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Abstract. Impact-based weather forecasting and warnings create the need for reliable sources of impact data to generate and 

evaluate models and forecasts. Here we compare outputs from social sensing -- analysis of unsolicited social media data, in 

this case from Twitter -- against a manually curated impact database created by the Met Office. The study focuses on high-10 

impact rainfall events across the globe between January-June 2017. 

Social sensing successfully identifies most high-impact rainfall events present in the manually curated database, with an 

overall accuracy of 95%. Performance varies by location, with some areas of the world achieving 100% accuracy. 

Performance is best for severe events and events in English-speaking countries, but good performance is also seen for less 

severe events and in countries speaking other languages. Social sensing detects a number of additional high-impact rainfall 15 

events that are not recorded in the Met Office database, suggesting that social sensing can usefully extend current impact 

data collection methods and offer more complete coverage. 

This work provides a novel methodology for the curation of impact data that can be used to support the evaluation of impact-

based weather forecasts. 

1 Introduction 20 

Impact-based weather forecasts are increasingly used by National Meteorological and Hydrological Services (NMHS) to 

provide advice and warnings about both the likelihood and potential impacts of weather events (Campbell et al., 2018). 

However, methods to evaluate these forecasts are currently limited due to a lack of reliable, quality controlled and 

sustainable sources of impact data. Meteorological agencies have long-established systems to measure and monitor weather 

variables, which have allowed weather forecasting to develop to its current high level of performance. But evaluating 25 

weather impacts depends on measurements of social activities, health and wellbeing, socioeconomic processes, and other 

`human factors’; this kind of measurement lies beyond the scope of traditional meteorology. In this paper, we compare two 

approaches to the evaluation of weather impacts: manual curation of impact databases based on news media and direct 

reporting, and `social sensing’ of impacts based on social media. 
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Robbins and Titley (2018) made some initial steps to develop an impact-based evaluation methodology by collating 30 

information of global socio-economic impacts related to heavy rainfall events. These impacts represent the direct and 

tangible impacts of high-impact weather (e.g. damage to property, loss of life, evacuation and injury, and restricted or 

delayed access to essential services). The Community Impacts Database was developed to enable the evaluation of high-

impact weather forecasts that are available from the Met Office Global Hazard Map (GHM). The Met Office is the national 

meteorological service for the UK, providing weather services and contributing to climate science research worldwide 35 

(https://www.metoffice.gov.uk/about-us/who). The GHM summarises the risk of high impact weather across the globe for 

the next 7-days (i.e. weather which can result in significant impacts on safety, property or socio-economic activity). The 

Community Impacts Database includes information on when and where an impactful rainfall event occurred, as well as a 

description of the impacts observed, with each event then assigned to an impact severity category. The impact severity 

category ranges from 1 to 4, where 4 is the most impactful and 1 is the least impactful. There are certain criteria that the 40 

impacts of the event must meet for each severity category. Data contained within the database is obtained from a range of 

online sources across the world, including news, humanitarian and natural hazard websites, in the English language. 

Collation of the database was labour intensive and required a significant level of manual inspection to extract the relevant 

temporal, spatial and impact information for each weather event. The data was standardised so that the impact information 

could be compared with the high-impact weather forecasts provided by the GHM in an automated way. Despite the labour-45 

intensive nature of the process, the authors found the database a good solution to enable impact-based evaluation of high-

impact weather forecasts. 

 

There are limited options available for other global databases containing weather impacts with which to compare our 

methodology against. There are databases such as NatCatSERVICE, produced to record insurance loss as a result of natural 50 

catastrophes. However, we would like to consider impacts of extreme weather (i.e. disruption to daily life) which don’t 

necessarily lead to financial loss which could be missing from this kind of record. ReliefWeb, which is a humanitarian 

information source on global crises and disasters, is another possible database from which to compare our results, however 

this is filtered for disaster events which are most relevant to global humanitarian workers and decision-makers, rather than 

all impactful events. Other available databases rely on citizen input (e.g. the European Severe Weather Database (ESWD)), 55 

may be limited to certain geographical areas, and are unlikely to contain the same level of rigour as the Community Impacts 

Database in terms of criteria for inclusion.  Considering the options available to us, the Community Impacts Database 

therefore provides the most comprehensive database for comparing our methodology against. 
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1.1 Related Work 60 

A number of studies have explored the use of social media as a source of information about the impacts of extreme weather.  

Social sensing is an approach developed in recent years to analyse unsolicited social media data to detect real-world events 

of interest.  

While social sensing is not specific to natural hazards and can be applied in a variety of contexts (Liu et al., 2015; Wang et 

al., 2012, 2019), social sensing has demonstrated usefulness for natural hazard events.  65 

 

Twitter data was used by Sakaki et al. (2010) to detect earthquakes in Japan, with reports arriving in some locations before 

the shock had been detected by conventional seismography. Many studies have followed, using a number of different 

approaches to explore the use of social media as an information source during and following natural hazard events. Some 

studies have focused on the use of social media to better understand risk communication during an extreme natural hazard 70 

event. For example, Stewart and Wilson, (2016) explore the use of social media throughout the crisis lifecycle during 

Hurricane Sandy in the USA, building the STREMII model to better understand crisis communication during an extreme 

weather event; Rainear et al., (2018) used Twitter data collected during Hurricane Joaquin to explore the types of 

information communicated by state emergency management accounts to better understand the flow of risk communication 

during a crisis; Bossu et al., (2020) explored the use of crowdsourced information, along with Twitter data, in a bespoke 75 

application during the 2019 earthquake in Albania, finding that engagement of users with the app provided much more 

information about the damage caused as a result of the earthquake than was available using conventional methods.  

 

Other studies have explored the use of social media to better understand the impacts of extreme weather events. Many 

studies focus on individual events.  For example Fang et al., (2019) use data from the Chinese social media platform, Sina 80 

Weibo, during the 2016 Beijing rainstorm, finding a positive correlation between social media activity and precipitation 

intensity;  Sit et al., (2019) examine Twitter data collected during Hurricane Irma, using geo-located tweets to identify 

locations with a high density of affected individuals and infrastructure damage; and Han and Wang, (2019) use data from 

Sina Weibo during the 2018 Shouguang flood to analyse the changes in sentiment of social media users during the different 

development stages of the flood.  Further examples of other studies examining the impacts of individual weather events at 85 

one particular location include: studies relating to specific hurricanes in the United States  (Guan and Chen, 2014; Kim and 

Hastak, 2018; Lachlan et al., 2014; Morss et al., 2017; Niles et al., 2019; Wu and Cui, 2018; Zou et al., 2018) and specific 

flooding events (Aisha et al., 2015; Brouwer et al., 2017; Cervone et al., 2016; Kankanamge et al., 2020; Li et al., 2018; 

Rossi et al., 2018).   

 90 

Some authors have begun to explore the use of Twitter for more wide-scale specific weather event detection, Arthur et al., 

(2018) use Twitter data to detect and locate flood events in the UK to produce maps of flood activity. de Bruijn et al., (2019) 
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compare Twitter activity relating to flooding and hydrological information with flood events in the NatCatSERVICE disaster 

database, finding a good comparison between these data sources. Boulton et al., (2016) use Twitter data collected during 

several time periods to detect and locate wildfires in the USA.  Cowie et al., (2018) find that user reports on Twitter during 95 

the year can help to locate peaks in hayfever symptoms as a result of pollen levels in the UK.  Furthermore, Spruce et al., 

(2020) examine Twitter data relating to named storms, wind and precipitation in the UK finding that it is possible to identify 

tweets which can be used to assess the impact of storms both temporally and spatially. 

 

In social sensing, each individual in a social network acts as a sensor and their posts provide pieces of sensor data which can 100 

be used to better understand what is happening to or near that individual at a given place and time. Filtering and grouping 

this information by topic, time or location provides a better understanding of an event through the eyes of a social network. 

In the context of weather, social sensing can therefore be used to determine where, when and how individuals are being 

impacted by a specific weather event.  

This study seeks to build on and expand the scope of previous work to determine if high impact weather events can be 105 

detected without prior knowledge of when or where an event happened. We use the social media platform Twitter to extract 

tweets from across the world containing key words relating to heavy rainfall and its secondary hazards (flooding/landslides). 

We then examine peaks in Twitter activity (relative to the normal level of tweet activity for each location) relating to 

mentions of heavy rain, flooding or landslides. This is then compared with the Met Office Community Impacts Database 

(Robbins and Titley, 2018) for the same period and hazard focus, to assess the value of socially-sensed tweets for impact 110 

database development.  Rainfall, and its associated secondary hazards, is a good weather type for this kind of evaluation 

because it occurs in many places across the globe, with relatively high frequency. In comparison with other hazards, rainfall-

related impacts are generally more widely documented (Robbins and Titley, 2018). 

The paper is split into several sections. The Methods section gives detail of social sensing methods used, followed by the 

Results section which compares outputs of social sensing to the manually curated Met Office database. The Discussion 115 

section gives some interpretation of the findings and places the work in a broader context. 

