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Abstract: Earthquakes and tsunamis are the natural events that generate subsequent geomorphological 

land cover changes. The damage is usually of such importance and of such a diverse nature that it is 10 
imperative to have tools that allow quick and precise monitoring. Thus, know which classification 

methods have the best potential to obtain greater precision will improve natural disaster management. We 

analyze Tubul locality (37.21ºS; 73.43ºO) in Biobío region, Chile, in which greatest geomorphological 

changes were documented after the earthquake and tsunami occurred 27/February/2010. These changes 

can be analyzed using different machine learning methods. We investigate the “Support Vector Machine” 15 
(SVM) and “Random Forest” (RF), versus the “Maximum Likelihood” (ML) classification method of 

Landsat TM and ASTER satellite images. The comparison of the performance of the classifiers and 

certifying accuracy improvement shows that machine learning algorithms are superior to traditional 

classification methods in terms of overall accuracy and robustness. The general classification accuracy 

was approximately 97%.  We also visualize the land cover transformations, showing that 26% of the 20 
region was altered. The results  of performance testing of machine learning methodologies  was consistent 

with other studies and presents a valid application in the visualization of  land cover changes in areas of 

natural disasters. 

 

1.-Introduction 25 

Multispectral images provide an effective tool for various fields of research related to land cover and 

land-use change (Chuvieco, 2010; Maxwell et al., 2018a). Over the last decade, observations of cover 

change have enabled vulnerability studies in areas at risk or affected by natural disasters, with emphasis on 

populated areas, thanks to image comparisons, such as those used to study natural disasters like earthquakes 

and tsunamis (Ma et al., 2016; Satheesh Kumar et al., 2008; Wu et al., 2016). 30 
Coastal risk mapping based on satellite images is an application of land cover change studies (Kaiser et al., 

2013; Römer et al., 2012). Several studies have already used remote sensing to show areas affected by 

destructive natural phenomena such as tsunamis, highlighting those that showed the changes produced by 

the tsunami that affected Japan on the 11th March 2011. Richmond et al. 2012, reports on soil changes 

associated with the Tohoku-Oki tsunami by contrasting satellite images. Tappin et al. 2012, by interpreting 35 
satellite image time series documented coastal change. Ishihara and Tadono 2017, using Landsat 8 images, 

presented a time series of maps over the affected area of Tohoku. In addition, Kaiser et al. 2012, conducted 

a spatial and temporal evaluation of the impacts of the Indian ocean tsunami, by remote sensing. Also Sarun 

et al. 2018 , focused their work on the analysis of the previous and subsequent Sumatra 2004 tsunami 

scenario, starting with 16 years of Landsat ETM + and OLI multispectral data.  40 

Classification techniques are fundamental to get reliable information from satellite data. Over the past 

decades, several classification approaches have been developed (Dhodhi et al., 1999; Maxwell et al., 

2018b). Within the literature, we can distinguish the traditional and advanced classifiers. Among the 

traditional classifiers stand out ISODATA, k-means and ML (Blanzieri and Melgani, 2008; Rawat and 

Kumar, 2015; Rogan et al., 2008). While in the advanced stand out; neural networks (ANN; (Bocco et al., 45 
2007)), decision trees (DT ;(Pal and Mather, 2003)), random forest (RF;(Belgiu & Drăguţ, 2016) ) and 

support vector machine (SVM; (Mountrakis et al., 2011a)). However, the selection of the classifier, bands 

(original or derived) and parameter definition by the user are prerequisites to improve the accuracy of the 

classification (Maxwell et al., 2018b). Reviews such as Mountrakis, Im, and Ogole 2011a and Lawrence 
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and Moran 2015, present an overview of recent methodologies and applications of classification models in 50 
remote sensing. 

We propose a machine learning algorithm implementation such as SVM and RF, having as the main 

motivation, improvement in performance, accuracy, and reliability over the classification results achieved 

by traditional methods such as ML. Another source of motivation is that in the remote sensing related field 

of coastal changes related to Tsunami, these classifiers (SVM and RF) are not as familiar as other classifiers, 55 
such as decision trees (DT), and neural network (NN) variants. 

