁
𝑖=1

 (5) 

 

Where 𝜃^ is the predicted value and 𝜃𝑖 is the value of the reference buildings and N is the sample size. 

3.4 Vulnerability: Damage curve estimation 505 

Corresponding with the building types found in the exposure component of each flood damage assessment, a set 

of damage curves is created. The description of the different types and their construction material is used to weigh 

material-specific damage curves from the CAPRA library, according to the method proposed by Rudari et al., 

(2016). We make use of the expanded aggregation table as proposed by Rudari et al., (2016), including the 

construction material considered for every building type (Table 4). This table indicates for each building type the 510 

building stock material, to which CAPRA damage curves are used.  

 

For the pixel-based approach, three curves are created, for each of the building types (traditional, semi-permanent, 

permanent), making use of the description of wall building materials in the fourth Integrated Household Survey 

2016-2017 (IHS4). Next, the distribution of these three building types (Table 2) is used as weights to create a 515 

single curve that can be applied to the urban pixels from the land-use map. For instance, semi-permanent housing 

consists of unburned bricks, for which the Masonry and Earth CAPRA curves should be used. In this case, these 

curves are averaged and used to represent a semi-permanent building. 

 

For the object-based approach, the results from the field survey are used to create damage curves for building 520 

types determined by aerial observation and the OBIA (Metal-roof and Thatch-roof). The materials of the roofs are 

correlated to wall material, based on the field observations; from which we derive the wall-to-roof relationships. 

The local distribution found in wall material is used to weigh the curves from the CAPRA library based on 

percentages. This means, for example, that the distribution in wall material found for buildings with a thatch roof 

– being a burnt bricks, unburnt bricks, mud and wood – are used to weigh the CAPRA curves. These materials 525 

correspond to the Masonry, Masonry & Earth, Earth and Wood CAPRA curves, respectively.  

 

In both approaches, we follow Maiti (2007) and assume that buildings constructed with a mud wall tend to collapse 

at a water depth of 1 meter. Before creating curves for each building type, this damage curve from the CAPRA 

library (Earth curve) is modified so that 1 meter of inundation corresponds to a 100% damage value. 530 
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Table 4: aggregation table of the CAPRA damage curves based on building stock information. 

CAPRA materials Building stock material Building types 
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 X   Burnt bricks X X X   

 X X  Unburnt bricks  X  X  

X    Concrete   X   

  X  Mud  X   X 

   X Wood  X   X 

 

3.5 Risk: Damage estimation 

For the pixel-based approach, the built-up area is estimated by taking the built-up area of the pixel according to 535 

average density percentages and building sizes. This dataThe average density percentages and building sizes will 

be collected by visual interpretation of the UAV imagery. The percentages found in distribution of building types 

reported by the IHS4 are used to calculate the damage corresponding to one pixel-unit. The damage is calculated 

through the following expression: 

 540 

 𝐷ₚ[€] =  ∑ 𝑑𝑎𝑚𝑎𝑔𝑒(𝑖ₚ) ∗ 𝑎(𝑖ₚ) ∗ 𝑟(𝑖ₚ) ∗ 𝑟𝑐(𝑖ₚ)[€]

3

𝑖=1

 (6) 

 

 

Where:  

- 𝑖ₚ  = the building typologytype (i.e. traditional, semi-permament, permanent) as determined by the 

building stock description of the Malawi National Statistical Office (2018); 545 

- 𝑑𝑎𝑚𝑎𝑔𝑒(𝑖ₚ) is the damage per pixel in euros calculated with the adjusted stage-damage curve, and using 

as input the water depth [m] in the considered pixel; 

- 𝑎(𝑖ₚ) is the size of the objectbuilding in area m²;  

- 𝑟(𝑖) is the ratio of the typologytype according to the national survey in Table 2; 

- 𝑟𝑐(𝑖) is the replacement cost per m² based on the typologytype (𝑖). These estimates are collected through 550 

interviews and focus group discussions in the case study area (Teule et al., 2019).), see Table 5. 

