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Abstract. The precipitation forecast over the Mediterranean basin is still a challenge because of the complex orographic region 

which amplifies the need for local observation to correctly initialize the forecast. In this context the data assimilation techniques 10 

play a key role in improving the initial conditions and consequently the timing and position of precipitation pattern. For the 

first time, the ability of a cycling 4D-Var to reproduce a severe weather event in central Italy, as well as to provide a comparison 

with the largely used cycling 3D-Var, is evaluated in this study. The radar reflectivity measured by the Italian ground radar 

network is assimilated in the WRF model to simulate an event occurred on May 3, 2018 in central Italy. In order to evaluate 

the impact of data assimilation, several simulations are objectively compared by means of a Fraction Skill Score (FSS), which 15 

is calculated for several threshold values, and a Receiver Operating Characteristic (ROC) curve. The results suggest that both 

assimilation methods in cycling mode improve the 1, 3 and 6-hourly quantitative precipitation estimation. More specifically, 

the cycling 4D-Var with a warm start initialization shows the highest FSS values in the first hours of simulation both with light 

and heavy precipitation. Finally, the ROC curve confirms the benefit of 4D-Var: the area under the curve is 0.91 compared to 

the 0.88 of control experiment without data assimilation. 20 

1 Introduction 

The precipitation forecast is a key variable in Numerical Weather Prediction (NWP) especially because of the interest of civil 

protection agencies, business sectors as well as common people to plan their daily activities. Recently, the development of 

more accurate parametrization of physical processes allowed a significant progress in NWP at high resolution but the prediction 

of exact location, timing and intensity of a convective event is still a challenge.  25 

The Mediterranean basin is prone to flash flood and heavy precipitation events. One of the most relevant peculiarities of this 

area is the presence of mountain ranges in proximity of coastal area that lift the airflow, favouring the condensation and the 

triggering of convection. The Italian territory, which is characterized by a complex orography with two relevant mountain 

chains (Alpes and Apennines) and steep, urbanized, small catchments, is one of the most expose Mediterranean area to the 
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hydrogeological risks. About 90% of Italian municipalities are susceptible to floods which have caused 466 deaths between 30 

1990 and 2006 alone and over 19000 million of Euro of damages (Llasat et al., 2010). 

The Mediterranean region has also been identified as hotspot for climate change because of its high sensitivity to Global 

Greenhouse Gas (GHG) concentrations (Giorgi, 2006). The heat stress growing, expected in future years, will contribute to a 

temperature rise, as well as to increase the water vapour amount in the atmosphere. These factors will lead to an intensification 

of intense and extreme precipitation events (Willet et al., 2008; Giorgi, 2011). In this context, an accurate prediction of rainfall 35 

will be crucial to prevent economic and social damages.  

The precipitation forecast is strongly dependent on the initial state, that dominates the evolution of the prognostic variables 

and consequently the development of precipitation. Hence, small errors in the initial conditions produce a significant shift in 

the positioning and intensity of convective events. Nowadays, the large availability of high frequency (both in space and time) 

meteorological data, remote sensing observations and in situ measurements, has encouraged many operational centres to use 40 

data assimilation techniques for improving the accuracy of initial state. More specifically, the assimilation of ground radar 

reflectivity and radial velocity with three-dimensional variational (3D-Var) method proves good results in terms of quantitative 

precipitation forecast (QPF) for several case study in United States and Korea (Xiao and Sun, 2007; Lee et al., 2010; Ha et al., 

2011). The assimilation of radar data with Weather Research Forecast (WRF) 3D-Var confirms positive results also in Europe 

by using WRF model, for the simulation of flash flood events in central (Maiello et al., 2014; 2017) and northern Italy (Lagasio 45 

et al., 2019), as well as by using Advanced Regional Prediction System (ARPS) and Application of Research to Operations at 

Mesoscale (AROME) models for two heavy rainfall cases in Croatia and France (Stanesic and Brewster, 2016; Caumont et al. 

2009), respectively. Recently, a few works show a positive impact in the prediction of intense precipitations using four-

dimensional variational (4D-Var) with radar data and conventional observations if compared to 3D-Var for the simulation of 

a cyclonic event in Antarctic region (Chu et al., 2013) and a squall line over US Great Plains (Sun and Wang, 2013), 50 

respectively. In Europe, the 4D-Var method proves good performance, improving the QFP and reducing the precipitation 

spinup time (Mazzarella et al., 2017; 2020). But the 4D-Var, due to the high computational cost, is scarcely applied except in 

big operational centres. 

The low predictability and the high spatial and temporal variability of convective precipitation pattern requires a rapid update 

of initial state (analysis) to reduce the errors and to ensure a well balancing and physically consistent initial conditions. Newly, 55 

significant efforts have been made by scientific community to improve the temporal and spatial resolution of satellite and 

ground radar data. This has enabled the first experiments with an update frequency equal or less than 3 hours. In this context, 

several weather centres have adopted a cycling assimilation with a 3-hourly update frequency by using 3D-Var with promising 

results (Ballard et al., 2012; Gao et al., 2004; Stephan et al., 2008; Wang et al. 2013; Caumont et al. 2009). Only the High-

Resolution Rapid Refresh (HRRR) system, developed by NCAR, assimilates radar data with sub-hourly frequency over USA, 60 

but it does not use a variational method (Smith et al., 2008). 