We classified the satellite images involving the periods before and after February 27, 2010, concentrating 

on the Tubul town area, in central Chile. On this date, an earthquake of magnitude Mw = 8.8 (according to 

the Chilean seismological service) reached the central Chile coast with its epicenter 50 km northeast of the 

Concepción city, at a depth of 47.7 km (see Figure 1). It caused a magnitude 4 tsunami, affecting small 60 
bays in a coastal stretch of 800 km along the Maule and Biobío regions (Quezada et al. 2012.). The 

earthquake and tsunami events generated destruction of the infrastructure of cities and coastal towns 

(Cienfuegos et al., 2014; Soto et al., 2015) and profound modifications in various aspects in the territory's 

geography, among which stand out coseismic uplift and subsidence, seawater entry in coastal areas, sand 

and debris transport, erosion of dunes and coastal bars (Araya and Carvajal, 2016;  Martínez et al., 2011). 65 
Within all the coastal areas, one of the most affected, and for which, there are a remarkable number of 

descriptive reports, is the Tubul area. In this town, tsunami resulted in a flooding area of about 75 ha., while 

destructing the sector made up by the edge of the beach and parts of the banks of the river (Martínez et al., 

2011). These changes are those that we wish to visualize by implementing advanced classification methods 

that will allow categorizing identifiable land cover changes. 70 
 

2-Materials and method 

2.1- Study area 

We examined the Tubul location (37,21 °S; 73,43 °W) in the Arauco Province, BioBío Region (see Figure 

1), south-central Chile. As pointed out in the introduction, the earthquake and following Tsunami of 75 
February 27, 2010, affected the coast of the Arauco Bay, near the Tubul-Raqui wetland, which has two 

main watercourses, Tubul and Raqui rivers. A sandbar of recent (quaternary) fluvial-marine sedimentation 

forms a very low plain at the foot of a paleo-cliff and the fluvial Tubul-Raqui wetland system. Prior to the 

tsunami, sand sediments dominated the coastal dynamics in the low plain, forming a bar, the human 

settlement located on both the dunes and sands of the bar. These features provide only limited natural 80 
protection from coastal inundation, and thus the areas are of known vulnerability to marine events. As a 

result, the tsunami altered Tubul, though not destroyed, favored by its orientation, which is not open to the 

north from where the wavefront arrived (Martínez et al., 2011). 
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Figure 1. Tubul (37.21 °S; 73.43 °W) in Arauco province, Biobío region. A) RGB ASTER image (before 27/F);     85 
B) RGB ASTER image (after 27/F). 

 

2.2. - Multispectral Images of Moderate Resolution. 

We chose pre- and post-earthquake geo-referenced Landsat and Aster satellite images that could likewise 

be comparable, that is dates with comparable meteorological conditions. It is the main reason we resolved 90 
not selecting images days previous to the event, but from the same time as the preceding year. In Table I, 

we present the characteristics of these images. In addition, the free-access SRTM (Shuttle Radar 

Topography Mission) digital elevation model (DEM) was used, with a spatial resolution of 30 meters, 

corresponding to the area of study. 

Table 1. Descriptive table of the satellite images used. 95 

 

2.3. - Data preparation 

Prior to the analysis, the images must go through some processes to give a physical sense to the values, 

with the methodology expressed in figure 2. 

Different corrections are necessary: First, we make a radiometric correction to get the reflectance values at 100 
the top of the atmosphere (TOA) according to the procedure described in (Chander et al., 2009). Because 

of varying sun-ground-sensor geometry, which is affected by the topography of the area, we also perform 

a topographic correction. This imposes an additional variation on the radiometric data in pixels with ground 

cover and very similar structural biophysical characteristics, but with characteristics of terrain slope or 

Satelite Year DD / MM / YYYY Description Bands 

Landsat 2009 07/03/2009 path001 / row085 1-5,7 

2010 26/03/2010 path001 / row085 

Aster 2009 27/02/2009 AST_L1T_0030227 1-3 (VNIR) 

2010 11/03/2010 AST_L1T_0030311 
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different zenith and azimuth angles at the time of capture (Moreira and Valeriano, 2014). The "correction 105 
C" detailed in (Soenen et al., 2005) was applied. Composition is made from the 6 bands extracted from 

Landsat and the 3 bands extracted from ASTER. The training and validation samples, which contain 

representative pixels for the different soil coverages, were extracted by selecting a region of interest (ROI). 