For the object-based approach, damage is calculated per object by combining buildings automatically detected 

and classified through OBIA with the local stage-damage curves created from the field survey. The damage can 

be calculated through the following expression: 

 555 

 𝐷ₒ[€] =  ∑ 𝑑𝑎𝑚𝑎𝑔𝑒(𝑖ₒ) ∗ 𝑎(𝑖ₒ) ∗ 𝑟𝑐(𝑖ₒ)[€]

2

𝑖=1

 (7) 
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Where:  

- 𝑖ₒ = the building typology as determined by the OBIA and field survey;type based on the roof type and 

wall-to-roof relationships (i.e. metal-roof and thatch-roof); 

- 𝑑𝑎𝑚𝑎𝑔𝑒(𝑖ₒ)  is the damage per objectbuilding in euros calculated with the adjustedlocal stage-damage 560 

curve, and using as input the flood water depth [m] in the considered object; 

 

Based on the building typologies found in both the national and our local survey, damage curves were constructed 

by aggregating the curves from the CAPRA library and adjusting them with the information from Maiti (2007). 

We follow Maiti (2007), in assuming that that structures constructed with a mud wall tend to collapse at a water 565 

depth of 1 meter. 

for this 

- For the pixel-based approach, the description in fourth Integrated Household Survey 2016-2017 (IHS4) 

of traditional, semi-permanent and permanent buildings is used to aggregate the material-specific damage 

curves from the CAPRA library. This means, for example, that that the materials used to describe a 570 

traditional building are used to construct the curve, being: unfired mud brick, grass thatching for roofs 

or rough poles for roof beams (Malawi Statistical Office, 2017). The distribution of these three building 

types in Chikwawa, found in the IHS4, are used to calculate the damage for a flooded pixel . For the 

object-based approach, the results from the field survey are used to create damage curves for the building 

typologies determined by aerial observation and the OBIA. In this case, the local distribution found in 575 

buildings materials is used to aggregate the curves from the CAPRA library based on percentages. . 

 

3.6 Sensitivity analysis 

To quantify how the damage parameters can influence the damage estimate, a one-at-a-time sensitivity analysis 

will be conducted by increasing and decreasing the different damage parameters with the mean of the respective 580 

relative errors. The sensitivity value (SV) will be used to represent the sensitivity and can be calculated by dividing 

the largest resulting damage by the smallest resulting damage (Koks et al., 2015).  
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34 Results  

4.1 UAV imagery 585 

Figure 7 shows the resulting UAV-based orthophoto, including the DSM with shaded relief, and the SRTM DEM 

with shaded relief, from the flight area. The Shire River is captured at the Western side of the acquired imagery. 

Completing the area took 140 flights, each lasting around 45 min. The UAV-based DSM shows a relatively equal 

elevation throughout most of the area. However, the absence of GCPs influenced the global accuracy of the 

elevation. A deviation can be observed when we compare the UAV-based DSM to the SRTM DEM. This DEM 590 

shows a down-sloping pattern of the elevation towards the south, in accordance with the flow of the Shire River.  

 

Although this difference hampers large-scale analysis using the UAV-based DSM, it is still valuable in assessing 

the local height variation of objects on a micro-scale. Figure 8 gives a detailed overview of the town of 

Chagambatuka, including the UAV-based DSM. Buildings can clearly be distinguished based on their rectangular 595 

shape and elevation, while trees are generally the largest objects in the area.  

 

Figure 7: example of the orthophoto (left) and DSM middle) with shaded relief, produced with images from the UAV 

flight, and a Shuttle Radar Topography Mission DEM (right) with shaded relief.  
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Figure 8: section of the town of Chagambatuka, with orthophoto (left) and DSM (right) with shaded relief , produced 

with images from the UAV flight. 600 

3.14.2 Field observations 

As a result ofBased on the information collected through the building survey, structuresbuildings in the case study 

area are grouped into two types. This is, based on the similarity of their flood vulnerability and their distinctive 

aerial features. A total ofFrom the 50 samples was taken to represent building stock. No, no buildings were found 

that have a wall structuring resembling wood, reed or concrete. In addition, no structuresbuildings were found 605 

having tiles or any other material as the roof, nor any having more than two levels.  

3.1.1 Metal-roofs 

The first type of building in the area is composed of burnt and, in a small number of cases (10%),, unburnt bricks. 