The cycling assimilation with 4D-Var is still a challenge because of the high demand of computational resources. A first 

attempt to apply the cycling 4D-Var in operational mode was made during the London Olympic Game in 2012 using an NWP‐
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based nowcast system (Ballard et al., 2016). The work shows the advantages of 4D-Var that ingests more observations than 

3D-Var, estimating with a greater accuracy the initial state of the atmosphere. In addition, the weather radar reflectivity over 65 

the whole Italian territory, previously used in a LETKF assimilation scheme (Gastaldo et al., 2018) with promising results, are 

now assimilated for the two variational methods.   

This study aims at: 

• assessing the performance of 1-hour cycling assimilation with 3D-Var and 4D-Var methods using WRF model;  

• evaluating the impact of radar reflectivity mosaic, acquired by the Italian radar network, in cycling assimilation with 70 

variational methods; 

• quantifying the improvements of assimilation techniques in terms of QPF for a complex orography region in the 

Mediterranean basin.  

In this regard, a heavy rainfall case occurred in Central Italy on May 3, 2018 is used and several experiments are carried out 

to quantify the impact of the two assimilation methods in cycling mode. To the aim of identifying the best configuration in 75 

terms of QPF, two different statistical methods are applied: a filtering (neighbourhood) technique and a Receiver Operating 

Characteristic (ROC) statistical indicator. The keys novelty of this paper resides in: i) the application of hourly cycling 4D-

Var assimilation with WRF model; ii) the comparison between the two variational assimilation methods 3D/4D-Var in cycling 

mode; iii) the assessment of the precipitation forecast skill of cycling 4D/3D-Var assimilation methods in an orographically 

complex region. 80 

The paper is organized as follows. The case study is described in Section 2, while the assimilated dataset is presented in Section 

3. Section 4 contains the methodological approach: more specifically a brief overview of the assimilation and verification 

methods, while the model’s setup and the design of experiments are described in Section 5. The results are summarized in 

Section 6, lastly, the conclusions are discussed in Section 7. 

2 Case Study 85 

On 2 May 2018, the synoptic scenario was characterized by an upper level through at tear off stage extended from Central 

Europe to northern Africa whose evolution is slowed by the presence of two anticyclonic circulations over Atlantic Ocean and 

Russia respectively (Fig. 1). The upper level through, with a northwest-southeast oriented axis, brought cool and dry air from 

the Artic region towards the Mediterranean basin, advecting a moist and warm south-easterly flow over the Adriatic region. 
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 90 

Figure 1: ECMWF analysis: geopotential heigh at 500hPa (cyan lines, contour lines 5 dam) and visible satellite image on 2 May 2018 

at 1200UTC. Image retrieved from Eport portal - EUMeTrain. 

In the following 24 hours the upper level through evolved in a cut off low, producing a deep low-pressure system (992 hPa) 

on the western side of Sicily (Fig. 2a). The surface depression slowly moved north-eastward, dissipating its energy over the 

next 12 hours.  95 

The mesoscale conditions over Italian peninsula showed a strong and moist south-easterly flow at upper and middle 

atmospheric levels, whereas a convergency line between the north eastern (Bora) and south-eastern (Sirocco) winds developed 

at low levels (Fig. 2b). This produced heavy precipitations on May 3 over the central Italy Adriatic region which was enhanced 

by the complex orography of this area. Indeed, the highest peaks of the Apennines mountains (Gran Sasso and Majella, 2912 

m and 2793 m MSL, respectively) near the coast further increased the atmospheric instability, promoting the triggering of 100 

convective cells (Fig. 3). 
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Figure 2: ECMWF analyses: 850 hPa temperature (°C), wind field (wind barbs) at 950 hPa and sea level pressure (black lines) on 3 

May at 1200 UTC at 0600 UTC (a) and 1200 UTC (b). 105 

 

 

Figure 3: Observed daily precipitation on 3 May 2018 in Lazio Abruzzo subregion (black rectangle). The image is provided by the 

DEWETRA platform (Italia Civil Protection Department). © Google Earth 2020. 

 110 
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3 Datasets Description 

To the aim of assessing the impact of cycling 3D-Var and 4D-Var, the composite radar reflectivity provided by the Italian 

radar network (Vulpiani et al., 2008) are assimilated in WRF for the numerical simulations.  

The Italian ground radar network includes 20 C-band and 3 X-band radar, managed by 11 regional administrations. Among 

these, 7 C-band and the 3 X-band systems (all with dual-polarization capability) are managed directly by the Italian Civil 115 

Protection Department (DPC), which is also the developer and distributor of the national precipitation product. The processing 

architecture is basically composed of two main steps: firstly, the radar measurements are locally processed by a unique software 

system, secondly all the products are centralized to generate the national level products. 