In ROI’s a simple sampling selection protocol was followed to define the training samples. Later, it is 

compiled in a general list with the values of the pixels for each band. 110 

 

Figure 2. Methodological scheme to illustrate steps necessary for classification using the SVM and RF algorithms. 

 

Table 2. Definition of the thematic classes that represent the soil cover selected to represent the reality of land. 

Soil cover Description 

1. City Urban soil and exposed rocks that, like cement, have a high albedo; It reflects a large amount of 

incident energy. 

2. Dry Sediment 

Exposed soil with low moisture content and organic matter, such as sand, exposed hillsides, 

uncultivated areas, cleared areas, burned areas, erosion areas and areas with no vegetation. 

3. Wet Sediment Soils with high moisture content, such as wetland soils. Also, farmland and coastal deposits. 

4. Low vegetation 

Plant formation where the herbaceous cover is over 40%, this includes land with crop rotation, 

types of trees and shrubs with an area of extension of less than 25%. Areas used by agriculture, 

including cereal crops, vegetables, and fruits. 

5. High Vegetation 

Vegetation cover in which the tree stratum is established by natural species such as Coihue, 

Olivillo, Patagua, and Boldo. It also represents forests where the arboreal stratum is formed by 

exotic species such as eucalyptus and radiata pine. 

6. Water Surfaces covered by water, both fresh and salty. 

 115 
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2.4. - Classification of images 

We executed the classifications of the images using ML, RF, and SVM. In the following subsections, we 

present a brief description of the 3 algorithms considered. 

2.4.1 - Maximum Likelihood 

The Maximum Likelihood (ML) method is one of the most used classification methods in remote sensing 120 
(Yonezawa, 2007). This method is based on the assumption that the image DN (digital number) values in 

each of the user-defined classes follow a multivariate normal probability distribution.  Although this 

assumption is not always true, the method is robust (Ahmad & Quegan, 2012). 

2.4.2. - Random Forest 

RF is a learning algorithm that combines information from an ensemble of decision trees using random 125 
subsets of variables to classify and train data (Breiman, 2001; He et al., 2017). The trees vote to determine 

the label assigned to unknown samples. This overcomes the problem that any tree is non-optimal, as when 

incorporating many trees, it takes a global optimum (Rodriguez-Galiano et al., 2012). The set of decision 

trees or "forest" is built up from the training data selected by the user executing a "bootstrap" sampling. In 

this sampling, only 2/3 of the original training data for each tree are randomly used, and besides a random 130 
selection of predictor variables is used to split the nodes in the tree's construction (Naidoo et al., 2012). 

As detailed in Dye et al. (2011) and He et al. (2017), there are two main adjustment parameters required to 

configure an RF algorithm. These parameters are the number of trees that will be built in the forest and the 

number of division categories considered for each node in the trees. RF uses an out-of-bag (OOB) procedure 

where the remaining 1/3 of the training samples (randomly picked out and taken out from the sample to 135 
establish the decision tree) are booked as an internal test set, which calculates so an unbiased and reliable 

error rate (Maxwell et al., 2018b). 

2.4.3 - Support Vector Machine. 

SVM focuses only on the training samples closest to the space characteristics to the optimum limit of 

separation between the classes (Vapnik, 1995). These samples are called support vectors and are used to 140 
define the hyperplane with the maximum margin (i.e., separation) between classes (Mountrakis et al., 

2011a).  

The basic linear decision limits are often not enough to classify the categories with high precision. 

Techniques and alternative solutions such as a kernel function used to work out the problem of 

inseparability, introducing additional variables in the optimization of SVM and mapping (through an 145 
adequate mathematical function) the non-linear correlations in a higher space (Euclidean or Hilbert) . The 

selection of a kernel function often influences the results of the analysis, so in the same way as the 

adjustment parameters, it is very important to choose it carefully (Kavzoglu and Colkesen, 2009). In 

addition, SVM requires the "cost " parameter (C parameter) definition, which controls the cost paid by the 

SVM for erroneous classifications of a training point. Adjustment of this parameter can balance the margin 150 
maximization and the classification violation (Melgani and Bruzzone, 2004). Interestingly, SVM does not 

assume a known statistical distribution of the data to be classified. This is useful since data gained from 

remote sensing images have an unknown distribution and normality does not always provide a correct 

assumption of the actual dispersion of the pixels in each class. 