This type is less vulnerable to flooding compared to the other type due to its material being less susceptibility to 

building failure. Its main distinctive aerial feature is a metal sheet roof, but the results of the OBIA and the field 610 

survey also indicate that this type of building is oftenhas a larger footprint than thatch-roofed buildings. For the 

metal-roofed buildings, two wall materials were found: burnt red bricks (90%) and unburnt bricks (10%).  

3.1.2 Thatch-roofs 

The second type is generally composed of less formal building material, with its main distinctive feature being a 

thatch roof. The results of the survey seem to indicate a relatively equal distribution between the buildings 615 

materials, but as unburnt bricks and mud walls are more susceptible to building failure, this type is considered 

more vulnerable to flooding. For the thatch-roofed buildings, three wall materials were found: burnt red bricks 

(27%), unburnt bricks (41%) and mud/wattle (32%). 

Made in Qgis using UAV imagery collected by the Malawi Red 

Cross Society (MRCS). 
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3.24.3 Damage curves and maximum damage functionsvalues  

Two Figure 9 shows the two damage curves are created for the object-based approach based on typologiestypes 620 

corresponding with the field survey (left) and three for the typologiestypes in the building stock description of 

theIHS4 national survey that are used in the pixel-based approach (Fig. 5). 

 

right). Metal-roofed buildings show a lower vulnerability than thatch-roofed at the same water depth due to the 

structural integrity accompanied by more formal building material. Similar patterns can be observed for the  625 

Figure 5: Constructed damage curves based on the description of building stock in the Chikwawa district. Similar 

as to the damage curves have been derived, maximum damage values have also been determined. The damage 

values per square meters for all building types can be found in Table 5.  

 

Figure 9: constructed damage curves for the two typologiestypes derived from field and aerial observation (left-hand 630 
panel), and three typologiestypes derived from the description of building stock at district level (right-hand panel) 

(Malawi National Statistical Office, 2017). The water depth is the flood water relative to the ground floor. 

The maximum damage values per square meters can be found in Table 3. These values are estimated based on the 

different kind of materials and the costs of building the structure in Southern Malawi and were validated by local 

authorities  635 

 



 

26 

 

Table 5: 

Table 3: Estimated maximum damage values per m² based on local knowledge of replacement costs (Teule et al., 2019).  

TypologyType €/m² 

Permanent 15.20 

Semi-permanent 10.60 

Traditional 4.40 

Metal-roofed 13.00 

Thatch-roofed 9.70 

 

3.33.1 Flood inundation 640 

The average water depth from the flood event at the case study location was 1.17 meter for the surface water 

interpolation and 1.22 meter for the hydraulic model run using the UAV DSM (Copier ref). The maximum 

estimated water depth for both approaches was about 3 meter (3.30 and 2.79 meters, respectively). The RMSE 

was calculated to be 0.73 meters. The results show that for a flood depth of approximately 3 meters, the surface 

water interpolation method deviated from the hydraulic model by <0.75 meters on average.  645 

 

The same method for the total case study area with the SRTM DEM produced a water depth map with an average 

water depth of 1.26 meter and a maximum water depth of 7 meters (Fig. 6). Objects in the inundated area were 

assigned the water depth in the corresponding cell. 
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 650 

 

Figure 6: The flood inundation extent for the case study area using the SRTM DEM (left) and the derived water depth 

map using surface water interpolation (right). The inundation maps are shown on © Google Satellite. 

3.44.4 OBIA quality assessment 

The implementation of the OBIA model had a varying degree of success according to the statistical tests. Table 655 

46 shows that classification is more reliable for classifiers that have a clear spectral difference with surrounding 

elements, such as shadow and metal roofs, whereas bare ground and thatched roofs are less easy to distinguish. 

TheseThis spectral difference resulted in a higher F1-Score for buildings with a metal roof (89%) compared to 

those with a thatched roof (53%). With the F1-score being the harmonic mean of the Precision and Recall, this 

metric captures both the false negatives and the false positives of the classification procesprocess. The lower F1-660 

score for detected thatch roofs could be attributed to their tendency to blend in with the environment because of 

their relatively similar spectral properties. With the addition of the height threshold for objects, the individual F1-

scores for buildings were improved to 90% for metal-roofed buildings and 72% for thatched-roofed buildings. 