2 Methods 

Most social sensing studies have made use of Twitter data and we follow this pattern here. Twitter is an online social 

networking service that enables users to send short 280-character messages called tweets. It is currently one of the leading 

social media platforms worldwide based on active users (Clement, 2020). It provides a platform for users to share and 120 

exchange information and news about current events as they unfold in a faster way than traditional media sources (Wu and 

Cui, 2018). It also encourages the use of text in messages and data is made freely available via the Twitter developer API. 

There are still some countries where use of the internet is not as widespread or where social media is limited to certain 

platforms. Despite this limitation, however, Twitter is still one of the most prevalent social media platforms across the world 
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and therefore likely to be a good source of information for understanding where people are being affected by extreme 125 

weather, and how they are being impacted by it. 

The methods used in this paper to gather, filter and locate the Twitter data follow a similar approach to that used in previous 

social sensing studies (Arthur et al., 2018; Cowie et al., 2018; Spruce et al., 2020). New methods were developed to compare 

the results of the social sensing of Twitter data with the Met Office Community Impacts data. 

2.1 Data Collection 130 

2.1.1 Met Office Community Impacts Database 

The extract of the Met Office Community Impacts Database provided for this study included records of high impact rainfall 

events from 01/01/2017 - 30/06/2017. The database was provided as an Excel spreadsheet which included the following 

information about each event: impact record date; country in which impact occurred along with nominal location 

(state/province) provided by latitude/longitude; description of impacts observed; media source of information. Additional 135 

information was provided where known: start and end dates for heavy rainfall events; higher resolution location (lower 

administrative division) provided by latitude/longitude; additional hazard information. Each event was also assigned an 

impact severity category from 1 to 4 to reflect the severity of impacts experienced during the event. Table 1 provides a 

breakdown of the criteria used for each severity category. As described by Robbins and Titley (2018), the information 

contained in the database was predominantly obtained from online news and social media, personal correspondence with 140 

National Meteorological and Hydrological Services, and existing hazard and impact databases. These included specific 

known sources (e.g. http://floodlist.com) and news/social media via internet searches including terms such as “heavy 

rainfall”, “flooding”, “landslide”, etc. The dataset used in this study contained 519 entries (135 unique events) in the period 

January-June 2017.  Unique events refers to the fact that a single rainfall event can lead to impacts in multiple locations. 

 145 

Severity Category Description of impacts 

1 - Low Some roads and (< 10) properties inundated over a small area;  
1 or 2 localized assets affected/damaged;  
No fatalities/injuries or hospitalizations;  
Low-level disruption to daily life (e.g. delays in transport, services shut for short periods). 

2 - Moderate Multiple assets affected (transport, business, residential) over a moderately large area (e.g. multiple districts);  
> 1,000 homes damaged and/or destroyed;  
> 1,000 minor injuries and hospitalizations;  
Wider-scale and prolonged disruption to daily life and services;  
> 1,000 people displaced/evacuated and/or receiving aid. 

3 - High >= 1 fatalities (but < 50);  
> 1,000 people displaced/evacuated and/or receiving aid;  
Multiple assets affected (transport, business, residential) over a large area (e.g. province or state);  
> 1,000 homes damaged and/or destroyed. 
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4 - Severe > 50 fatalities;  
> 50,000 people displaced/evacuated and/or receiving aid;  
Extensive damage to multiple assets causing prolonged disruption, inaccessibility and hardship. 

Table 1: Descriptions of impacts required for each impact severity category related to a heavy-rainfall event (adapted from 
Robbins and Titley, 2018) 

2.1.2 Twitter Data 

To gather the tweet data, English-language key words relating to rainfall and impacts of heavy rainfall were used to query 

the Twitter Streaming API. This API returns all tweets containing the key words from the query, up to a limit of 1% of the 150 

total volume of tweets worldwide at any point in time. The key words used to identify and download relevant tweets using 

the API were: rain, rainfall, raining, rainstorm, flood, flooding, landslide. It is unlikely that tweets using these keywords 

will have reached the global API limit, since rainfall events tend to be widely dispersed in time and space. Based on these 

considerations and the absence of any obvious artefacts in our time series we are confident that the API rate limit does not 

affect our collection (Morstatter et al., 2013).  155 

Tweets were collected during the period 01/01/2017 to 30/06/2017 in line with the time period of the sample of the Met 

Office Impact Database data used for comparison in this study. Each tweet was saved as a JSON object containing the tweet 

text as well as a number of meta-data fields relating to each tweet (e.g. timestamp, username, user location, geotag, retweet 

status, etc). The Twitter Streaming API searches the whole of the tweet metadata for the search terms requested in the search 

including tweet text, urls, and usernames.  Therefore collected tweets were filtered to extract only those with one or more of 160 

the selected keywords in the tweet text and to remove any duplicate tweet IDs. In total 44.7 million tweets were collected 

using this method.  

2.2 Filtering Twitter data 

Once all tweet data collected using the API for the study period had been extracted, the raw unfiltered data was then passed 

through a number of filtering steps to remove irrelevant data. Filters were applied in the following order: 165 

2.2.1 Retweets and quotes 

Tweets that were duplicates of an original tweet authored by another user and re-distributed to their own followers (retweets) 

and tweets which were posted as a quote from another user’s tweet (quotes) were removed using tweet metadata relating to 

‘retweeted status’ or ‘quoted status’. These tweets do not represent original observations therefore removing them from the 

dataset prevents any bias in the volume of tweet activity because of secondary public interest in a specific event or location. 170 

Though retweets and quotes could provide additional information, their frequency is controlled to a large extent by social 

network effects, which will be different in different regions depending on local popularity and differences in the use of 

Twitter. This filter removed 20.7 million tweets (46%) from the raw unfiltered collection leaving 24 million tweets to be 

passed to the next stage of filtering. 
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2.2.2 Bot filter 175 

Twitter has many automated user accounts (bots) which are set up to perform a particular function. For example, to collate 

and post content from a set of sources outside of Twitter, deliver advertising or to promote a particular issue. These types of 

tweets are unlikely to contain information relating to the impacts that users have experienced from heavy rainfall and may 

therefore distort the dataset. Therefore, where possible, bot content was removed from the dataset. As bot accounts tend to 

create many more tweets than human users, simple bot filtering was achieved by identifying user accounts which had a 180 

disproportionately high number of tweets (using a threshold of >1% of the total number of tweets in the dataset). Any tweet 

in the dataset which was posted by an identified bot account was removed. Manual inspection of tweets during the 

development of the filtering process identified a number of other bot accounts which were also removed. The bot filter 

removed 2.7 million tweets (6% of the total unfiltered dataset), leaving 21.3 million tweets to be passed to the next stage of 

filtering. 185 

2.2.3 Weather Station Filter 

As the tweet collection in this study is focused on weather-related terms, a high number of weather station tweets were also 

present in the dataset. Some amateur weather stations are set up to automatically post observations to Twitter. As for Twitter 

bots, weather station tweets, while containing information on the weather conditions at a particular location and time (such 

as the amount of rainfall), are unlikely to provide any relevant information on the impacts from heavy rainfall (e.g. damage, 190 

disruption). Therefore, any weather station tweets not picked up by the bot filter described above required an additional 

weather station filter to remove them from the dataset. Many of these tweets follow a fixed structure (for example: ‘06:30 

AM Temp: 53.0oF Hum: 91% Wind: 7.0 mph N Bar: 29.530 in. Rain: 0.09 in’) and therefore the majority can be identified 

by searching for multiple occurrences of meteorological terms and units. Any tweet with 3 or more of any combination of 

weather terms and/or units was therefore removed from the dataset. A randomised sample of tweets removed using this filter 195 

was checked to ensure no tweets that were not weather stations were removed using this filter. The weather station filter 

removed 4.7 million tweets (11% of the total unfiltered dataset), leaving 16.6 million tweets to be passed to the next stage of 

filtering. 

2.2.4 Phrase Filter 

Another issue with the collection of tweets containing weather related keywords is the use of weather terms in phrases and 200 

figures of speech which are not related to the weather. For example: ‘floods of tears’, ‘rain check’, ‘raining offers’, ‘winning 

by a landslide’, etc. Other terms found to be present in irrelevant tweets are also removed. These are generally political in 

nature and include terms such as election, vote, trump, labour, migration, etc. Song titles containing the key words were also 

removed, for example ‘Purple Rain’, ‘Singing in the Rain’, etc. Applying the phrase filter removed 1.3 million tweets (3% of 

the total unfiltered dataset), leaving 15.3 million tweets to be passed to the final stage of filtering. 205 
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2.2.5 Machine learning filter 

Although the previous stages of filtering removed many irrelevant tweets, manual inspection of remaining tweets found that 

there were still a large number that contained the keywords but that were not relevant to rainfall or the impacts of heavy 

rainfall. These included warnings about forecasts of rainfall, business advertising, links to articles on other topics, and 

various other irrelevant content. Therefore a Naïve Bayes classifier, found to be successful in other studies (Arthur et al., 210 

2018; Cowie et al., 2018; Spruce et al., 2020) for the filtering of tweet content, was employed. 