2.4.4. - Validation of algorithms 155 

We created a confusion matrix for global accuracy and analysis of the reliability of the implemented models 

(Tralli et al., 2005).  We calculated the kappa statistic for algorithm evaluation, which tests the success of 

pairs of data between a set of categories while correcting the success expected probability. The values range 

from -1, which shows a complete disagreement between the categories and +1 showing a perfect agreement 

(Comber et al., 2012). 160 
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2.4.5. - Classification scheme. 

We used the R software to perform the ML, SVM, and RF classification process. R software packages are 

free and open-source (R: The R Project for Statistical Computing ). It offers a wide variety of functions for 

implementing algorithms and statistical analysis. The packages used were "e1071" (SVM implementation), 

"RandomForest" (RF implementation), "Raclass" (ML implementation) and "SP", "RASTER ", "RGDAL" 165 
(these 3 packages allow to read raster data in R). To train and validate the algorithms, ROI’s were subset 

to provide 25% of the data for training and the remaining 75% for validation.  

As mentioned in section 2.4.3., SVM and RF require some parameters defined by the user. In SVM 

classification, the first parameter is the kernel function type; here we selected the radial base Gaussian 

function (RBF), as being the most commonly used in remote sensing [49]. Two additional parameters "cost" 170 
(C parameter; which controls the cost paid by the SVM for erroneous classifications of a training point) 

and "gamma" (associated with the radial basis kernel function) needs to be defined, which in the first stage 

will have their values predetermined by the software. For the RF model, requires two parameters defined 

by the user, the number of variables available for each node division (mtry), and the number of decision 

trees (ntree) produced. 175 

To obtain the highest classification accuracy, we perform an optimization parameter process to define the 

optimal learning algorithms. It is a necessary step as machines learning algorithms are sensitive to the 

parameters defined by the user (Mountrakis et al., 2011a). Its optimization is achieved by using the method 

of testing parameter combinations through cross-validation (10-fold) (Huang et al., 2002). The optimized 

parameters obtained were “gamma” (equal to 10) and “C” (equal to 1000) for SVM, and “ntree” (equal to 180 
200) and “mtry” (equal to 3) for RF. Through the "epicalc" package, available in R, we create error matrices, 

with which it is possible to reach the global reliability value or total agreement of the models and the value 

of the kappa index. 

2.4.6. - Classification 

After the SVM and RF algorithms were trained, we validated the models by performing an accuracy 185 
assessment using the ROI’s data set. The SVM and RF classification methods were applied for all corrected 

images. We only applied the ML method in the ASTER images, since it requires a longer time processing. 

In the end, SVM and RF are compared in Landsat, while the three SVM, RF and ML are compared with 

ASTER. 

The results are raster maps or thematic maps that can be viewed using any geospatial software (QGIS). 190 
These thematic maps will control the six classes in which it has been desired to categorize the land cover 

(specified in table 2).  

The colors of the thematic maps will have the same significances for all the images, where the black 

represents coverage of the city or exposed rock, the yellow for dry soil or with a little vegetal cover, the tan 

for humid grounds, the light green for low vegetation, dark green for tall vegetation and blue to represent 195 
water. 