The increased F1-score for thatched-roof buildings indicates that having additional and accurate information on 

the height of the objects has a large effect on the individual classification accuracy. The overall accuracy  of the 665 

initial run shows a value of 77.45%, indicating the amount of correctly classified objects out of the total amount 

of samples. This value also increases up to 80% with the addition of a height threshold for objects, though this 

increase is also partly due to the exclusion of poorly performing classes such as ‘Bare ground’. 

  

Made with QGIS using © Google Satellite   
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Table 4: Evaluation6: evaluation of the performance accuracy of the OBIA classification. *addition of height threshold 670 
by subtracting the extracted DSM and DEM values. 

Label F1-score F1-score* Accuracy (%) Accuracy (%)* 

Vegetation 0.91 - 

77.45 80.19% 

Metal 0.89 0.90 

Thatch 0.53 0.72 

Bare ground 0.49 - 

Shadow 0.90 - 

 

 

The building objects from the OBIA are a direct result of the segmentation process, and the relative error seems 

to reflect the same pattern as the classification process. This means that buildings with a thatch roof tend to be 675 

harder to detect because the model groups pixels together that represent different objects, such as bare ground and 

the thatch roof. For both typologiestypes, the relative error between observed and predicted building area can be 

observed in Figure. 7 10. For the thatch roof buildings, 50% of the predictions are found with RE lower than 30%. 

For the metal-roofed buildings, this same percentage of predictions are found with a RE lower than 7.5%. 

Generally, metal-roofed buildings tend to be larger in size than thatch-roofed buildings, with a mean building size 680 

of 39 m² and 21 m², respectively. For both typologiestypes, the RE tends to decrease as building size increases. 

This seems to be in line with literature where it is stated that if objects get closer to the size of the available spatial 

resolution, errors are more likely to occur (Blaschke, 2010). 

  

Figure 7: Building10: building area and relative error for both typologiestypes (metal and thatch) in the case study 685 
area. 
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4.5 Flood inundation 

To check whether the surface interpolation method adequately captures flood characteristics, we compare our 

method with the results from a hydrodynamic model applied at the Maparera River. Figure 11 shows the maximum 

water depth obtained from both methods. The average water depth from the flood event at the Maparera river was 690 

1.17 meter for the surface water interpolation and 1.22 meter for the hydraulic model run using the UAV DSM 

(Copier et., 2019). The maximum estimated water depth for both approaches was about 3 meter (3.30 and 2.79 

meters, respectively). The RMSE was calculated to be 0.73 meters. The results show that for a flood depth of 

approximately 3 meters, the surface water interpolation method deviated from the hydraulic model by <0.75 

meters on average. We found considerable differences between both models along the main channel. This is in 695 

line with research from Cohen et al., (2018), given the inability of similar methods to calculate complex fluid 

dynamic effects. In addition, the interpolation method shows relatively low water depth at the upstream boundary 

compared to the hydraulic model. Nevertheless, the interpolation model seems to correctly dissolve the higher 

elevated area between the two main channels from the aggregated flood extent that was extracted from Sentinel-

1 imagery.  700 

 

Repeating the method for the total case study area with the SRTM DEM produced a water depth map with an 

average water depth of 1.26 meter and a maximum water depth of 7 meters (see Figure 12). Buildings in the 

inundated area were assigned the water depth in the corresponding cell.  Several areas with a positive water depth 

can be observed in the resulting flood map that deviate from the SAR inundation map. These areas indicate the 705 

subtraction of incorrect water depth values from the DTM or capture areas that were not identified with  SAR 

imagery, for example due to high vegetation.  

Figure 11: the estimated water depth from the HEC-RAS hydraulic model (left) and the derived water depth following 

the surface interpolation method (right) at the Maparera River.  
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Figure 12: the flood extent for the case study area extracted from SAR imagery (left) and the derived water depth map 

using surface water interpolation based on the SRTM DEM (right). The inundation maps are shown on © Google 710 
Satellite. The estimated water depth from the HEC-RAS hydraulic model (left) and the derived water depth following 

the surface interpolation method (right). 