A set of 5434 tweets were randomly selected from the filtered dataset of tweets remaining after the phrase filter (2.2.4). Each 

tweet in this random set of tweets was manually inspected and labelled as relevant or irrelevant. A tweet was marked as 

relevant based on the criteria that the tweet had to be relating to rainfall that was currently happening, had happened recently 

or was about the impacts of rainfall experienced recently. Everything else was marked as irrelevant. For example, ‘Rain 215 

destroys 60 buildings in Ondo’ would be marked as relevant whereas ‘Rain expected in Ondo tomorrow’ would be marked 

as irrelevant. In total there were 1316 tweets marked as relevant and 4118 tweets marked as irrelevant.  

The labelled dataset was then used as training data for a Multinomial Naïve Bayes classifier. As a first validation test for this 

approach, 25% of the data was held back as a validation set and a classifier was trained on the remaining 75% of cases; this 

classifier had accuracy (i.e. correctly identified the relevance/irrelevance) of 90% on the held-back validation tweets, with an 220 

F1 score of 0.88 As a second test, to confirm the robustness of the approach, the same training/validation test was repeated 

with 6-fold cross-validation. The results of each test were combined to give an overall mean F1 score of 0.89 and the 

summed confusion matrix (also known as ‘contingency table’) shown below (where True is relevant and False is irrelevant): 

!
	 	 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 	
	 	 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝐹𝑎𝑙𝑠𝑒 3966 152
	 𝑇𝑟𝑢𝑒 140 1176

:         (1) 

This confusion matrix shows overall accuracy of 95%, with most tweets in the filtered dataset classified as not relevant. 225 

Accuracy was higher for the False class (3966/4118 = 96%) than the True class (1176/1316=89%). This could be attributed 

to the training dataset being unbalanced and biased towards irrelevant tweets. Overall the results of the machine learning 

filter testing indicate good performance. 

The machine learning filter removed 10.4 million tweets (23% of the total unfiltered dataset), leaving 4.9 million tweets 

(11% of the total unfiltered dataset) for further analysis. 230 

2.3 Location inference 

Typically, only ~1% of tweets collected using the Twitter developer API using keywords contain the geo-coordinates needed 

to determine the specific location of a tweet, while a further 2-3% contain specific place coordinates (Dredze et al., 2013). 

Therefore, even after filtering for relevance, determining the location of a tweet collected in this way requires further 

processing to determine where in the world it originated from or relates to, in a process of location inference. 235 
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The 4.9 million tweets remaining after the relevance filtering stages were further processed to see if location could be 

identified using information contained within the tweet. The location of the tweet is important in understanding where in the 

world the rainfall event had/was taking place. We chose to work at a geographic resolution of GADM Level 1 units, which 

are sub-national administrative regions (e.g. US states, UK countries, Australian states). This choice is a balance between 

fine-scale resolution and having enough tweet data in each unit to give meaningful outputs; it is also the resolution at which 240 

the Met Office impact database was aggregated for evaluation against weather forecasts.  

We found that 2% of tweets contained specific geo coordinates of the tweet origination (geotag) and a further 5% contained 

the coordinates for the place a user designated in the Twitter application when posting the tweet (place). However, this left 

3.7 million tweets without specific location coordinates. As these tweets would very likely contain relevant information 

relating to the impacts of a rainfall event, it was important to try to determine the location of the tweet so that the information 245 

contained within the tweet could be used. Therefore, a location inference process was used for each remaining tweet to see if 

location could be determined either from the location given in the user profile (user location) or place name detected in the 

tweet text. The steps taken in the location inference process are as follows: 

2.3.1 Country filter 

Place names alone without any other information, such as country or state name can often apply to more than one country. 250 

For example York (UK and Canada), London (UK and Canada), Pasco (USA and Peru), etc. Therefore, an initial filter was 

created to identify the country associated with a place name. For some countries, place names in text commonly follow a 

specific pattern or use certain abbreviations. For example, in the USA, Canada and Australia, users often put a place name 

followed by a 2-character or 3-character abbreviation for the state (e.g. Los Angeles, CA; Vancouver, BC; Sydney, NSW). 

Text scanning for place names was extended to look for the ‘place name, state abbreviation’ template, as well as the 255 

names/abbreviations of states and/or country name for USA, Canada or Australia. Where a country or state could be 

identified in this way, any further location inference steps only checked for place names in that particular country. This 

disambiguation step gave much better location performance overall, as well as computational efficiency benefits. 

2.3.2 Gazetteer look-up 

This filter checked the tweet to determine if a discernible place name could be detected from the user location and/or the 260 

tweet text using gazetteers including Geonames (Geonames, 2020) and DBPedia (DBpedia, 2020). The following 

methodology was applied to each tweet which did not contain geo or place coordinates as described in 2.3 above: 

• Geonames was used as our primary source of gazetted features as it is a geographical database with information 

about all countries with over eight million places, such as cities and points of interest. Where there was no match 

found in the Geonames database, the DBpedia database was used. 265 

• Where a match to a place name is found, a set of co-ordinates or bounding boxes from the gazetteer database is 

returned. 
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• Where locations were found in both the user profile and tweet text, place names in the tweet text are preferred as 

they are more likely to relate to the subject of the tweet.  

• In a small number of cases, the user profile location and tweet text locations may differ; in that case, the place 270 

determined from the tweet text is given more weight during the location inference process.  

• Where multiple matches to a place name were found in Geonames (i.e. where a place name exists in more than one 

country), then if there was no reference to the country elsewhere in the tweet or the country had not already been 

determined by the country filter described in 2.3.1 above, the place with the largest population (which has been 

found in previous studies to be the most likely location for the tweet (Arthur et al., 2018; Schulz et al., 2013) was 275 

logged and coordinates returned. 

• In addition, where multiple place names are determined from a tweet, to infer the most probable location, areas of 

overlap between the matching location polygons are detected before a final coordinate or bounding box is returned. 

This assumes that polygon overlaps are the highest likelihood locations.  

Since some place names are also commonly used to denote something other than a location (Liu et al., 2011), a database of 280 

words which are also places was used to remove apparent locations which were more likely to be a word than a place (e.g. 

dew, aka, var, etc).. 

2.3.3 Validation 

The method described above is based on the location inference method validated by Schulz et al. (2013) who found 92% 

accuracy when inferred location from user location/place name mentioned in tweet was compared against tweets for which a 285 

geotag was known. The method was also used successfully by Arthur et al. (2018) and Spruce et al. (2020). 

To validate the location inference approach for this study, a random sample of 100 tweets, including the tweet metadata, was 

taken after the filtering and location inference stage had taken place from the whole dataset for all dates. Each tweet’s 

metadata was examined for location references and this was cross-referenced with the GADM Level 1 location(s) that the 

tweet was assigned to using the social sensing location inference method. We found that 93 out of 100 tweets in this sample 290 

were assigned to the correct location(s) which shows that the location inference method was working well. This is also in 

line with previous studies’ validation of this location inference approach. Applying this location inference approach on a 

global scale carries more potential for place names used in multiple countries being mis-assigned their geographical 

coordinates than if working with tweets for a single country. Therefore locating tweets with a 93% accuracy in this study is 

considered a good success rate given the potential ambiguities. 295 

2.3.4 Matching to GADM Level 1 

Once a place is identified it is matched to the GADM Level 1 Administrative area polygon that contains it. If a tweet’s 

location spans multiple GADM Level 1 areas then the contribution of that tweet to the total count is split proportionally 
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between each area. After processing the location for all tweets, the overall counts of tweets within each GADM level 1 are 

then collated for each day within the period of study (1/1/2017 – 30/6/2017).  300 

2.4 Metrics for comparison of social sensing and Met Office Community Impact Database 

The number of relevant tweets in each GADM level 1 area for each day was used to calculate a ranking for all days in the 

study period for each location, given as a tweet count percentile e.g. day X is in the Yth percentile of tweet counts at location 

Z. This metric tells us how the number of tweets on a specific day in that location compares with ‘normal’ tweet activity in 

that place. We use percentiles in preference to absolute counts of tweets to account for varying prevalence of tweets in 305 

different locations due to either the size of population or propensity of the local population for using Twitter. If the number 

of tweets in a particular location on a particular day is low for that location, the percentile will be low, if the number of 

tweets is high for that location, the percentile will be high. We are interested in locations and days where the percentile of 

tweets is particularly high as this indicates that there is unusually high Twitter discussion about rainfall that particular day, 

which in turn suggests that there is more likely to be a rainfall event taking place. We might also infer that the higher the 310 

percentile (i.e. the more extreme the number of tweets for that place), the more impactful the event. 