 3. -Results 

Table 3 shows the error matrices together with the values of overall agreement and kappa index for each of 

the models generated from different satellite images and different dates of acquisition.  The land cover 

categories are represented by the numbers from 1 to 6. 200 
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Table 3. Error matrices, the total agreement and kappa index values, and user and producer accuracy for each of the 

models generated from the different satellite images and different acquisition dates. (1.-city; 2.-dry sediment; 3.-wet 

sediment; 4.-low vegetation; 5.-high vegetation; 6.- water). 205 

Satelite/model SVM RF MV 

Landsat 

Class 1 2 3 4 5 6 1 2 3 4 5 6  

1 562 16 0 16 5 0 552 21 3.5 3 7 0 

2 10 1965 8 25 26 3 21 1943 4 33 39 2 

3 3 34 2814 4 5 4 3 44 2799 4 4 2 

4 9 26 0 2742 111 0 10 26 1 2732 101 0 

5 11 22 5 148 3024 0 9 31 8 148 3028 0 

6 0 2 4 0 10 2672 0 1 4 0 1.5 2675 

 Total agreement: 97.61% Kappa : 0.965 Total agreement : 97.46% Kappa : 0.962 

ASTER 

Class 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 

1 968 19 2 9 4 4 965 23 1 17.5 2.5 5 775 20 1 0 43 999 

2 31 1325 64 109 39 0 27 1318 92 113 46 0 104 1291 240 328 94 0 

3 4 128 7512 6 16 43 5.5 117 7466 4 13 46 10 141 7312 5 17 293 

4 15 97 2 6489 290 0 21 99 4 6456 247 0 56 99 1 6128 410 0 

5 3 19 1 141 10074 0 5 32 4 163 10114 1 0 37 3 282 9634 215 

6 5 1 13 0 2 11367 4.5 1 28 0 3 11359 76 0 37 0 262 9906 

  Total agreement: 96.93%  Kappa : 0.959 Total agreement : 96.77 Kappa : 0.958 Total agreement : 89.45% Kappa: 

0.853 

User’s accuracy (%) 

Landsat 

93.8 96.4 98.2 95 94.2 99.4 94.1 95.1 98 95.2 93.9 99.7       

Producer 

accuracy(%)Landsat 

94.5 95.2 99 93.4 95.1 99.7 92.8 94 99.3 93.5 95.2 99.8       

User’s accuracy (%) 

ASTER 

96.2 85 97.4 94.1 98.4 99.8 95.2 82.6 97.6 94.6 98 99.7 42 62 94 91.5 94.7 96.4 

Producer accuracy 

(%) ASTER 

94.3 0.83 0.99 0.97 0.97 0.99 93.9 82.9 98.3 95.6 97 99.5 75.9 81.3 96.3 90.9 92.1 86.8 

 

In addition, table 3 shows that the overall accuracies for the SVM and RF models, which vary between 96% 

and 97%, while the kappa index varies between 0.95 and 0.97. In contrast, for larger ensembles, overall 

accuracy is close to 98%. The average kappa index shows a value of 0.96 for both the SVM and RF 

algorithms, much higher than the 0.86 for the ML algorithm. The ML model has a lower precision (close 210 
to 90%) because it depends on a higher degree on the number of samples available for each category.   

 

 

 

 215 
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(I)                                                      (II) 

Figure 3. (I) Thematic maps for Tubul: A) Tubul thematic map, from ASTER image, for a period prior to 27 / F;   220 
B) Tubul thematic map, from ASTER image, for a period after 27 / F. (II) Thematic maps for Tubul: A) Thematic 

map Tubul, from Landsat image, for a period prior to 27 / F ; B) Thematic map of Tubul, from Landsat image, for 

a period after 27 / F. 

 

It should be noted that the accuracy levels are high in most cases (table 3). This is, related to the thematic 225 
classes that used separate land coverings differentiable from each other; this helps in getting less 

confusion between the classes. The number of training samples is abundant in all cases, helping to 

optimize the algorithms. Thematic maps are presented in Figure 3.I and 3.II, resulting only for the SVM 

method, since it was the one that showed the highest accuracy in performance, and changes in soil cover 

will be described from these thematic maps  230 

Table 4 present the soil cover description for Tubul, with a comparative approach before and after the 

earthquake and tsunami. With this objective, for each category of the land cover, the numbers of pixels 

classified are displayed. The percentages corresponding to the numbers of pixels selected for each coverage 

regarding the total number of pixels in the image are also shown (%class). In the last column (Class 

increase) the differences in percentage terms of the pixels selected for each category are presented, 235 
comparing the two study periods. This provides us with value to discriminate if there was an increase or 

decrease in each category (due to the earthquake and tsunami effects). 
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Table 4. Comparative table of changes in the thematic classes before and after the earthquake of 2010 for Tubul. 