Different sources of error can affect the radar measurements (Collier, 1996): non-weather returns (clutter), partial beam 

blocking, beam broadening at increasing distances, vertical variability of precipitation, Radio Local Area Network (RLAN) 120 

interferences and rain path attenuation. Due to the morphology of the Italian territory, the uncertainty can be mainly associated 

to the orography-related effects, especially in southern Italy where the radar coverage as well as the radar overlapping is poor.  

The DPC processing system aims at identifying most of the uncertainty sources in order to compensate them, whenever it is 

possible, before estimating precipitation. A point-by-point description of the operational radar processing chain can be found 

in (Petracca et al., 2018). After the processing, some composite products are generated in real time by DPC and disseminated 125 

at national and regional level. Among these, the reflectivity Constant Altitude Plan Position Indicator (CAPPI) at 2000, 3000 

and 5000 m MSL, which cover the whole Italian territory, are assimilated into WRF model. 

It is worth mentioning that the CAPPI gives a horizontal cross-section of the data at constant altitude, it is a two-dimensional 

areal representation extracted from three-dimensional radar volume scan data. 

Moreover, a thinning is applied to the CAPPI reflectivity data in order to ensure uncorrelated observation errors (Chang et al., 130 

2014; Liu and Rabier, 2003) and to reduce the computational complexity, especially for 4D-Var method. CAPPI data are 

thinned over the 3km domain grid (described in section 5.2) by using an ‘ad hoc’ procedure. The rainfall data to assess the 

impact of 3D/4D-Var methods in cycling mode are provided by the rain‐gauge network of the Italian Civil Protection 

Department (DPC) It is composed by roughly 3000 tipping bucket gauges with the minimum detectable rain of 0.2 mm. A 

careful quality check is applied to the data before using them in the statistical analysis. Errors due to instrument failures, 135 

connection problems and erroneous values are removed. 

4 Variational Data Assimilation 

The Weather Research and Forecasting (WRF) model (Skamarock et al., 2019) is used for the numerical simulations, while 

the CAPPI radar data are assimilated by using the WRF data assimilation system (WRFDA, Barker et al., 2012). This system 

contains the algorithms required by 3D/4D-Var variational assimilation methods which are described in the following 140 

subsections.   
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4.1 3D-Var and 4D-Var methods 

Nowadays, the WRF 3D-Var (Barker et al., 2012) variational assimilation method is widely applied in meteorological and 

oceanographic modelling to assimilate a large variety of observations and to generate reliable initial conditions. The 3D-Var 

is a mathematical technique that combines observations and a short-range forecast (first guess) through the minimization of a 145 

coast function. The goal of this method is to reduce the misfit between the observation and the background fields to obtain the 

best estimate of the true state of atmosphere. In general, the cost function with respect an atmospheric state variable x is defined 

as follow:  

𝐽(𝐱) =
1

2
{(𝐱 − 𝐱𝑏)𝑇𝐁−1(𝐱 − 𝐱𝑏) + [𝐲0 − 𝐇(𝑥)]𝑇𝐑−1[𝐲0 − 𝐇(𝐱)]}               (1) 

where B and R are the background and observation error matrices, respectively; y0 represents the observations, x0 the 150 

background field or first guess and finally H is the observation operator that converts data from model space to observation 

space.  

The 3D-Var method has the advantage of being computationally cheap even if it misses the time dependency, hence all the 

observations that are acquired during the assimilation window are considered at its central time. The WRF 4D-Var (Huang et 

al., 2009) take the time variable into account using a numerical weather forecast as dynamical constraint. More specifically, 155 

the method computes the model trajectory that reduce the misfit with the observations distributed in the assimilation window. 

The initial atmospheric state is determined by minimizing the following cost function (2): 

𝐽(𝐱0) =
1

2
(𝐱0 − 𝐱0

𝑏)𝑇𝐁−1(𝐱0 − 𝐱0
𝑏) +

1

2
∑ {𝐲0

𝑘 − 𝐇𝑘[𝐌𝑘(𝐱0)]}𝑇𝐑−1{𝐲0
𝑘 − 𝐇𝑘[𝐌𝐤(𝐱0)]}𝑛

𝑘=0             (2) 

The assimilation window is divided in k discrete sub windows, where x0 is the analysis state vector at time k0; Hk and Mk are 

the nonlinear forward and observation models, respectively. Finally, B and R are, as already mentioned, the background and 160 

observation error matrices. 

The 4D-Var has the advantage of assimilating the observation at its exact time compared to 3D-Var, ensuring a more consistent 

physics and dynamical balance of the initial conditions. Given the high computational complexity, the incremental approach 

proposed by Courtier et al. (1994) has been adopted. The tangent linear and adjoint model with a simplified physics are used 

in the inner loop to increase the computational efficiency. Despite that the application of 4D-Var in operational mode is still 165 

limited to the major weather centres only. 