3.54.6 Damage estimates 

By overlaying the separate components of the flood damage assessment, the estimated damages were calculated 

for both approaches. using equation 6 and 7. Compared to a conventionalthe pixel-based approach, the object-715 

based approach provides a lower estimation of the exposed built-up area, of about two-thirds (Table 5). As a 

result6). Interestingly, comparing the number of buildings in OSM, this comes very close to the amount extracted 

by the OBIA, giving confidence in the object-based approach. This amount of exposure influences the resulting 

damage. considerably. The flooded built-up area for the land-use pixel-based approach and the object-based 

approach was estimated at 2,541 m² and 3,952 m², respectively. This resulted in estimated flood damage of 720 

approximately €10,14010K and €15,728,16K respectively (Table 56). 

 

Table 5: Flooded6: flooded buildings and built-up area according to (1) the object-based approach, (2) pixel-based 

approach and (3) the available OSM map, and area and total damage according to (1) the object -based approach, (2) 

pixel-based approach. 725 

Villages Number of flooded buildings Flooded built-up area (m2) Total damage (€) 

 Object Pixel OSM Object Pixel OSM Object Pixel 

1 9 11 10 371 338 348 1,286 1,754 

2 54 92 61 1,424 2,768 1,321 6,215 10,043 

3 21 28 26 746 846 732 2,639 3,931 

Total 84 132 97 2,541 3,952 2,401 10,140 15,728 
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Although building densities and average buildings sizes were extracted from the same UAV imagery, a difference 

can be observed in the flooded built-up area between the two approaches. This is likely a result of the inability of 

land-use pixels to account for spatial variability of the buildings objects inside a certain area. Similar research on 730 

German flood events exemplifies that significant uncertainties are present in flood damage assessments due to 

information lacking on the number of flooded buildings and the distribution of building use within the flooded 

area (Merz et al., 2004).This is the result of the inability of land-use pixels to account for spatial variability of the 

buildings objects inside a certain area.  

 735 

Similar research on flood events in urban and rural areas in Ethiopia, Germany and Poland, exemplifies that 

significant uncertainties are present in flood damage assessments due to information lacking on the number of 

flooded buildings, the building types considered in the assessment and the distribution of building use within the 

flooded area (Merz et al., 2004; Englhardt et al., 2019; Nowak Da Costa et al., 2021).   

3.64.7 Sensitivity analysis 740 

By varying the building size and water depth parameters with the mean of the respective relative errors, the 

sensitivity of the damage parameters for both approaches werewas estimated. As there is no information on the 

uncertainty of the damage curve values from the Evaluación de Riesgos Naturales (ERN)CAPRA database, the 

influence of this parameter is derived by using only the lowest and highest damage curve from the building types. 

For example, the lower damage bound for the damage curve sensitivity value in the object-based approach is 745 

computed by using only the Metal-roof damage curve and the higher bound using the Thatch-roof damage curve. 

Table 67 shows that the largest variance in resulting damage is caused by this variance of the damage curves, 

meaning that the damage curve selection has the highest effect on the resulting damage estimates.  

 

Table 6: The7: the sensitivity values (SV) of the different damage parameters for the pixel- and object-based approach. 750 

Kolom1 
Pixel-

based 

Object-

based 

Parameter SV 

Building size 1.43 1.21 

Water depth 1.46 1.56 

Damage 

curve 
1.71 1.990 

 

Similar results have been found by Ke et al., (2012) in an urban flood damage assessment, where the damage 

function has the largest influential degree of damage followed by the value of the elements at risk. Another study 

Similar results have been found by Saint-Geours et al., (2015), in a cost-benefit analysis of a flood mitigation 

project where the uncertainty in the depth-damage curves is the prominent factor for the estimating of damage for 755 

private housing. Studies by de Moel et al., (2012) and Winter et al., (2018) also notesnote that the most influential 

parameter in the uncertainty of flood damage estimates is the shape of the depth-damage curves. It function. 
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Moreover, it can be observed that the sensitivity value of building size is lower in the object-based approach 

compared to the pixel-based approach (1.21–1.43), which can be attributed to less uncertainty in total building 

area that is flooded. This indicates that, for the object-based approach, the increased accuracy with which buildings 760 

can be identified leads to a decrease in the uncertainty of damage estimates. The water depth parameter reveals 

that, although uncertainty in water depth results in varying damage estimates, sensitivity values for both 

approaches are comparable (1.46–1.56). Therefore, considering the same flood impact in each flood damage 

assessment does not affect damage estimates differently.   