Tubul 

 Before After  

Class Nº. of pixels %Class Nº. of pixels % Class Class increase 

City 1412 5.9% 1817 7.6% 1.7% 

Dry Soil 3123 13.0% 4054 16.9% 3.9% 

Wet Floor 7215 30.0% 12093 50.3% 20.3% 

Vegetation Low 4007 16.7% 2561 10.6% -6.1% 

Vegetation High 2922 12.1% 1646 6.8% -5.4% 

Water 5373 22.3% 1884 7.8% -14.5% 

Total 24055 100.0% 24055 100.0% 0%   

 240 

People reported that In Tubul a setback of several tens to hundred meters from the sea took place, because 

of the low slope of the area strongly affected by the co-seismic rise of 1.4 ± 0.1 meters (Quezada et al. 

2012), forming a sandy beach (see Figure 3). After analyzing changes in the thematic map, the coastline 

receded approximately 200 meters. Another clear effect is the drying of the Tubul and Raqui rivers. The 

thematic class of wet sediment replaced all these reversals of water cover, registering an increase of over 245 
20% of this class, to the detriment of the thematic class of water and vegetation. Exposed rock coverings 

appeared, a product of landslides in steep areas and rock removal in coastal areas (see Figure 3). 

The results presented in Table 4 describe the rate of change of land cover in percentage with respect to the 

total area covered in the study area. The cover corresponding to urban land increased from 5.9% to 7.6%, 

dry land increased from 13% to 16.9%, wet soil had a large increase from 30% to 50.3%. The two categories 250 
related to vegetation had a decrease in the coverage area, the low vegetation from 16.7% to 10.6% and the 

high vegetation from 12.1% to 6.8%. Likewise, the aquatic cover decreased from 22.3% to 7.8%. All these 

variations in land cover give us a total change rate of 26.1%. 

Among the land cover changes mentioned above the increase in the cover of wet soil, corresponding to the 

appearance of wet soil in areas where water coverage existed before, due to the desiccation of the river 255 
basin and the retraction of the coastline, which exposed the seabed. The vegetation cover had important 

variations, especially the low vegetation cover, which corresponds to rocks and sediments landslides, and 

the entry of marine water into the interior areas, these processes causing vegetation death and subsequent 

soil exposure (without vegetation). 

4. 2 - Discussion 260 

For the image classification, the three algorithms show good results, although the SVM and RF 

learning algorithms have superior performance. 

As far as the SVM classifier is concerned, from an algorithmic perspective, there is controversy about 

the kernel to be used and the selection and parameter optimization. Some authors postulate that optimization 

processes do not contribute to an increase in classification accuracy (Zhang and Xie, 2013), while others  265 
show that the parameter fluctuations evince a great impact on precision. In this analysis, the applied 

parameter optimization process showed a high C parameter and a low gamma value, which agrees with 

what has been postulated elsewhere and particularly in (Maxwell et al., 2014). In addition, the accuracy of 

the algorithm will be subject to the choice of the kernel function (Huang et al., 2002); in this case, the 

choice of the RBF kernel brought good results. All the above comes besides multiple works that show that 270 
there is empirical evidence to support the theoretical formulation and motivation behind SVM (Maxwell 

and Warner, 2015; Maxwell et al., 2014; Zhang and Xie, 2013). 

For SVM, one of its most salient features is to generalize well from a limited amount and/or poor 

quality training data (Mountrakis et al., 2011a), as reflected in the high levels of overall reliability delivered 

https://doi.org/10.5194/nhess-2020-41
Preprint. Discussion started: 13 March 2020
c© Author(s) 2020. CC BY 4.0 License.