The B matrix is a key component in the assimilation processes because it weights the errors in the background field adjusting 

the spatial spreading of observational information. In this context, the National Meteorological Center (NMC) method (Parrish 

and Derber, 1992), widely use in the data assimilation community, has been adopted for this work. The B matrix is estimated 

evaluating the difference between forecasts valid at the same time, but one of them is initialized 12 hours after the other. More 170 

in detail, the new method (Wang et al., 2013b) considers u, v, temperature, pseudo relative humidity, and surface pressure as 

control variables, in contrast with the old one which utilizes the streamfunction, the unbalanced velocity potential and the 

unbalanced temperature. Recent works using the new method, shows a slightly benefit in the precipitation forecast skill as well 

as an improving of performance when radar data are assimilated (Wang et al., 2013b; Sun et al., 2016). Thus, for this work the 
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B matrix is computed over a period of 2 weeks from 1 May to 15 May 2018 by using this new method. According to the values 175 

provided in Mazzarella et al. (2020), the var_scaling, and len_scaling parameters which adjust the influence of BE matrix over 

the background field, are set to 1 and 0.5, respectively.  

Recent studies show the positive behaviour of NO_ECHO radar assimilation (Min and Kim, 2016) in reducing the 

overestimation of precipitation. For this reason, the NO_ECHO option is used for this study. The observations with non-

precipitation echo within the radar range are assimilated to correct the precipitation pattern, removing excessive water vapor 180 

and hydrometeors (Lee et al., 2020). 

4.2 Radar observation operator 

The assimilation of CAPPI radar reflectivity for both 3D/4D-Var assimilation methods has been performed through the indirect 

method (Wang et al. 2013c; Gao and Stensrud 2012). The new approach converts the observed reflectivity in the three 

hydrometeor mixing ratios in contrast to the direct method (Xiao et al. 2007) which only uses the rainwater mixing ratio.  185 

The forward reflectivity operator considers the contribution of snow, rain and hail components and it is represented as: 

𝑍𝑒 {

𝑍(𝑞𝑟), 𝑇𝑏 > 5 °𝐶

𝑍(𝑞𝑠) + 𝑍(𝑞ℎ), 𝑇𝑏 < −5 °𝐶

𝑎 𝑍(𝑞𝑟) + (1 − 𝑎)[𝑍(𝑞𝑠) + 𝑍(𝑞ℎ)], −5 °𝐶 < 𝑇𝑏 < 5 °𝐶

                                                                         (3) 

where Ze is the equivalent reflectivity factor, α varies linearly between 0 at Tb = −5 °C and 1 at Tb = 5 °C, and Tb is the 

background temperature from an NWP.  

The three hydrometeor mixing ratios, rain, snow, and hail in Eq. (3) are calculated using the formulation proposed by (Lin et 190 

al. 1983; Gilmore et al. 2004; Dowell et al. 2011).  

The rain contribution (Smith et al. 1975) is calculated as follow: 

𝑍(𝑞𝑟) = 3.63 × 109(𝜌𝑞𝑟)1.75                   (4) 

where ρ is the air density. 

The snow component is divided in dry and wet snow according to the Tb temperature: 195 

 𝑍(𝑞𝑠) = 9.80 × 108(𝜌𝑞𝑠)1.75 , if Tb < 0 °C                  (5) 

 𝑍(𝑞𝑠) = 4.26 × 1011(𝜌𝑞𝑠)1.75 , if Tb is > 0 °C                 (6) 

For the hail component the formulation based on (Lin et al. 1983; Gilmore et al. 2004) is adopted: 

𝑍(𝑞ℎ) = 4.33 × 1010(𝜌𝑞ℎ)1.75                   (7) 

Finally, the equivalent reflectivity (Ze) is converted in Z (dBZ) using: 200 

𝑍𝑑𝐵 = 10 log10 𝑍𝑒                    (8) 

The option, allowing the assimilation of in-cloud humidity from radar reflectivity, has been considered for this study (Wang 

et al., 2013). In this case the observed operator H is defined by: 

𝑞𝑣 = 𝑟ℎ × 𝑞𝑠                                   (9) 
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where qv represents the specific humidity, rh the relative humidity, and qs the saturated specific humidity of water vapor. 205 

Hence, this option allows the assimilation of vapor from in cloud region in addition to the three hydrometeor species calculated 

with the indirect method. 

5 Model setup 

The numerical simulations are carried out with the ARW-WRFV4.0 model (Skamarock et al., 2019). WRF is a mesoscale 

model, supported by National Center for Atmospheric Research (NCAR) and largely used by the atmospheric modelling 210 

community. The main features consist of a fully compressible Euler nonhydrostatic equations with hydrostatic option, 

staggered Arakawa C grid, and a highly portable and flexible code that optimize the use of computational resources. 

