

Interactive comment on “Comparison of machine learning classification algorithms for land cover change in a coastal area affected by the 2010 Earthquake and Tsunami in Chile” by Matias I. Volke and Rodrigo Abarca-Del-Rio

Matias I. Volke and Rodrigo Abarca-Del-Rio

matiasvolke@udec.cl

Received and published: 3 July 2020

Thank for this comment which allowed to improve the statistical significance of the work. For the process to achieve statistical confidence, classifiers are now iterated 100 times in 10 separate sub-sample data sets. We report the mean values and standard deviation in the manuscript (see section 3.- result) for each of the 10 training sample subgroups (see tables en figure 1 and 2). To evaluate the effect of training sample sizes as well as the performance of the classification algorithms on classification accuracies, we randomly divided the training sample data into 10 different data sets. The procedure

C1

described in section 2.4.5. - Classification scheme" of the manuscript. These data sets correspond to 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% of the total training data set. We made sure that each subset had the same proportions of training samples per soil cover class as the original set. To ensure that this occurs, a technique called "stratified holdout sampling" is used. This technique is implemented in the CreateDataPartition() function of the caret package. A fixed validation sample is reserved for the performance evaluation of all classifiers, corresponding to 30% of the initial total of the training samples. This sample is obtained in the same way as the training samples. However, it is reserved only for the validation of the algorithms trained in the different sizes of training sub-samples. Also applied the Wilcoxon signed-rank test to evaluate and assess the statistical significance of systematic pairwise differences between the ML models at the significant level $\alpha = 5\%$. The results of the p-values of the significance test are presented in the table in figure 3 below.

Interactive comment on Nat. Hazards Earth Syst. Sci. Discuss., <https://doi.org/10.5194/nhess-2020-41>, 2020.

C2

Algorithm	Landsat																			
	10%		20%		30%		40%		50%		60%		70%		80%		90%		100%	
	mean	stde	mean	stde	mean	stde	mean	stde	mean	stde	mean	stde	mean	stde	mean	stde	mean	stde	mean	stde
NB	0.895	0.013	0.908	0.011	0.909	0.010	0.912	0.008	0.913	0.006	0.914	0.005	0.915	0.004	0.914	0.003	0.915	0.002	0.914	0.002
KNN	0.911	0.009	0.922	0.008	0.927	0.007	0.931	0.006	0.934	0.005	0.937	0.005	0.938	0.004	0.938	0.003	0.939	0.001	0.939	0.001
MARS	0.884	0.014	0.904	0.010	0.911	0.007	0.918	0.007	0.921	0.005	0.924	0.005	0.925	0.004	0.925	0.003	0.926	0.001	0.927	0.001
GBM	0.899	0.012	0.917	0.010	0.925	0.008	0.933	0.007	0.936	0.005	0.940	0.004	0.942	0.003	0.943	0.004	0.945	0.003	0.946	0.002
SVM	0.916	0.009	0.932	0.008	0.939	0.006	0.943	0.005	0.947	0.004	0.950	0.004	0.952	0.003	0.953	0.002	0.955	0.001	0.955	0.001
RF	0.917	0.010	0.927	0.007	0.933	0.006	0.936	0.006	0.939	0.005	0.940	0.005	0.941	0.004	0.943	0.004	0.943	0.003	0.942	0.002
DNN	0.925	0.011	0.939	0.009	0.934	0.009	0.934	0.008	0.938	0.008	0.945	0.007	0.946	0.005	0.948	0.004	0.949	0.001	0.949	0.001
XGB	0.904	0.016	0.920	0.012	0.927	0.010	0.933	0.007	0.939	0.006	0.942	0.005	0.946	0.004	0.947	0.003	0.951	0.001	0.952	0.001

Fig. 1. Table 4. Average overall accuracies and their coefficient of variation for ML algorithms applied in all training sample size (Landsat images).

C3

Algorithm	Aster																			
	10%		20%		30%		40%		50%		60%		70%		80%		90%		100%	
	mean	stde																		
NB	0.924	0.013	0.923	0.007	0.931	0.007	0.934	0.011	0.932	0.007	0.933	0.005	0.933	0.005	0.932	0.002	0.934	0.001	0.934	0.001
KNN	0.925	0.014	0.940	0.010	0.954	0.006	0.957	0.005	0.964	0.004	0.966	0.002	0.967	0.003	0.970	0.002	0.971	0.002	0.971	0.002
MARS	0.942	0.010	0.952	0.021	0.949	0.011	0.959	0.022	0.959	0.021	0.967	0.004	0.967	0.007	0.969	0.014	0.969	0.002	0.970	0.002
GBM	0.935	0.010	0.958	0.008	0.965	0.004	0.968	0.004	0.970	0.002	0.973	0.003	0.974	0.002	0.975	0.002	0.975	0.001	0.975	0.001
SVM	0.944	0.012	0.962	0.008	0.967	0.005	0.971	0.006	0.975	0.003	0.976	0.004	0.976	0.003	0.977	0.001	0.979	0.001	0.979	0.001
RF	0.930	0.015	0.957	0.014	0.963	0.003	0.965	0.004	0.967	0.003	0.970	0.002	0.971	0.002	0.972	0.002	0.974	0.001	0.973	0.001
DNN	0.945	0.002	0.951	0.001	0.961	0.002	0.964	0.001	0.967	0.002	0.968	0.004	0.969	0.003	0.972	0.001	0.973	0.001	0.973	0.001
XGB	0.935	0.013	0.957	0.009	0.965	0.004	0.966	0.005	0.969	0.002	0.971	0.004	0.974	0.002	0.973	0.002	0.974	0.001	0.976	0.001

Fig. 2. Table 5. Average overall accuracies and their coefficient of variation for ML algorithms applied in all training sample size (Aster images).

C4

Landsat		Aster		Landsat-Aster	
No	p.value	No	p.value	No	p.value
NB vs. KNN	<0.001	MARS vs. SVM	<0.001	NB vs. KNN	<0.001
NB vs. MARS	<0.001	MARS vs. RF	<0.001	NB vs. MARS	<0.001
NB vs. GBM	<0.001	MARS vs. DNN	0.084	NB vs. GBM	<0.001
NB vs. SVM	<0.001	MARS vs. XGB	0.033	NB vs. SVM	<0.001
NB vs. RF	<0.001	GBM vs. SVM	<0.001	NB vs. RF	<0.001
NB vs. DNN	<0.001	GBM vs. RF	<0.001	NB vs. DNN	<0.001
NB vs. XGB	<0.001	GBM vs. DNN	0.084	NB vs. XGB	<0.001
KNN vs. MARS	0.906	GBM vs. XGB	0.033	KNN vs. MARS	0.906
KNN vs. GBM	<0.001	SVM vs RF	0.006	KNN vs. GBM	<0.001
KNN vs. SVM	<0.001	SVM vs DNN	0.004	KNN vs. SVM	<0.001
KNN vs. RF	<0.001	SVM vs XGB	0.006	KNN vs. RF	<0.001
KNN vs. DNN	0.006	RF vs XGB	0.232	KNN vs. DNN	0.006
KNN vs. XGB	<0.001	RF vs DNN	0.020	KNN vs. XGB	<0.001
MARS vs. GBM	0.041	DNN vs XGB	0.084	MARS vs. GBM	0.041

Fig. 3. Table 6. Wilcoxon test results between different models for each image type and between images (significance achieved at $p < 0.05$).