10 

 

by models (see Table 3), although the representative pixels of the training samples for each class did not 275 
include only the category of pure soil coverage. This causes a deviation in the reflectivity that would 

correspond to only a ground cover, which implies a decrease in the training’s quality data. The ability to 

get high accuracy of SVM, despite the described limitations, is in line with the concept of "support vector" 

that is based on only a few data points to define the hyperplane of the classifier, this process being 

computationally lighter than other methods (Pal and Mather, 2005). 280 
On the other hand, RF delivered very good results in the classification accuracy, showing a precision 

comparable to that of SVM. In addition, it is very easy to use, since it only has two parameters (the number 

of variables in the random subset of each node and the number of trees in the decision set) and is not very 

sensitive to their values (Rodriguez-Galiano et al., 2012). Regarding the number of decision trees, the 

optimization reached an optimal value of 200, which agrees with other studies showing that as the number 285 
of trees increases it rises accuracy, but only to a certain range where accuracy stabilizes (Ghimire et al., 

2012; Shi and Yang, 2019). For the number of random variables available within each node, the value 

obtained was 3. Though this value is low, it avoids the correlation between the trees (Breiman, 2001).   

The RF algorithm has the advantage of generating an unbiased internal estimate of the generalization 

error (OOB error) (Cánovas-García et al., 2017).  This means that is not necessary to use an independent 290 
evaluation subset. However, in order to assess the classification accuracy as for the other algorithms, 

training and validation data were used to assess the classification accuracy in the same manner as for the 

other classification algorithms. Also, an evaluation set was used to measure the classification accuracy but 

randomness is desired in the evaluation set to avoid the bias generated in the measurement of the OOB 

error. RF also provides an evaluation of variables importance (bands) for the general classification of the 295 
land cover categories and each category classification using the Ginni index and the OOB estimate 

(Breiman, 2001). In this study this estimate was not considered, since for the images analyzed, the number 

of bands was quite small (6 for Landsat and 3 for ASTER), so that reducing them would not generate a 

significant reduction in computational cost.  

SVM and RF obtained similar values of global precision, classifying the land cover categories equally 300 
well, which is consistent with research that indicates a similar level of performance in terms of accuracy 

for both types of classifiers (Adam et al. 2014; Pal and Mather 2005). It should be noted that the high levels 

of accuracy obtained by learning algorithms, respond in part, by the high number of training samples used 

and the low number of bands that made up each image, as postulated in ( Pal and Foody, 2010). 

 305 
5. - Conclusion. 

The results presented here show that machine learning algorithms had an excellent performance in the 

classification of changes in land cover, facing a catastrophic process such as an earthquake with many 

aftershocks accompanied by a tsunami. These results respond to the good classification accuracy, the 

optimal choice of parameters for the algorithms, thanks to implementing a parameter optimization. On the 310 
other hand, many training sample selections generate more robust algorithms. The results provide new 

perspectives on SVM and RF algorithm's performance in mapping’s context of soil cover in large and 

heterogeneous areas. In addition, the results add to other research showing the superiority of learning 

algorithms versus more traditional methods, setting them as the best option for classifying land cover in 

heterogeneous areas (Maxwell et al., 2018b; Melgani & Bruzzone, 2004). 315 
Similar results were obtained to those shown in other studies with similar characteristics, we obtained 

comparable results, with the changes shown in the ground cover, a product of earthquake or tsunami effects 

analysis, through the implementation of image classification algorithms satellite (Ishihara et.al., 2017; 

Pandey et al.,2019). 

This study gives a more local-scale approach to changes in the land cover before and after the 2010 320 
event in Chile, capture changes in more limited areas, which stands out from other work done to analyze 

this event by generating thematic maps, which focused on a more regional scale (Rojas et al., 2013). In 

addition, results agree with those shown by other types of geographic and morphological analysis, which 

performed on-site cadasters for change quantification (Araya  and Carvajal 2016; Cienfuegos et al. 2014).  

Those agree in the co-seismic uprising that produced a widening of beaches and rivers draining, and the 325 
sedimentary material entry or carried away by the tsunami, which both invaded vegetative areas or covers 

urban areas. 
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This work contributes to show that earthquakes and tsunamis, which are very rare, powerful and 

destructive natural events with deep consequences in landscape, could be quickly analyzed through passive 

satellite image and new machine learning methodologies, that can help to measure quickly and precisely 330 
not only the extent of a catastrophe but also its real effects on the territory. In addition, it can be established 

as a tool for the generation of risk maps for catastrophic events, serving as a risk management instrument 

both to improve territorial planning in coastal areas, optimize evacuation routes and artificial barriers 

creation to protect urban areas. 
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