A two-way nesting configuration with two domains is used for this study: the mother domain with 379x431 grid points, covers 

the Italian peninsula with a horizontal resolution of 3 km, while the inner domain (340x319 grid points) is centred over the 

Abruzzo region (central Italy) with a grid spacing of 1 km (Fig. 4a). To avoid compatibility issues with WRFDA, the vertical 215 

terrain following coordinates are used instead of terrain-following hybrid. Both domains adopt 40 vertical levels from the 

ground up 100 hPa. Because of the high spatial resolution, the convection is explicitly resolved. The same physical 

parameterizations used by the Center of Excellence in Telesensing of Environment and Model Prediction of Severe Events 

(CETEMPS) meteorological–hydrological forecast system, are set for this work (Ferretti et al., 2014). More specifically, the 

microphysical processes are parameterized by using the WSM6 scheme (Hong and Lim, 2006), while the MYJ scheme (Janjic 220 

et al., 1994) is applied for the PBL. Shortwave and long wave radiation are considered through the Rapid Radiative Transfer 

Model (RRTM) scheme (Mlawer et al., 1997). Finally, the Noah land surface model is chosen to parametrize the land surface 

processes (Chen and Dudhia, 2001). The initial and boundary conditions for the mother domain are provided by European 

Centre for Medium‐Range Weather Forecasts (ECMWF) with a 0.1-degree resolution. 

 225 

https://doi.org/10.5194/nhess-2020-406
Preprint. Discussion started: 6 January 2021
c© Author(s) 2021. CC BY 4.0 License.

Stefano Federico
Which kind of ECMWF data are used? Operational analysis/forecast cycle ? Which cycle? Explain.



10 

 

 

Figure 4: Spatial coverage of Italian radar network (grey area). The two rectangles represent the WRF domains: 3 km (in red) and 

1 km (in blue), respectively. Three examples of CAPPI radar reflectivity (dBZ) at 2 km (b), 3 km (c) and 5 km (d) assimilated at 

0200 UTC on 3 May. 

 230 

5.1 Design of experiments 

A total of five experiments are carried out to evaluate the impact of 3D/4D-Var in cycling mode. All simulations started at 

0000 UTC on 3 May 2018 and last for 24 hours. Both 3D-Var and 4D-Var are applied every hour in cycling mode from 0000 

UTC to 0300 UTC assimilating the CAPPI reflectivity data at 2000, 3000 and 4000 m MSL. With the aim of using an equal 

number of observations for the numerical experiments, a 10 minutes assimilation window is used for both the 3D‐Var and 4D‐235 

Var methods. More specifically the CAPPI are assimilated at 0000 UTC, 0100 UTC, 0200 UTC, 0300 UTC and at 0010 UTC, 
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0110 UTC, 0210 UTC and 0310 UTC (Fig. 4b, c, d).  Moreover, two additional simulations are performed with the aim of 

evaluating the performance of cycling assimilation methods in warm start mode. For this purpose, a previously numerical 

forecast, initialized six hours before, is used as background field. The same aforementioned CAPPI are assimilated in these 

experiments. 240 

In table 1 a summary of all the experiments performed. 

 

Table 1: Description of the five simulations carried out. 

Experiment Description 

CTL  No assimilation 

CYC3DVAR_cold 3D-Var with reflectivity data; cold start 

CYC4DVAR_cold 4D-Var with reflectivity data; cold start 

CYC3DVAR_warm 3D-Var with reflectivity data; warm start 

CYC4DVAR_warm 4D-Var with reflectivity data; warm start 

 

5.2 Verification methodologies 245 

To the aim of evaluating the impact of both 3D-Var and 4D-Var in cycling mode, an objective comparison between the 

observed and forecast precipitation is performed. To this purpose, the rainfall data collected by DPC rain gauge network are 

spatially interpolated on the model grid. More in detail, the Inverse-Distance-Weighting (IDW) conservative method 

(Jones,1999) is used to remap the rain data to the 3km domain grid. The statistical analysis is only performed in a restricted 

area of domain D01 (Fig. 3) that includes Lazio and Abruzzo regions (hereafter LA), because these are the regions where 250 

relevant accumulated precipitations was recorded, and where several floods and relevant damages occurred. In addition, the 

precipitation forecast verification is also performed in the Lazio region to assess the behaviour of assimilation in leeward and 

windward sides of the Apennines range. Finally, this work represents a preliminary study to investigate the reliability of the 

cycling assimilation before implementing it in an operational meteorological–hydrological chain as the one at CETEMPS 

which activity is focused on the meteorological-hydrological forecast in Abruzzo region. 255 

To avoid the spatial limitations of using a point by point approach in the evaluation of quantitative precipitation forecast 

(Roberts, 2003) a filtering method is used. On the basis of the positive response in the recent literature (Tong et al., 2016; 

Wang et al., 2013c; Romine et al., 2013; Gustafsson et al., 2018), the Fraction Skill Scores (FSS; Roberts and Lean, 2008), is 

computed for the precipitation assessment.  A few accumulated periods are considered to the aim of investigating the forecast 
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ability for different kind of precipitation. For the 3-hourly accumulated precipitation a neighbourhood size of 3x3 grid points 260 

are used for this purpose. 

In addition, the Receiver Operating Characteristic (ROC) statistical indicator is computed to strengthen the statistical analysis, 

evaluating how skilful are the cycling assimilation methods in terms of QPF. The ROC curve synthetizes the information 

obtained with different thresholds in one diagram, just comparing the hit rate against false alarm rate (Swets 1973). Finally, 

the area under the ROC curve (AUC) which is largely used to quantify the skill of a forecast system (Mason, 1982; Buizza and 265 

Palmer, 1998; Storer et al., 2019; Ferretti et al., 2020), is calculated for each simulation. 

