Dear Editor,

We would like to thank you for your decision and your time. We made the corrections required by both reviewers. All changes are highlighted in red in the manuscript.

Dear Referee 1,

We would like to thank you for the time spent on our manuscript. We are very pleased that you highly evaluated our work. We highly appreciate your constructive comments and suggestions. You also pointed out the clarifications required to improve the original manuscript. We modified the manuscript according to your recommendations. Please find our answers and corrections below (all changes are highlighted in red in the manuscript).

<u>Major comments</u>

Reviewer comments	Our answers	Corrected manuscript
In Section 3.1.1, the two-layer model	The flux Q1 is water while the flux	Line 167: ρ_1 and ρ_2 are the densities of
is explained. Can the authors explain	Q2 is granular material (soil). We	the seawater and the landslide. The fifth
more on how physically the layer 1	added more explanations and Fig.	term of the momentum equations (Eqs.
and layer 2 interact? From the	A1 to better understand the meaning	2, 3, 5, 6) represents the interaction
equations, the interacting aspects of	of each term.	between the two layers. The tsunami
the two layers are expressed in terms		model
of the water level gradients Z1 and Z2.		
So the flux Q1 in layer 1 is fluid, while		Line 170:, respectively (Fig. A1 -
the flux Q2 in layer 2 is soil mass? A		Appendix A)
figure would be useful addition for		
this section.		Please, see Fig. A1 below (Appendix
		A).
Equation (7): please specify the units.	We thank the reviewer for pointing	<u>Line 189:</u> n_o corresponds to the
	this out. We added the units as well	Manning's roughness coefficient ($n_o =$
	as more explanations.	0.025 s.m ^{-1/3}), C_D represents the drag
		coefficient ($C_D = 1.5$ (Federal
		Emergency Management Agency
		(FEMA), 2003)) and the constant d
		signifies the horizontal scale of
		buildings (~15 m). θ is the building
		occupation ratio in percent (0-100 %) for
		each computational cell of 20 x 20 m^2
		and $1 \ge 1 \text{ m}^2$ resolutions for Sunda Strait
		and Palu areas, respectively. θ is
		obtained by computing the building area
		over each pixel using GIS data. The
		computational cell corresponding to
		buildings can be inundated by the n
		Manning coefficient through the term D.
		which represents the simulated flow
		depth (m). In the urban areas of Sunda
		Strait and Palu, the average occupation
		ratios are 24 % and 84 % respectively
		(Fig. 2b,d). In non-residential area, we
		set the Manning's roughness
		coefficients inland and on the seafloor to
		0.03 and 0.025 respectively, which are
		typical values for vegetated and shallow
		water areas (Kotani, 1998).
Figure 2 and Section 3.1.2: It is not	The computational cell	Line 193:using GIS data. The
clear how the computational cells that	corresponding to buildings can be	computational cell corresponding to
correspond to buildings (Figure 2d)	inundated by the <i>n</i> Manning	buildings can be inundated by the n
	coefficient through the last term of	Manning coefficient through the term D,