To test our theory that a higher percentile of rainfall-related tweets in a location implies that a rainfall event, or the impacts 

of a rainfall event, are being experienced, we compare our percentile calculations with the events logged in the Met Office 

Community Impact Database. For each day in the study period and location included in the Met Office database, we 

compare the percentile of tweets with whether or not an event is logged in the database on that day, in that place. As we do 315 

not currently know the percentile threshold that implies an impactful rainfall event is taking place, we repeat this comparison 

for different tweet percentile thresholds between the 65th and 99th percentiles. Where a rainfall event spans multiple days in 

the database we compare the percentile of tweets for each day of the event. The results of these comparisons are discussed 

below.  

It is also worth noting the limitations of the Met Office impact database as a validation source for our Twitter data. As noted 320 

by Robbins and Titley (2018), the methods used to create the records in the Met Office database use manual searches of 

news and social media sources written in English, which does not necessarily lead to an exhaustive list of all high impact 

rainfall events that have occurred across the world. This means that this study is not necessarily a validation of `ground truth’ 

event detection using Twitter but instead is a triangulation between identified impact events using Twitter and the Met Office 

impact database. In the results that follow, we present outcomes as if the Met Office data were ground truth, i.e. where we 325 

find a false negative it indicates a case where social sensing does not find an event that is found in the Met Office data. The 

true number of false negatives (events that occurred in reality but are not detected by social sensing OR by Met Office data) 

is unknown. 
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3 Results 

In this Results section, we first analyse the coverage of the two datasets (social sensing and manually curated Met Office 330 

database). Then we present some illustrative examples to show the properties of the two data sources, before a sensitivity 

analysis on factors affecting the performance of social sensing, assuming that the Met Office data represents “ground truth” 

(note that this is not necessarily the case - we return to this assumption in the Discussion). The final set of results shown is an 

assessment of local/global performance of the social sensing method. 

3.1 Data coverage 335 

Figure 1 shows a timeseries of the number of tweets collected per day and the number of tweets retained after filtering the 

raw dataset for relevance. There was unfortunately some server downtime between 16/03/17 and 18/03/17 resulting in 

missing tweets for this time period (grey bar in Fig. 1). These dates are therefore excluded from all further analysis and 

comparisons between the Twitter data and the Met Office database. 

 340 
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Figure 1: Number of tweets collected per day between 01/01/2017 and 30/06/2017. Data shown for both the total number of tweets 
collected (top line) and the number of tweets retained after filtering for relevance (bottom line). The period where the tweet 
collection failed (16/03/2017–18/03/2017) is shown by a grey bar. 

 345 

Figure 2 shows the number of tweets in each GADM Level 1 area across the world for the whole study period. The majority 

of tweets are located within the USA, UK and Australia. This is not surprising given that we have collected tweets 

containing English language terms and these are English-speaking countries with a very large number of Twitter users. Any 

areas without any tweets during the study period are shaded white on the map. The figure shows that we have good global 

coverage of discussion about rainfall on Twitter, with at least some tweets in most areas. 350 
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Figure 2 also shows the locations of high impact rainfall events recorded in the Met Office database. Again, there is a good 

global spread of events both in English-speaking and other language speaking countries. The relevance filters are likely to 

remove other language tweets. 

 

 355 
Figure 2: Global map showing the number of filtered heavy rainfall tweets located in each GADM level 1 administrative area 
during the period of study (01/01/2017–30/06/2017). Areas with white shading had no located tweets during the period of study; 
shaded areas had at least 1 tweet. Locations of impact events recorded in the Met Office database are shown by black points. 

Figure 3 shows the number of GADM level 1 areas which had at least 1 tweet recorded in the filtered dataset (3379/3491 

areas) and the number without tweets (112/3491 areas). GADM areas without tweets were found to be predominantly areas 360 

within countries with a low population density (e.g. Angola, Laos, Svalbard) or island nations (e.g. the Bahamas, Nauru, 

Seychelles, Vanuatu). The areas with and without tweets are also compared with the number of GADM level 1 areas with an 

event in the Met Office database (224/3491 areas). All GADM level 1 areas with an event in the Met Office database had 

tweets recorded. None of the areas with zero tweets recorded had an event in the Met Office database. It is striking how 

many GADM Level 1 regions have some tweets recorded that talk about extreme rainfall or flooding, compared to the 365 

number that have verified high-impact rainfall events (floods and landslides) recorded in the Met Office database. We will 

return to the reasons for this disparity in the discussion. 
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Figure 3: Bar chart showing the number of GADM Level 1 areas (from a total of 3491 areas) with tweets and without tweets 
compared with the number of areas with at least one event in the Met Office database. 370 

 

3.2 Comparison between social sensing and the Met Office database 

The following are illustrative examples that demonstrate the properties of the two data sources. 

3.2.1 Spatial correspondence between social sensing outputs and precipitation observations 

For each day in the study period, the percentile of tweets for each GADM Level 1 area was mapped. A visual inspection of 375 

each map identified a number of examples of peaks in Twitter activity that correlate with observed rainfall. Figure 4 shows 

an example of a particularly impactful rainfall event in the USA on 30th April 2017. The areas with the highest percentile of 

tweets appear to correlate well with areas of significant rainfall. This provides some confidence that the spatial distribution 

of peaks in Twitter data correspond to areas of observed rainfall. 

 380 
Figure 4: (LEFT) 24-hour precipitation (inches) for USA on 30th April 2017 (http://www.wpc.ncep.noaa.gov). (RIGHT) Map of 
North America showing the percentile of tweet activity for each GADM level 1 administrative area on 30th April 2017. 
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3.2.2 Temporal correspondence between social sensing and event database outputs  

Time series of the volume of tweets for each GADM Level 1 area which had an event recorded in the Met Office database 

were examined to determine whether spikes of Twitter activity correspond to event dates in the Met Office database. Figure 385 

5 shows an example of this for GADM Level 1 areas in Australia. Events in the Met Office database largely correspond with 

peaks in tweet activity for these regions. It also appears that there may be at least one high impact rainfall event detected by 

social sensing that is not included in the Met Office database. Looking at 9th April 2017 there is a significantly high number 

of tweets in Victoria which do not correspond to an event in the Met Office database. Investigation of news articles and 

weather reports for this date identified that there was a significant rainfall event on this date that would have met the criteria 390 

for inclusion in the Met Office database. Therefore, this provides an example where the use of social sensing could aid with 

impact event detection and provide an additional source of impact information. Other peaks in tweet activity where the 

volume of tweets is above the 95th percentile for the region are also labelled as possible high-impact events which might 

have met the criteria for inclusion in the Met Office impact database, but were missed in the original creation. 
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 395 
Figure 5: Timeseries of filtered tweet counts per day for each of the Australian administrative areas with events in the Met Office 
database. The period of each heavy rainfall event in the Met Office database is shown by a shaded bar colour coded to the 
administrative area.  The 3 days after each event is shown by a grey shaded bar. Social sensing “events” that are not present in the 
Met Office database are labelled. 

Figure 6 shows a similar plot to Fig. 5, but for the United Kingdom (UK). In this example, there are greater disparities 400 

between events identified in the Met Office database and those identified using the social sensing method.  

There are a number of rainfall events identifiable from the tweet time series in Fig. 6 which are absent from the Met Office 

database: 12/13th January; 23rd February; 17th May; 27th June 2017. A significant peak in tweet activity (above the 95th 

percentile) is noted for each of these dates and further investigation of news media and weather reports shows that there were 

rainfall impacts in the UK on or around these dates. However, not all of the peaks in tweet activity can be attributed to 405 

genuine high impact rainfall events. For example, the peak in tweet activity seen around the 27th-29th May 2017 coincided 

with a Bank Holiday weekend in the UK with a weather forecast for bad weather. This generated a large amount of news and 
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social media discussion on cancelled events and holiday plans, as well as some travel disruption, not all of which was related 

to the weather. This provides an example where social sensing can provide a false positive result. False positives could occur 

for a number of reasons: For example, do smaller, less impactful rainfall events in the UK generate more discussion than in 410 

other countries given that rainfall is quite common here? Or being a relatively small country, impacts due to the weather 

have potential to be more localised, affect less people and therefore not as high a severity on the global impact scale used for 

the curation of the Met Office database. In this particular example there is also a question regarding the relevance of a bank 

holiday in affecting people's perception of risk and impact. 

 415 
Figure 6: Timeseries of filtered tweets per day for each of the UK administrative areas with events in the Met Office database. The 
period of each heavy rainfall event in the Met Office database is shown by a shaded bar colour coded to the administrative area.  
The 3 days after each event is shown by a grey shaded bar. Potential missed events in the Met Office database, which are identified 
in the Twitter data are labelled. 
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Examining the illustrative examples above as well as time series for other areas (not shown) we found there was a good 420 

match between areas with recorded heavy rainfall events and a high percentile of tweet activity relating to rain and the 

impacts of rain. We also found a good match between peaks in tweet activity and events in the Met Office database for some 

areas (e.g. Australia, some parts of the USA, Malaysia, Saudi Arabia, Angola) and a poorer match for others (e.g. UK, India, 

Haiti). Investigating peaks in tweet activity which do not correspond to a recorded event in the Met Office database, we 

found that most of these peaks refer to genuine high-impact rainfall events. These findings suggest that social sensing of 425 

rainfall events can be a useful addition to current manual methods of impact data collection, helping to identify a wider 

variety and greater number of high-impact events. 