6 Results 

With the aim of evaluating the performance of 3D-Var and 4D-Var assimilation methods in cycling mode, the FSS and ROC, 

previously descripted in Section 5.2, have been calculated. The FSS is calculated in LA subregion, where significant 

precipitation occurred. To this purpose, three threshold values: 1, 3 and 7 mm (10 and 15 mm for 6 h accumulated precipitation) 270 

are used to evaluate the impact of cycling assimilation with light, moderate and heavy precipitation. Finally, the ROC and 

AUC are calculated to reinforce the statistical analysis and summarize the information obtained with the FSS. 

6.1 FSS evolution 

To compare the 4D/3D-Var experiments in warm/cold start and their ability to reproduce the precipitation pattern, the statistical 

index has been calculated considering the precipitation accumulated over three specified time periods: 1, 3 and 6 hours, 275 

respectively. The time series of FSS is presented in the sections below. 

6.1.1 Hourly precipitation 

The FSS for the 1 mm h-1 accumulated threshold (Fig. 5a) is calculated for all the experiments starting from 0600 UTC to 1500 

UTC in LA region. The results are quite similar for all experiments in the first hour of simulation due to the small accumulated 

precipitation, even if the CTL is starting from higher values than the other experiments. Later, all experiments display higher 280 

FSS values than CTL experiment (red dashed line), pointing out the positive feedback of cycling assimilation in the interval 

from 0700 UTC to 1200 UTC. Moreover, the simulations with warm initialization clearly show (Fig. 5a, blue and green lines) 

higher values demonstrating a larger impact on the precipitation forecast than those with cold start. On the other hand, the CTL 

performs better in the last three hours of simulation, suggesting that the impact of radar reflectivity is decreasing in time. The 

FSS computed for the 3 mm h-1 threshold (moderate precipitation) is shown in Fig. 5b. The simulations with data assimilation 285 

confirm the improvements in term of QPF from 0700 UTC to 1200 UTC. In addition, the two experiments with 4D-Var (Fig. 

5b, yellow and blue lines) performs better than 3D-Var, except in the first hours of simulation. This behaviour proves the 

positive impact of 4D-Var with moderate precipitation. However, similarly to the results for 1 mm h-1 threshold, the impact of 

radar reflectivity decreases in the final hours. Finally, the FSS is calculated for heavy precipitation, using a threshold value 

greater than 7 mm h-1 (Fig. 5c). According to the results for the 3 mm h-1 threshold, the FSS confirms the good performance 290 
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of 4D-Var in cycling mode. More specifically the CYC4DAVR_warm (Fig. 5c, blue line) shows the highest FSS values in the 

whole period with heavy precipitation, except for a very short period where the 4D-Var cold start is reaching higher values 

than the warm start. Conversely, the benefit of 3D-Var simulations is limited to the first hours of simulation.  

The statistical analysis with hourly precipitation clearly shows the positive impact of assimilation in cycling mode with both 

methods in the initial hours of simulation. Moreover, the simulations in warm mode show the best performance compared to 295 

those in cold start, especially the CYC4DVAR_warm (Fig. 5c, blue line) when heavy precipitation occurred. 
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Figure 5: Evolution of FSS calculated in LA region considering the hourly accumulated precipitation for three threshold values: 1 

mm h-1 (a), 3 mm h-1 (b) and 7 mm h-1 (c), respectively. Dashed red line represents the CTL, blue line CYC4DVAR_warm, green line 

CYC3DVAR_warm, black line the CYC3DVAR_cold and yellow line the CYC4DVAR_cold. 300 
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6.1.2 Three hourly precipitation 

The statistical analysis is also carried out for the 3-hourly precipitation accumulation interval to investigate the response of 

cycling data assimilation for precipitation characterized by different mechanisms as for example convection or orographic 

uplifting. The FSS for 1 mm 3h-1 (Fig. 6a) highlights the benefit of using 3D and 4D-Var with cold start for a short initial 

period (0600-0730 UTC), suggesting that the background field is probably more accurate than the previous forecast. But the 305 

rate of increasing for both the warm start is larger than CTL and cold starts. Indeed, the FSS values for the warm start are 

higher than the cold starts up to 1200 UTC (Fig. 6a, blue and green lines). Later the improvement reduces, and CTL performs 

better (Fig. 6a, red dashed line). The score is also computed for 3 mm 3h-1 threshold (Fig. 6b). Similarly to the results for 1 

mm threshold the cycling 4D-Var in cold mode (CYC4DVAR_cold) improves the precipitation forecast at the initial time 

(0600 UTC to 0800 UTC), while the CYC4DVAR_warm mode confirms the higher values from 0900 to 1200 UTC as well as 310 

the poor performance in the first hour. Moreover, the reduction in FSS values for both 4D-Var and 3D-Var compared to CTL 

in the final hours of simulation period proves that the influence of cycling is restricted to a short time range.  

Finally, the FSS is also calculated for threshold value of 7 mm 3h-1 in LA region (Fig. 6c). The highest values are associated 

with CYC4DVAR_warm (blue line), although all experiments show an improvement compared to CTL in the first hours of 

simulation period. Later, the experiments converge to the control run but the values of FSS decrease due to the small 315 

accumulated rainfall. 