 765 

It is apparent from table 7 that all parameters involved in the flood damage estimation include an amount of 

uncertainty, and this propagates in the total estimated damage. As the hazard componentflood map in both 

calculations remained equal, the differences can be attributed to the sensitivity of the damage parameters on the 

building types and damage curve parameters. Moreover, it can be observed that the sensitivity value of building 

size is lower in the object-based approach compared to the pixel-based approach, which can be attributed to less 770 

uncertainty in total building area that is flooded., or the exposure and vulnerability component, respectively.  

 

5 Discussion 

The preceding sections illustrate that by using OBIA, flood damage can be estimated on the object-level using 

UAV-derived imagery to detect buildings and classify them based on aerial features. This contributes to the 775 

literature in several ways. Complementing a study by Englhardt et al., (2019), that provides an impressive first 

glance at studies that use object-based data to classify buildings into vulnerability classes, our approach enables 

using this information to calculate damage on individual building level. Therefore, our method provides more 

certainty on the number of flooded buildings, their size and location. A more recent study by Malgwi et al., (2021) 

suggest that using data-driven approaches, such as multivariate damage models, could further improve estimates 780 

in data-scare regions compared to more expert-based approaches. However, this is not always feasible if the 

scarcity of empirical loss data hinders the implementation of multivariate models as it is the case in most 

developing countries. Our study indicates, however, that OBIA combined with local data can accurately estimate 

flood damage in an area where such data is absent, for example due to its remoteness. 

4  785 

Although this research has uncovered several important factors in the estimation of flood damage based on 

building detection, the issue deserves further additional research. First, the method was created for a specific case 

study area with little variation in building types. Building extraction is herein limited to the available data 

source.building stock in the area, in this case resulting in two types. For urban areas, classification confusion 

might occur due to the heterogeneity of building types and structural properties. This complication could yield 790 

more uncertainties in assigning appropriate damage curves to buildings, especially as large discrepancies in 

potential flood damage exist between urban and rural areas in developing countries (Englhardt et al., 2019). 

Another distinction should be made between when studying areas with river-floods or flash-floods, as capturing 

the latter with Earth Observation data becomes a challenging task due to the low frequency of satellite imagery 

acquisition (e.g. SAR acquisitions can be made ) relative to the sudden happening of flash floods(Mouratidis & 795 

Sarti, 2013).  
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The second aspect refers to the additional field survey. The acquired samples 

Secondly, the filtering of objects using the DTM deserves further attention. Evidently, the addition of an object 

height threshold by using the DTM does indeed lead to a significant improvement in accuracy of the OBIA. In 

our study, the baseline DEM was constructed by manually setting reference points. The method was successful as 800 

brushes and trees that resembled bare ground could be avoided and the absence of ground control points during 

the UAV mission did not hamper the analysis. However, this method does rely on manual filtering, a process that 

is hard to scale and prone to human error. Preferably, this method should be automatized. Several novel methods 

to extract bare earth surface can be considered in the future, including open-source filtering algorithms such as 

the CSF-plugin developed by CloudCompare (Zeybek. & Şanlıoğlu, 2018). This way, reproducibility and 805 

scalability can be improved. Along with additional automatization, altering the OBIA workflow, by including the 

height threshold before image segmentation, could potentially improve classification results. Kamps et al., (2017) 

report that the classification accuracy of their OBIA to improve by 15-26% following this workflow but note that 

combining orthophotos with elevation data could potentially lead to the propagation of errors due to mismatches 

in datasets.  810 

 

The third aspect refers to the additional field survey. The acquired buildings samples and their wall-to-roofs ratios 

provide insight into the relations between the local elements and the remotely sensed characteristics. However, a 

larger number of samples would be necessary to provide a statistically sound justification of the assumption on 

this relation. Obtaining field observations could become a difficult task if the method is scaled up, but a promising 815 

line of research could be the implementation of services like Mapillary or Google Street View for this purpose. 

Combining the findings from this kind of research with field surveys can, therefore, complement the conventional 

methods by aggregating accurate estimates on building sizes, density, and characteristics. This would decrease 

the amount of uncertainty incorporated in potential scaled-up assessments. The HRSL provides an impressive first 

glance at exposed settlements and can be used as a base layer to project the distributions of building exposure and 820 

vulnerability found in this study. This method resembles the study of De Angeli et al., (2016), in which clusters 

are created using representative buildings. In this case, field observations from drones and services like Mapillary 

can be combined to create representative villages or towns.  