3.3 Factors affecting social sensing performance 

3.3.1 Performance metrics 

To understand how the social sensing method is working in terms of links between peaks in Twitter activity (i.e. percentile 430 

of tweets for a particular area) and events logged in the Met Office database, we tested the social sensing method as an event 

detector, assuming that the Met Office events database represents ground truth. To quantify performance and account for the 

various methodological factors (for example, the tweet activity percentile threshold used to decide when an event had 

occurred), we plotted precision/recall curves. 

Recall is used to show the ability of a model to find all of the relevant cases in a dataset (Koehrsen, 2018). In this study, 435 

calculating recall indicates how well the social sensing method finds events in the Met Office database. Recall is calculated 

by taking the number of true positives divided by the number of true positives + the number of false negatives (Eq. (2)). For 

each day in the study period, a true positive would be counted if there is an event in the Met Office database AND the 

percentile of tweets is greater than or equal to the chosen percentile threshold (meaning the social sensing method correctly 

detects the event). A false negative would be counted if there is an event in the Met Office database but the percentile of 440 

tweets is less than the chosen percentile threshold (i.e. the event was not detected using tweets). 

𝑟𝑒𝑐𝑎𝑙𝑙 = 	 [=>?@	ABCD=DE@C]
[=>?@	ABCD=DE@C]	G	[HIJC@	K@LI=DE@C]

= [@E@K=C	MB>>@M=JN	O@=@M=@O	?CDKL	=P@@=C]
[@E@K=C	MB>>@M=JN	O@=@M=@O]	G	[@E@K=C	KB=	O@=@M=@O]

  (2) 
 

Precision is used to show the proportion of data points a model says are relevant compared to those which are actually 

relevant (Koehrsen, 2018). In this study, precision shows how accurately the social sensing method finds events in the Met 445 

Office database – i.e. if there is a peak in Twitter activity in a particular place on a particular day, does this correspond to an 

event in the Met Office database? Precision is calculated by taking the number of true positives divided by the number of 

true positives + the number of false positives (Eq. (3)). For each day in the study period, a true positive would be counted as 

described for recall above, whereas a false positive would be counted where the percentile of tweets is greater than or equal 

to a given percentile threshold but there is NOT an event in the Met Office database (event detected but not actually an 450 

event). 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =	 [=>?@	ABCD=DE@C]
[=>?@	ABCD=DE@C]G[HIJC@	ABCD=DE@C]

= 	 [@E@K=C	MB>>@M=JN	O@=@M=@O	?CDKL	=P@@=C]
[@E@K=C	MB>>@M=JN	O@=@M=@O]G[@E@K=C	DKMB>>@M=JN	O@=@M=@O]

  (3) 

Plotting precision and recall against each other shows how well (or not) the social sensing method is replicating the Met 

Office database of recorded events. Recall and precision were therefore calculated for each GADM level 1 administrative 

areas with an event in the Met Office database. As we do not know the optimum percentile threshold that would achieve the 455 

best social sensing performance, recall and precision were calculated using tweet percentile thresholds between the 65th and 

99th percentiles. This will help to determine which percentile threshold is optimal for signalling that an impactful rainfall 

event is occurring.  

Further to precision and recall, we also calculated the f-score - a metric which takes both precision and recall into account. 

This is a single score that indicates how well the social sensing method is working and can be used to find the optimal 460 

percentile threshold to signal a rainfall event is occurring. The F1 score is defined as the harmonic mean of precision and 

recall and aids in tuning a model to be optimised for both of these metrics (Koehrsen, 2018). In this study, we calculate a 

variation of the F1 score, the F2 score, which gives a higher weight to recall in its calculation (Eq. (4)). 

𝐹2	𝑆𝑐𝑜𝑟𝑒 = 5 ∗	 V>@MDCDBK∗W@MIJJ
(Y∗V>@MDCDBK)GW@MIJJ

         (4) 

For reference, F2 scores fall in the range [0,1], with a score of 1 being perfect recall and perfect precision. As used here, we 465 

are interested mainly in the change in F2 as different parameters are varied, rather than its absolute value.  

We choose to favour recall here as we are most interested in how well the social sensing method detects events in the Met 

Office database; furthermore, calculations of precision are somewhat less reliable due to the lack of genuine ground truth 

data. While the accuracy of the event detection is important, we prefer to detect as many events as possible and tolerate 

occasional peaks in Twitter activity that do not match an event in the Met Office database. As previously noted, the Met 470 

Office database does not provide a definitive list of all high impact rainfall (and secondary hazard) events that have occurred 

and there may well be events missing from this database that Twitter can help us detect. In other words, neither dataset is 

perfect but utilising the positive attributes of both methods could lead to an enhanced approach for sustainable and robust 

impact data collection. 

3.3.2 Sensitivity of social sensing performance to event detection window 475 

Figure 7 shows precision and recall calculated for all GADM Level 1 areas where an event was recorded in the Met Office 

database. Each plotted point shows precision and recall for a given tweet percentile threshold for event detection. Initially, 

precision and recall were calculated requiring that a peak in tweet activity must exactly match the day of the heavy rainfall 

event (Day 0). However, as identified by Robbins and Titley (2018), there can sometimes be a time lag between a rainfall 

event and impacts of the event being experienced or reported. Therefore precision and recall calculations were repeated for 480 

event detection windows of varying duration: Day 0 only; Day 0 + Day 1 (Day +1); Day 0 + Day 1 + Day 2 (Day +2); Day 0 

+ Day 1 + Day 2 + Day 3 (Day +3). Longer time windows were trialled in preliminary work, but showed no additional 
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benefit; also, longer time windows reduce the ability to locate events in time. Figure 7 shows precision/recall curves for each 

of these scenarios, showing that the 3-day window (Day +3) yields the best results. 

  485 
Figure 7: [LEFT] Precision and recall values when comparing tweet data with the Met Office impact Database for Day 0 only, Day 
+1, Day +2 and Day +3 from the impact event date. Each point represents the tweet percentile threshold used to signal true and 
false positive values for an event taking place in the Twitter data. Tweet percentile thresholds tested range from the 65th percentile 
to the 99th percentile (step size 1). [RIGHT] Precision vs Recall plot for matches (within 3 days of event) to Met Office impact 
event database vs tweet percentile thresholds 65–99 (step size 1) for native English-speaking countries vs other language speaking 490 
countries 

3.3.3 Social sensing performance in English-speaking and other language speaking countries 

As the tweets collected were in the English language only, we are also interested in whether the social sensing method works 

better for native English-speaking countries. Using the precision/recall calculations described above and for day range +3, a 

precision/recall curve was plotted for tweets from native English-speaking countries versus other language speaking 495 

countries. Figure 7 shows the results of this comparison and that the social sensing method yields much better results for 

native English-speaking countries with a maximum F2 score of 0.51 compared with 0.34 for other language speaking 

countries. The difference in performance is perhaps not surprising given that tweets were collected with English-language 

keywords, but it is interesting to note that reasonable performance is still achieved in countries speaking other languages. 

 500 

3.3.4 Social sensing performance at different event impact levels 

A further consideration for impact-based forecast evaluation is the severity of impacts associated with different (in this case, 

hydro-meteorological) events. Each event logged in the Met Office impact database is assigned a category from 1 (least 

severe) to 4 (most severe) (Table 1). To see how effective the social sensing method is for events with different levels of 

impact, we plot recall (the number of events in the Met Office database that are matched by peaks in Twitter activity) for 505 

different impact severity categories. Figure 8 shows recall across a range of percentile thresholds for each impact severity 
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category. This shows that events with the most severe impacts (severity category 4) are more likely to be picked up by the 

social sensing method. Surprisingly, the least impactful events (severity category 1) achieve the next best recall. This plot 

also shows us that as the percentile threshold is increased, recall decreases (i.e. more events are missed at the higher 

percentile thresholds). More on finding the optimum tweet percentile threshold for the social sensing method will be 510 

discussed later in Sect. 3.4. 

 
Figure 8: Recall versus tweet percentile threshold for matches (within 3 days of event) to the Met Office impact event database for 
each category of impact severity (where impact severity category 4 represents the most impactful events). 