The statistical analysis performed using the three threshold values (1, 3 and 7 mm), proves the positive impact of cycling 

assimilation with radar reflectivity in the interval 0600-1500 UTC and confirms the benefit of 4D-Var compared to 3D-Var. 

Moreover, the two simulations with a warm start initialization show a low impact at 0600 UTC. The reason for this is probably 

the poor dynamic balance of the initial fields at the beginning of simulations in warm mode. 320 
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Figure 6: Evolution of FSS calculated in LA region considering the 3-hourly accumulated precipitation for three threshold values: 

1 mm 3h-1 (a), 3 mm 3h-1 (b) and 7 mm 3h-1 (c), respectively. Dashed red line represents the CTL, blue line CYC4DVAR_warm, 

green line CYC3DVAR_warm, black line the CYC3DVAR_cold and yellow line the CYC4DVAR_cold. 
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 325 

6.1.3 Six hourly precipitation 

The FSS is also calculated using the 6-hourly precipitation in LA region using three threshold values: 7 mm 6h-1, 10 mm 6h-1 

and 15 mm 6h-1. 

The FSS evolution for 7 mm 6h-1 threshold is provided in Figure 7a. At 1200 UTC all experiments show similar performance 

due to the small rainfall in the first six hours of simulation. Then, the warm start initialization shows the highest FSS values, 330 

pointing out the improvement in precipitation forecast for CYC3DVAR_warm (green line) and CYC4DVAR_warm (blue line) 

when compared to CTL. Nevertheless, also the two simulations in cold start mode show a positive impact in the whole interval, 

even though with a slight improvement. 

The differences between experiments increase with higher threshold values.  The FSS calculated for the 10 mm 6h-1 threshold 

(Fig. 7b) proves the positive impact of CYC4DVAR_warm compared to the 3D-Var simulations for the whole simulation 335 

interval. The results also suggest that the cycling assimilation with warm start performs better than experiments in cold start 

for both assimilation methods. 

According to the results for the previous threshold, the CYC4DVAR_warm confirms the best performance in term of FSS for 

the 15 mm 6h-1 threshold (Fig. 7c). Both CYC4DVAR_cold and CYC3DVAR_warm display a positive impact in QPF during 

the whole simulation period. Conversely, the CYC3DVAR_cold shows a worsening at 1800 UTC when compared to CTL and 340 

the other experiments. 

In conclusion, the time series of FSS points out the benefit of using a cycling assimilation for radar reflectivity. The warm start 

with 3D/4D-Var assimilation methods confirms the improvement in terms of QPF, for: 

• the hourly accumulated precipitation, highlighting the good performance in the localization and timing of the onset 

of the precipitation and for very light precipitation; 345 

• the 3-hourly accumulated precipitation highlighting the improvements for convective cells and orographic 

precipitation; 

•  the 6-hourly accumulated precipitation.  

On the other hand, the FSS depends on threshold values, thus a further statistical indicator has been calculated to the aim of 

endorse the previous results. Hence, the ROC curve, which summarizes the result obtained with several thresholds in one plot 350 

allowing for an easy comparison, is built for this study. 
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Figure 7: Evolution of FSS calculated in LA region considering the 6-hourly accumulated precipitation for three threshold values: 

7 mm 6h-1 (a), 10 mm 6h-1 (b) and 15 mm 6h-1 (c), respectively. Dashed red line represents the CTL, blue line CYC4DVAR_warm, 

green line CYC3DVAR_warm, black line the CYC3DVAR_cold and yellow line the CYC4DVAR_cold. 355 
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6.2 Receiver operating characteristic (ROC) 

The Receiver Operating Characteristic (ROC), which compare the probability of detection (POD) and false alarm rate (FAR), 

is calculated to evaluate how the simulations are skilful in precipitation forecast. The 12-hourly precipitation accumulated 

from 0600 UTC to 1800 UTC for the NWP experiments and the rain gauge network are used to build the curve (Fig. 8) for the 

LA region. To investigate the ability of cycling assimilation in predicting rainfall with light, medium and heavy intensity the 360 

following threshold are chosen: 1 mm, 12 mm, 24 mm, 36 mm, 48 mm and 54 mm. The curves show low POD values for 

1mm threshold and a worsening compared to the CTL. On the other hand, the benefit of cycling assimilation is clearly found 

with higher threshold values. In fact, the steepness of 3D/4D-Var curves is greater than CTL, suggesting a good forecast skill 

with moderate and heavy precipitation, namely from 12 mm to 48 mm. In this regard, the CYC4DVAR_warm (green line) 

shows the best performance, while the CYC3DVAR_cold (red line) reduces its impact with high threshold values. In addition, 365 

the area under the curve (AUC) is also computed to objectively compare each curve. The AUC for the cycling 4D-Var 

experiments is 0.91, while the CTL reaches a lower value of 0.88, confirming the positive impact of 4D-Var in cycling mode, 

in line with the previous results. The 3D-Var simulations, instead, show AUC values comparable to CTL.  