 

Finally, the other sources of uncertainty accompanied by the damage estimation need to be further studied. 825 

Although they do not directly relate to the results of the exposure estimation, the sensitivity analysis in this 

research confirms that parameters such as floodwater characteristics, maximum damage values, and the applied 

damage curves have a significant effect on the total flood damage. The RMSE of about 75 cm illustrates that 

deriving water depths directly from a DEM can give results different from the hydraulic simulations. It should be 

noted that both methods have their disadvantages. In the hydraulic simulation, for instance, Copier et al., (2019) 830 

lacked specific discharge information for the event so an estimate had to be made there that would resemble flood 

levels. The surface water interpolation method, on the other hand, lacks the dynamics of the hydraulic simulation, 

but is more specific to the event considered in this study as it is based on the observed extent. To validate the 

water depth estimation, the effects of using a coarser resolution SRTM DEM in surface water interpolation should 

be tested. Preferably, validation data from hydraulic models is used that corresponds to the flood event that is 835 

extracted from satellite imagery. This way, differences due to discharge uncertainties are limited. Another way of 
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validating flood events is through the collection of community-based data. By interviewing residents, ground-

based observations can be collected in ungauged areas to serve as input for detailed catchment modelling and 

validating output (Starkey et al., 2017). Also, the aggregation of damage curves based on building material could 

yield uncertainties in the resulting flood vulnerability. For a more accurate appropriation of the damage 840 

susceptibility, individual building types could be subjected to detailed survey studies that include historic flood 

events and damage with the corresponding building material.   

56 Conclusions and outlook 

The purpose of this research was to create a flood damage model based on the automated recognition of buildings 

and their characteristics through UAV image processing. By doing so, improvements on the exposure and 845 

vulnerability component of flood damage assessments were assessed and evaluated by comparing this new 

approach to a conventional one based on pixel-based  information from a land-use raster. The two flood damage 

models were applied in a rural and flood-prone area in Southern Malawi, with a building stock consisting of 

mostly semi-permanent structures  structuresbuildings.  

 850 

In terms of direct structural damage considering the replacement costs of buildings in the study area, the flood 

damage based on homogenous land-use pixels is about 50% higher than the object-based approach (15k € vs 10k 

€).15,000 € versus 10,000 €, respectively). The calculation is found to be most sensitive to the damage curve that 

is used, with a sensitivity value (highest divided by lowest estimate) of 1.71 and 1.90, for the pixel-based and 

object-based approach respectively. However, uncertainty in building exposure still results in sensitivities of 1.43 855 

for a pixel-based approach and 1.21 for an object-based approach. This illustrates that accurate information on 

exposure is essential in accurately estimating potential damage from flood damageevents.  

 

The effects of including high-resolution elevation information in the OBIA were examined by including a height 

threshold for classified objects. Individual F1-scores of the object-based classification were improved from 0.89 860 

to 0.90 for metal-roofed buildings and 0.53 to 0.72 for thatch-roofed buildings. These results show that the 

integration of accurate elevation data can improve standard classification schemes based solely on spectral bands. 

The relative error on the area of the detected buildings tends to be lower for larger buildings and buildings with a 

clear spectral difference with the surrounding area. The water depth, derived by interpolating the surface water 

boundaries of a remotely sensed flood extent, deviated on average 0.73 meters from a hydraulic model for a 865 

maximum water depth of approximately 3 meters. This validation was conducted for a subset of the case study 

river using a high-resolution DSM.  

 

Based on the results of this study we find that the primary utility of high-resolution UAV imagery in flood damage 

assessment is to spatially locate buildings in inundated areas and retrieve their characteristics by creating 870 

typologiestypes in combination with local observations. These characteristics can be used to apply develop stage-

damage curves that represent the local building stock instead of using aggregated information that implies 

homogeneous land cover for large regions. Furthermore, the number of buildings and their respective area and 

occupancy type can be derived to estimate flood damage more precisely. This improvement in data availability 
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has the potential to aid humanitarian decision-makers in choosing appropriate policies with regard to flood 875 

protection or determining threshold levels for effective early-action measures in the case of flooding.  
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