3.4 Social sensing performance around the world 515 

Having considered some of the factors which affect performance of the social sensing methodology, we now examine how 

well social sensing performs in different geographic regions around the world. To do this, we first look at the choice of 

percentile threshold for different places, then the dependence of social sensing on tweet volumes, before finally examining 

performance in different GADM Level 1 regions. Again, we assume that the manually curated Met Office impact database is 

“ground truth”, while acknowledging that the actual ground truth is unknown.  520 

3.4.1 Choice of percentile threshold 

The optimal tweet percentile threshold overall (yielding the highest F2 score) was found to be around the 80th percentile, 

however this varies by location.  Figure 9 plots the optimal tweet percentile threshold for every GADM Level 1 region in 

which a Met Office impact event was recorded. Where the plot is white in colour, no events were recorded; these regions are 
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not considered in our analysis. The plot shows that the optimal percentile threshold for social sensing performance varies by 525 

country (at least, in terms of recovering the known events recorded in the Met Office database). Therefore, the social sensing 

method may need to use a different percentile threshold for different locations to achieve its best performance. 

 
Figure 9: Global map showing the tweet percentile threshold which yielded the highest F2 score of precision/recall between filtered 
heavy rainfall tweet activity and events in the Met Office impact database for each GADM level 1 administrative area with an 530 
event recorded in the Met Office database during the study period. 

3.4.2 Dependence on tweet volume 

It is reasonable to assume that the volume of tweet activity might affect social sensing performance. This leads to an 

expectation that social sensing will work best in locations with large user populations and resulting large data volumes. To 

test this assumption, we examined the relationship between F2 scores and tweet volumes for each GADM Level 1 region for 535 

which an event was recorded in the Met Office database. Figure 10 plots the average tweet count and the maximum F2 score 

for each location with an event recorded in the Met Office database. The plot shows no obvious relationship between the two 

variables; this is confirmed by a weak correlation (Pearson’s r=0.11, p=0.10). This finding demonstrates that (perhaps 

unexpectedly) a greater number of tweets does not necessarily mean that the social sensing method will be more accurate. 

Good performance can be achieved with any volume of tweets, so long as there is temporal variation in volume driven by 540 

rainfall events. 
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Figure 10: Log Average number of tweets versus maximum F2 score for each location with an event in the Met Office database. 

3.4.3 Performance of social sensing around the world 

The performance of social sensing in different locations across the world was also examined. Figure 11 shows the maximum 545 

accuracy for each GADM Level 1 administrative area with an event recorded in the Met Office database. Accuracy is 

calculated based on the proportion of true results among the total number of cases examined with 1 being 100% accuracy, 

i.e. no false positive or negatives, and 0 being 0% accuracy, i.e. no true events found. Figure 11 shows how the accuracy is 

high for all areas where social sensing was compared to the Met Office database. The maximum accuracy achieved for each 

area ranges from 86% to 99%. The high accuracy achieved suggests that the social sensing method detected almost all events 550 

in the Met Office database. However, as we are also interested in how well our social sensing method detects high impact 

rainfall events which are not in the Met Office database, the F2 score (which also takes this into account) is likely to provide 

a more realistic measure of how well, or otherwise the social sensing method detected events in the database.  

 

Figure 11 also shows the maximum F2 score for the GADM Level 1 administrative areas with an event recorded in the Met 555 

Office database. It is clear from this figure that there are some places where the method works particularly well (e.g. 

Australia, some parts of the USA, Saudi Arabia) and others where the method doesn’t work as well (e.g. Europe, India). This 

may be in part due to language limitations, as only English language tweets were analysed. It may also be due to some parts 

of the world where rainfall is more common or the time frame of the study being only 6 months meaning some areas’ heavy 

rainfall (e.g. Indian monsoon) are not included. 560 
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Figure 11: [TOP] Global map showing the average accuracy of true positives between filtered heavy rainfall tweet activity and 
events in the Met Office impact database for each GADM level 1 administrative area with an event recorded in the Met Office 
database during the period. [BOTTOM] Global map showing the maximum F2 score of precision/recall between filtered heavy 565 
rainfall tweet activity and events in the Met Office impact database for each GADM level 1 administrative area with an event 
recorded in the Met Office database during the period. 
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4 Discussion 

This study has shown the potential of social sensing of Twitter data to identify and locate high impact rainfall events across 570 

the world. Social sensing can help to support the curation of impact data following extreme weather events, which may in 

turn support better evaluation of impact-based forecasts and the development of new impact models. The process used to 

generate the Met Office impact database can produce high quality and detailed records, with few if any false positives. 

However, manual collection is extremely laborious, resource intensive and ultimately unsustainable for many Meteorological 

Services. This could be improved by developing automated procedures which accomplish the same goal. Social sensing is 575 

one automated approach which could be used to automatically identify events breaching a predetermined threshold. We have 

seen that social sensing achieves high coverage (few false negatives) thus the addition of a social sensing tool to enhance 

impact data collection as part of a semi-automated process is very promising and would allow high quality impact data to be 

collected with significantly reduced manual work. 

Comparison of social sensing results with the Met Office impact database identified a number of surprising results which 580 

may highlight both limitations in the design of the Met Office database and also opportunities for the two approaches to 

complement one another. In particular we found that there were a number of events identified in the Twitter data which were 

not included in the Met Office database. While recorded as false positives when calculating the precision and recall of the 

social sensing approach, many of these peaks in tweet activity were found to be true events after further investigation. On 

closer inspection these events would have met the criteria for being assigned an impact severity category and are therefore 585 

genuine omissions from the Met Office database. There are a number of possible reasons for this disparity. Firstly, we 

speculate that there are a number of high-impact rainfall events that occurred but were not captured by Met Office data 

collection methods, e.g. due to the focus on English-language news sources, or because they did not meet the inclusion 

criteria of that database. The Met Office database does not include news reports which did not make clear reference to the 

cause of the impacts. For example, if flooding and associated impacts were reported but did not make clear reference to 590 

heavy rainfall as the trigger, then the report would not have been included in the Met Office database. There were also 

temporal and spatial constraints on report inclusion into the Met Office database so that flood events associated with 

groundwater or significant fluvial flooding (caused by long-term rainfall over a season for example) were not included. This 

was because the Met Office Global Hazard Map (GHM) focuses on forecasting daily heavy rainfall events and therefore the 

impact database was generated with evaluation of those forecasts in mind. By contrast, in the Twitter data an event would be 595 

inferred by the volume of discussion about rainfall/flooding alone, without this context. Therefore, differences between the 

two datasets in this case would be expected. Second, there is a difference in style of reporting between Twitter, which 

typically provides an individual’s identification of a single high-impact event based on their own experience and subjective 

perception of impact, compared with the dominant sources used to produce the Met Office impact database, which typically 
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try to be objective and tend to aggregate impacts (e.g. news media often report aggregated impacts associated with an event). 600 

This means that Twitter data may pick up a greater number of smaller-scale, localised impacts, which are often missed in 

broader, aggregated sources (e.g. FloodList). Third, we note that the presence of tweets relating to rainfall in a region does 

not indicate that a major rainfall event occurred. It is likely that many tweets are written in reference to minor or normal 

rainfall and not in response to an extreme event. However, the disparity in coverage between Met Office data and Twitter 

data does suggest that the social sensing approach may facilitate more effective wide-scale observation of high-impact 605 

rainfall events. 

It was also found that events in the Met Office impact database were more likely to correlate with events detected using 

social sensing for English-speaking countries. This is not surprising given that the data collected from Twitter was in the 

English language and the methods used to collate the records of impact events in the Met Office database also relied on news 

and media sources in English. While the limitations on language would lead to a clear English language bias in terms of 610 

performance, it was encouraging to find that social sensing with English tweets does still work well in some other-language 

speaking countries and also that the number of tweets in a location does not adversely affect the social sensing method. 

The most impactful events in the Met Office database (impact severity category 4) also returned better success using the 

social sensing approach than the lower severity categories, which is not an unexpected result given that events of this 

magnitude are likely to generate more interest in social media channels. What was surprising, however, was that events in 615 

severity category 1 had better recall than severity categories 2 or 3. One possible reason for the strong performance of 

severity category 1 events is because of the style of reporting by Twitter users. Category 1 includes localised impacts and 

low-level disruption (i.e. disruption to daily life, delays and short-term in-accessibility to services). Given the individualistic 

nature of Twitter reporting, it is likely that these types of impacts are registered more routinely, while such events have to 

reach an undetermined significance (in terms of interest) threshold to be reported in the media or in other aggregated data 620 

sources. It should also be noted that the frequency of events in each severity category, within the Met Office database, is 

uneven, with events assigned to severity category 3 far outweighing the number of category 4 events. 

4.1 Limitations and further work 

The main limitation to studies of this type is the lack of data to confirm the absolute truth for validating our findings. In this 

case there is no definitive list of all impactful heavy rainfall events across the world that we can refer to. While the Met 625 

Office database was laborious and time consuming to collect, it is very useful because it pulls information from a wide range 

of sources; includes all events found, regardless of location in the world; and has clear and consistent criteria for events to be 

included within it. We have also shown that Twitter is a good source of data for event detection. Therefore, what has been 

presented in this study is a comparison of two datasets, which if combined together could help to provide a more holistic 

view of heavy rainfall impacts across the world. 630 

Another limitation for this study is that only 6 months of data was examined. This means that locations which experience 

high rainfall at different times of the year to the period of this study (e.g. the Indian Monsoon season) would have been 



28 
 

under-represented. Any further work in this area should consider extending the timeframe to include all likely weather 

extremes across the year. This would be important as it will support improved understanding of tweet behaviour between wet 

and dry seasons where these occur. The underlying tweet counts which were used to calculate percentiles would also benefit 635 

from being calculated for a longer time frame (e.g. 3-5 years) rather than just the period of this study. This would likely yield 

better results in terms of identifying peaks in Twitter data. 