 

 370 

Figure 8: The Receiver operating characteristic curves (ROC) are computed for the CTL (black) CYC3DVAR_cold (red), 

CYC3DVAR_warm (blue), CYC4DVAR_cold (magenta) and CYC4DVAR_warm (green). The 12-hourly cumulated precipitation 

from 0600 UTC to 1800 UTC on May 3, 2008 are used to build the curves. 
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7 Conclusions 

In this paper the impact of cycling 3D-Var and 4D-Var variational assimilation methods on the forecast of a heavy precipitation 375 

event, occurred in an orographically complex region namely the Central Italy, is evaluated. The reflectivity CAPPI (Constant 

Altitude Plan Position Indicator) obtained by Italian radar network at 2, 3 and 5 km are assimilated every hour in cycling mode 

into the WRF model. The comparison among the experiments is performed using a filtering approach, the Fraction Skill Score 

(FSS), for the Lazio-Abruzzo subregion, that is the area where relevant rainfall occurred. In this regard, the statistical analysis 

is performed considering 1, 3 and 6 hourly accumulated precipitation with three different threshold values in order to evaluate 380 

the benefit of cycling assimilation with light, moderate and heavy precipitation. Finally, the ROC is built, and its area is 

calculated to further evaluate the reliability of cycling assimilation in precipitation forecast. 

The FSS time series for the hourly precipitation highlights the positive impact of radar data for both assimilation methods 

compared to CTL. The benefit of using a cycling assimilation is clearly shown in the results for both light and moderate 

precipitation. However, the impact reduces in the last hours of the simulation, when all experiments converge to the control 385 

run. Conversely, the FSS calculated for 1mm h-1 threshold shows a worsening of both assimilation methods at the start time of 

the statistical analysis, because of the low cumulated precipitation. To further evaluate the impact of cycling assimilation with 

3D and 4D-Var the analysis is also performed considering the 3 h cumulated rainfall. The results for all thresholds confirm the 

benefits of assimilating reflectivity data. In this regard, the cycling 4D-Var has a greater impact than 3D-Var experiments and 

consequently higher FSS value. More specifically, the cold start initializations for cycling both 4D-Var and 3D-Var show an 390 

improvement in terms of QPF compared to CTL at beginning of analysis, while the experiments in warm start perform better 

after few hours. This behaviour is probably caused by a slightly unbalanced initial field for the warm start simulations.  

Different thresholds are used to evaluate the reliability of cycling data assimilation with 6 hourly precipitation. The FSS for 7 

mm 6h-1 threshold confirms a slight improvement of warm start simulations compared to CTL and cold initialization. The 

CYC4DVAR_warm clearly displays the greatest FSS values at 10 and 15 mm thresholds, pointing out the positive impact of 395 

radar reflectivity. Also, the 4D-Var in cold start and the 3D-Var with a warm initialization produce an improvement in QPF 

although it is smaller than CYC4DVAR_warm. On the other hand, the CYC3DVAR_cold shows a worsening in FSS.  

Finally, the ability of cycling assimilation to reproduce the 12 h precipitation field is evaluated by using the ROC and the area 

under the curve. The curves are calculated considering the period from 0600 UTC to 1800 UTC because of the significant 

rainfall. The comparison between the simulations confirms that cycling 4D-Var in both warm and cold mode is the best 400 

technique, indeed the highest value of AUC=0.91 is obtained. The CTL shows lower steepness than the cycling 4D-Var and 

an AUC of 0.88. Finally, the AUCs for the two simulations with 3D-Var, respectively 0.87 for warm initialization and 0.89 

for the cold, are lower than 4D-Var and comparable with CTL simulation. Therefore, the impact of 3D-Var over 12h 

accumulated precipitation is less clear. 

In conclusion, the use of 3D-Var and 4D-Var methods in cycling assimilation with weather radar reflectivity mosaic data 405 

improves the reliability of the precipitation forecast, even if the positive impact reduces in time. The two simulations with a 
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warm start initialization produce good results in terms of FSS, but the differences are small compared to the cold simulations 

that perform better at the initial time. This behaviour suggests that the precipitation spinup time decreases in cycling 

assimilation with cold start, while for warm initialization this is not true. In addition, the cycling 4D-Var with warm start 

(CYC4DVAR_warm) shows better performance than 3D-Var over all precipitation accumulation intervals considered for this 410 

study. Finally, the ROC cures and the AUC values also confirms the benefit of 4D-Var in warm start.  

The next step of this work will be to assimilate the radial velocity to improve the accuracy of wind field and vertical velocity, 

thus the positioning of convective cells. This opportunity allows us to complete the assessment of weather radar assimilation 

in a 4D-Var cycling data assimilation. In addition, the impact of a wider data assimilation windows in cycling 4D-Var could 

be tested, in combination with a strategy with more outer loops. These solutions allow the assimilating of more data and to 415 

take into account the non-linear effects, producing significant increments in the analysis field. Lastly, the results of this study 

are helpful to decide which cycling assimilation methods will be implemented in operationally CETEMPS meteorological-

hydrogeological chain. 
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