Tweaks to the underlying method may also benefit the performance of social sensing for both similar studies to this one and 

other studies comparing Twitter data with other datasets. In relation to this study, the terms included in the Twitter API 

search could be extended to be wholly in line with terms used to find news and media sources for the Met Office database. 640 

For example, the tweet collection only included the word ‘landslide’, however the Met Office database would have also 

included other terms such as ‘mudslide’ and ‘landslip’ in searches for news reports. The development of libraries of suitable 

search terms can be considered somewhat easier for hazards, which often have well defined usage, compared with terms that 

aim to identify socio-economic impacts. This work has focussed on identifying impacts based on the occurrence of tweets 

with specific hazard phrases, rather than socio-economic impact phrases. Further analysis of tweet text from filtered tweets 645 

to extract information about the types of impacts being experienced by Twitter users would be an obvious next step. This 

could then be used to further classify the events in line with the Met Office impact severity category criteria or to help to 

refine impact severity categorisation. It is likely that a combination approach could yield additional insights into the details 

of high-impact events, but further work would be required to fully establish the utility of Twitter for providing detailed 

impact assessment. 650 

Extending this study to investigate if tweet activity relating to heavy rainfall (or other weather types) could be monitored 

globally in real-time would greatly add weight to its long-term utility as a source of impact data. One of the primary 

limitations of our method is the exclusive use of English. We have demonstrated in Sect. 3.1 that we achieve good global 

coverage despite this restriction but as shown in Fig. 7 our ability to detect events is lower in countries where English is not a 

native language. Applying this methodology in real-time and as a source of impact data on a global scale would require a 655 

similar list of key words to be generated in a number of other major languages, especially those popular on Twitter. The 

subsequent location inference and relevance filtering steps would also have to be optimised to be language agnostic. Though 

English is the most popular language on Twitter (Mocanu et al., 2013) the majority of tweets are in other languages, with 

Spanish, Malay and Indonesian making up a significant proportion. We have demonstrated that there is significant benefit to 

this methodology working with English tweets only, but we must keep in mind this bias and look to add other major 660 

languages in future work. 

Despite the acknowledged limitations and the recommendations for further methodological work, this study shows that it is 

possible to use Twitter data to identify high-impact rainfall events and their impacts, globally. Furthermore, the type of 

record that Twitter provides (i.e. eye-witness accounts, individual reports of events taking place), is different in nature to the 

aggregated sources that the Met Office database and other similar databases use. Therefore, Twitter data can be used as a 665 

‘first pass’ event detection tool, largely automating the difficult manual curation task.  Prototyping this methodology in ‘real-
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time’ to generate an automated Twitter-based impact database would be the next step. It would also be interesting to repeat 

the impact-based evaluation methodology described in Robbins and Titley (2018) using a Twitter-based impact database. 

Based on the findings from this work, we believe that a method that utilises the strengths of both methods (social sensing 

methodology and media/aggregated data collection from trusted sources) could lead to an enhanced approach for sustainable 670 

and robust impact data collection. The generation of a framework to bring these data together would allow the impact-based 

evaluation method to migrate away from its original, semi-automated approach to a fully automated impact-based evaluation 

methodology.  

5 Summary and Conclusion 

In this study, data was collected from Twitter in the first half of 2017 relating to mentions of rainfall and the impacts of 675 

rainfall across the world. This data was analysed and compared with a manually-curated database of global rainfall events 

that caused socio-economic impacts collated by the Met Office for the same period of time. The aim was to assess the 

potential of using Twitter as a source of impact data following a significant weather event. A ‘social sensing’ methodology 

was used to apply various computational techniques to filter and extract only those tweets from the dataset of relevance to 

the impacts of a heavy rainfall event. Tweets without geo-located coordinates were then further processed to infer the 680 

location of the tweet, or event mentioned in the tweet, so that the location of the rainfall event could also be determined. 

Using the percentile of the number of tweets for a particular day and location as a proxy for the likelihood of an impactful 

event taking place, this accounted for the prevalence of tweets in each location. Comparison of these spikes of activity within 

the filtered Twitter data with the Met Office database of high impact rainfall events finds that the majority of events recorded 

by the Met Office were also detected using social sensing. Interestingly, the social sensing approach also found additional 685 

impactful rainfall events within the Twitter data which were not recorded in the Met Office database. It was also encouraging 

to find that social sensing with English tweets still worked well in some other language speaking countries and also that the 

number of tweets in a location does not adversely affect the social sensing method. This suggests that social sensing of 

Twitter data would be a useful addition to current impact data collection processes. 

6 Code and data availability 690 

Python code is available in a private GitHub repository (https://github.com/seda-lab/social_sensing) which can be made 

available on request. 

Data used in this study was collected using the Twitter API. Due to Twitter’s policy on redistributing Twitter content 

(https://developer.twitter.com/en/developer-terms/more-on-restricted-use-cases) the tweet data cannot be made publicly 

available but can be provided by request in the form of tweet IDs which can be rehydrated with the tweet content by the 695 

requester using the Twitter API. 
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All authors collaborated on the conceptualization of the study with MS taking the lead in writing the manuscript. Social 

sensing methodology developed by RA and MS, with formal analysis for this study carried out by MS. Met Office database 

provided by JR. All authors assisted with writing. 700 

8 Competing interests 

The authors declare that they have no competing interests. 

9 References 

Aisha, T. S., Wok, S., Manaf, A. M. A. and Ismail, R.: Exploring the Use of Social Media During the 2014 Flood in 
Malaysia, Procedia - Soc. Behav. Sci., 211, 931–937, doi:10.1016/J.SBSPRO.2015.11.123, 2015. 705 

Arthur, R., Boulton, C. A., Shotton, H. and Williams, H. T. P.: Social sensing of floods in the UK, PLoS One [online] 
Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189327, 2018. 

Bossu, R., Fallou, L., Landès, M., Roussel, F., Julien-Laferrière, S., Roch, J. and Steed, R.: Rapid Public Information and 
Situational Awareness After the November 26, 2019, Albania Earthquake: Lessons Learned From the LastQuake System, 
Front. Earth Sci., 8, doi:10.3389/feart.2020.00235, 2020. 710 

Boulton, C. A., Shotton, H. and Williams, H. T. P.: Using social media to detect and locate wildfires, in Tenth International 
AAAI Conference on Web and Social Media, AAAI. [online] Available from: 
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/13204 (Accessed 14 October 2019), 2016. 

Brouwer, T., Eilander, D., van Loenen, A., Booij, M. J., Wijnberg, K. M., Verkade, J. S. and Wagemaker, J.: Probabilistic 
flood extent estimates from social media flood observations, Nat. Hazards Earth Syst. Sci., 17(5), 735–747, 715 
doi:10.5194/nhess-17-735-2017, 2017. 

de Bruijn, J. A., de Moel, H., Jongman, B., de Ruiter, M. C., Wagemaker, J. and Aerts, J. C. J. H.: A global database of 
historic and real-time flood events based on social media, Sci. data, 6(1), 311, doi:10.1038/s41597-019-0326-9, 2019. 

Campbell, R., Beardsley, D. and Sezin, T.: Impact-based Forecasting and Warning: Weather Ready Nations | World 
Meteorological Organization, [online] Available from: https://public.wmo.int/en/resources/bulletin/impact-based-720 
forecasting-and-warning-weather-ready-nations (Accessed 19 January 2020), 2018. 

Cervone, G., Sava, E., Huang, Q., Schnebele, E., Harrison, J. and Waters, N.: Using Twitter for tasking remote-sensing data 
collection and damage assessment: 2013 Boulder flood case study, Int. J. Remote Sens., 37(1), 100–124, 
doi:10.1080/01431161.2015.1117684, 2016. 

Clement, J.: Twitter - Statistics & Facts | Statista, [online] Available from: https://www.statista.com/topics/737/twitter/ 725 
(Accessed 19 March 2020), 2020. 

Cowie, S., Arthur, R. and Williams, H. T. P.: @choo: Tracking Pollen and Hayfever in the UK Using Social Media, Sensors, 
18(12), 4434, doi:10.3390/s18124434, 2018. 



31 
 

DBpedia: A Public Data Infrastructure for a Large, Multilingual, Semantic Knowledge Graph, [online] Available from: 
https://wiki.dbpedia.org/ (Accessed 13 October 2020), 2020. 730 

Dredze, M., Paul, M. J., Bergsma, S. and Tran, H.: Carmen: A Twitter Geolocation System with Applications to Public 
Health, [online] Available from: https://pdfs.semanticscholar.org/9bc4/6fb12f2c7fae0e9e56e734e6efb9ca07fd98.pdf, 2013. 

Fang, J., Hu, J., Shi, X. and Zhao, L.: Assessing disaster impacts and response using social media data in China: A case 
study of 2016 Wuhan rainstorm, Int. J. Disaster Risk Reduct., 34, 275–282, doi:10.1016/j.ijdrr.2018.11.027, 2019. 

Geonames: GeoNames, [online] Available from: https://www.geonames.org/ (Accessed 11 June 2020), 2020. 735 

Guan, X. and Chen, C.: Using social media data to understand and assess disasters, Nat. Hazards, 74(2), 837–850, 
doi:10.1007/s11069-014-1217-1, 2014. 

Han, X. and Wang, J.: Using social media to mine and analyze public sentiment during a disaster: A case study of the 2018 
Shouguang city flood in china, ISPRS Int. J. Geo-Information [online] Available from: https://www.mdpi.com/2220-
9964/8/4/185, 2019. 740 

Kankanamge, N., Yigitcanlar, T., Goonetilleke, A. and Kamruzzaman, M.: Determining disaster severity through social 
media analysis: Testing the methodology with South East Queensland Flood tweets, Int. J. Disaster Risk Reduct., 42, 
101360, doi:10.1016/j.ijdrr.2019.101360, 2020. 

Kim, J. and Hastak, M.: Social network analysis: Characteristics of online social networks after a disaster, Int. J. Inf. 
Manage., 38(1), 86–96, doi:10.1016/J.IJINFOMGT.2017.08.003, 2018. 745 

Koehrsen, W.: Beyond Accuracy: Precision and Recall | by Will Koehrsen | Towards Data Science, Towar. Data Sci. 
[online] Available from: https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c (Accessed 2 
October 2020), 2018. 

Lachlan, K. A., Spence, P. R., Lin, X. and Del Greco, M.: Screaming into the Wind: Examining the Volume and Content of 
Tweets Associated with Hurricane Sandy, Commun. Stud., 65(5), 500–518, doi:10.1080/10510974.2014.956941, 2014. 750 

Li, Z., Wang, C., Emrich, C. T. and Guo, D.: A novel approach to leveraging social media for rapid flood mapping: a case 
study of the 2015 South Carolina floods, Cartogr. Geogr. Inf. Sci., 45(2), 97–110, doi:10.1080/15230406.2016.1271356, 
2018. 

Liu, X., Zhang, S., Wei, F. and Zhou, M.: Recognizing Named Entities in Tweets, Association for Computational 
Linguistics. [online] Available from: http://sourceforge.net/projects/opennlp/ (Accessed 19 May 2020), 2011. 755 

Liu, Y., Liu, X., Gao, S., Gong, L., Kang, C., Zhi, Y., Chi, G. and Shi, L.: Social Sensing: A New Approach to 
Understanding Our Socioeconomic Environments, Ann. Assoc. Am. Geogr., 105(3), 512–530, 
doi:10.1080/00045608.2015.1018773, 2015. 

Mocanu, D., Baronchelli, A., Perra, N., Gonçalves, B., Zhang, Q. and Vespignani, A.: The Twitter of Babel: Mapping World 
Languages through Microblogging Platforms, PLoS One, 8(4), 61981, doi:10.1371/journal.pone.0061981, 2013. 760 

Morss, R. E., Demuth, J. L., Lazrus, H., Palen, L., Barton, C. M., Davis, C. A., Snyder, C., Wilhelmi, O. V., Anderson, K. 
M., Ahijevych, D. A., Anderson, J., Bica, M., Fossell, K. R., Henderson, J., Kogan, M., Stowe, K., Watts, J., Morss, R. E., 
Demuth, J. L., Lazrus, H., Palen, L., Barton, C. M., Davis, C. A., Snyder, C., Wilhelmi, O. V., Anderson, K. M., Ahijevych, 
D. A., Anderson, J., Bica, M., Fossell, K. R., Henderson, J., Kogan, M., Stowe, K. and Watts, J.: Hazardous Weather 
Prediction and Communication in the Modern Information Environment, Bull. Am. Meteorol. Soc., 98(12), 2653–2674, 765 
doi:10.1175/BAMS-D-16-0058.1, 2017. 



32 
 

Morstatter, F., Pfeffer, J., Liu, H. and Carley, K. M.: Is the Sample Good Enough? Comparing Data from Twitter’s 
Streaming API with Twitter’s Firehose, in Proceedings of the 7th International Conference on Weblogs and Social Media, 
ICWSM 2013, pp. 400–408, AAAI Press. [online] Available from: http://arxiv.org/abs/1306.5204 (Accessed 14 October 
2019), 2013. 770 

Niles, M. T., Emery, B. F., Reagan, A. J., Dodds, P. S. and Danforth, C. M.: Social media usage patterns during natural 
hazards, edited by S. Lozano, PLoS One, 14(2), e0210484, doi:10.1371/journal.pone.0210484, 2019. 

Rainear, A. M., Lachlan, K. A., Oeldorf-Hirsch, A. and DeVoss, C. L.: Examining twitter content of state emergency 
management during Hurricane Joaquin, Commun. Res. Reports, 35(4), 325–334, doi:10.1080/08824096.2018.1503945, 
2018a. 775 

Rainear, A. M., Lachlan, K. A., Oeldorf-Hirsch, A. and ...: Examining Twitter content of state emergency management 
during Hurricane Joaquin, Commun. … [online] Available from: 
https://www.tandfonline.com/doi/abs/10.1080/08824096.2018.1503945, 2018b. 

Robbins, J. C. and Titley, H. A.: Evaluating high-impact precipitation forecasts from the Met Office Global Hazard Map 
(GHM) using a global impact database, Meteorol. Appl., 25(4), 548–560, doi:10.1002/met.1720, 2018. 780 

Rossi, C., Acerbo, F. S., Ylinen, K., Juga, I., Nurmi, P., Bosca, A., Tarasconi, F., Cristoforetti, M. and Alikadic, A.: Early 
detection and information extraction for weather-induced floods using social media streams, Int. J. Disaster Risk Reduct., 30, 
145–157, doi:10.1016/j.ijdrr.2018.03.002, 2018. 

Sakaki, T., Okazaki, M. and Matsuo, Y.: Earthquake shakes Twitter users, in Proceedings of the 19th international 
conference on World wide web - WWW ’10, p. 851, ACM Press, New York, New York, USA., 2010. 785 

Schulz, A., Hadjakos, A., Paulheim, H., Nachtwey, J. and Uhlhäuser, M.: A Multi-Indicator Approach for Geolocalization of 
Tweets, in Proceedings of the 7th International Conference on Weblogs and Social Media, ICWSM 2013., pp. 573–582, 
AAAI Press. [online] Available from: https://www.aaai.org/ocs/index.php/ICWSM/ICWSM13/paper/viewFile/6063/6397, 
2013. 

Sit, M. A., Koylu, C. and Demir, I.: Identifying disaster-related tweets and their semantic, spatial and temporal context using 790 
deep learning, natural language processing and spatial analysis: a case study of Hurricane Irma, Int. J. Digit. Earth, 12(11), 
1205–1229, doi:10.1080/17538947.2018.1563219, 2019. 

Spruce, M., Arthur, R. and Williams, H. T. P.: Using social media to measure impacts of named storm events in the United 
Kingdom and Ireland, Meteorol. Appl., 27(1), doi:10.1002/met.1887, 2020. 

Stewart, M. C. and Gail Wilson, B.: The dynamic role of social media during Hurricane #Sandy: An introduction of the 795 
STREMII model to weather the storm of the crisis lifecycle, Comput. Human Behav., 54, 639–646, 
doi:10.1016/J.CHB.2015.07.009, 2016. 

Wang, D., Kaplan, L., Le, H. and Abdelzaher, T.: On truth discovery in social sensing: A maximum likelihood estimation 
approach, in IPSN’12 - Proceedings of the 11th International Conference on Information Processing in Sensor Networks, pp. 
233–244, ACM Press, New York, New York, USA., 2012. 800 

Wang, D., Szymanski, B. K., Abdelzaher, T., Ji, H. and Kaplan, L.: The age of social sensing, Computer (Long. Beach. 
Calif)., 52(1), 36–45, doi:10.1109/MC.2018.2890173, 2019. 

Wu, D. and Cui, Y.: Disaster early warning and damage assessment analysis using social media data and geo-location 
information, Decis. Support Syst., 111, 48–59, doi:10.1016/j.dss.2018.04.005, 2018. 



33 
 

Zou, L., Lam, N. S. N., Cai, H. and Qiang, Y.: Mining Twitter Data for Improved Understanding of Disaster Resilience, 805 
Ann. Am. Assoc. Geogr., 108(5), 1422–1441, doi:10.1080/24694452.2017.1421897, 2018. 

 