can be inundated or not in tsunami	Eq (7): D, which represents the	which represents the simulated flow
simulation.	simulated flow depth (m).	depth (m). In the urban
In Section 3.2: could you comment on	Corrected.	Line 180: BATNAS and DEMNAS,
the vertical accuracies of the		Indonesia, provided the bathymetric and
DEM/DSM used for the		topographic data with 180 and 8 m-
derived? I would guess local LiDAP		resolutions, respectively. The data was
data?		(http://tides.big.go.id/DEMNAS/index
dutu.		html). Both datasets were resampled to
		three computational domains with a grid
		size of 20-m resolution (Fig. 2a,b). In
		Palu-City, the bathymetric and
		topographic data with 1-m resolution
		were obtained through Lidar images and
		supplied by the Agency for Geo-spatial
		2h c) For tsunami inundation
		Line 211: To correct the Digital Surface
		Model (DSM), we removed the
		vegetation, buildings and infrastructures
		elevations based on the linear smoothing
		method and used the resulting Digital
		Elevation Model (1 st DEM) as
		model (Fig. 3) The vertical accuracy of
		the DSM/DEM is about 4 m. The 2018
		Sunda Strait
Throughout the investigations, were	We agreed with the reviewer. The	Line 233: We increased the mean sea
the tidal effects taken into account?	tsunami inundation model is now	level (MSL) by 2.3 m to reproduce the
For the 2018 Palu earthquake, the tidal	part of the discussion (Section 6.1).	high tide during the 2018 Palu tsunami.
(e.g. Goda et al. 2019) In Section	contrary to Sunda, we took into	As snown by Pakoksung et al. (2019), the observed waveform at Pantoloan
3.2.3. how credible the landslide	mentioned by Pakoksung et al.	tidal gauge does not fit the simulated one
source model for the Palu event? For	(2019), TUNAMI-N2 does not	with the Finite Fault Model of
example, a detailed seismic source	reproduce the effect of seismic	TUNAMI-N2. Although recent studies
model can explain the majority	deformation. So, we considered that	show that seismic seafloor deformation
portion of the observed tsunami in	the 2018 Palu tsunami was triggered	may be the primary cause of the tsunami
Palu Bay (e.g. Ulrich et al., 2019).	by subaerial/submarine landslides	(Gusman et al., 2019; Ulrich et al.,
How were the effects due to the	only (IUNAMI two-layer model).	2019), in this study, the main
considered (e.g. Goda et al. 2019)? In	simulated flow depths are very	Palu was triggered by
light of the missing elements in the	different in Palu. To tackle this	subaerial/submarine landslides.
tsunami source model, the landslide	issue, we decided to set a	According to Heidarzadeh et al. (2018),
source model may be considered to be	confidence interval of 1 m to	a large landslide to the north or the south
biased. I think this discussion is	develop accurate curves. The	of Pantoloan tidal gauge is responsible
important for the NHESS journal	observed and simulated curves	for the significant height wave recorded.
audience This is a comment: the	based on the flow depth are	Arikawa et al. (2018) also identified
scatter plot snown in Figure 9 is not well correlated (i.e. simulation vs.	consistency of the 1 m confidence	several sites of potential subsidence in the porthern part of Palu Bay, Based on
observation) which may be due to	interval	these previous studies we assume two
mis-specified tsunami source.	11101 (11.	large landslides: L1 and L2. Small
		landslides (S1-S12) also occurred in the
		bay; their location stands on
		observations from satellite imagery,
		field surveys and video footage
		(Arikawa et al., 2018; Carvajal et al.,
		2019 (Fig. 6). The trial and error

		method aims to achieve the volume of the londelides (Table 2). In Figure 7, the
		submarine landslides model reproduces
		well the tsunami observations at
		Pantoloan. The calibration
		Please, see the added Section 6.1.
Also note that 'Figure 9' is misspelled.	Thank you very much. We corrected	Figure 9. Comparison between observed
	it.	and simulated flow depths at damaged
		building for a S8 ratio of 1.2; a
		confidence interval is set at 1-m flow
Page 13: Can other link functions	We thank the reviewer for this	Please see the revised Sections 4.1 and
other than probit be used?	request. We decided to include the	4.2, and the updates in Appendix C
1	sensitivity analysis of the statistical	and Appendix D.
	model based on the link function.	
	Following the GEM guidelines, we	
	the probit logit and cloglog	
	Overall, the choice of link function	
	does not change the discussion. It	
	was found that the probit function	
	fits the Sunda data best. The logit	
	function fits the Palu and Thailand	
	function does not notably change	
	the shape of the fragility curves.	
Figure 10 (and other figures as well):	We thank the reviewer for this	Line 319: curves. The confidence in
Can the data also be displayed? Can	comment. Figures 10-12, which we	the exact shape of the mean curves is
the authors clarify the confidence	believe the reviewer refers to, are	estimated and presented in terms of the 00^{-0} confidence intervals around the
interval of the regression line or the	sole aim is to show trends in the data	90 % confidence intervals around the
prediction interval of the prediction	which will be useful to construct the	best estimate eurves.
model? I think by including the data	statistical model in the following	
points in Figure 10, this becomes	section. All we need to see is	
obvious. I think this clarification is	whether the intercept and/or the	
is small	slope of a best estimate curve changes for different variables. For	
	this reason, we use the inverse of the	
	cumulative standard normal	
	distribution in the y axis and the	
	natural logarithm of the tsunami	
	aniensity in the x axis. To present the	
	inverse standard normal cumulative	
	distribution function of the	
	probability that a given building	
	will experience a given damage	
	state or above. For our case, we have	
	therefore this probability (e.g.	
	$P(DS \ge ds_1 Flow depth))$ is either 0	
	or 1 for which the inverse of the	
	standard normal cumulative	
	distribution function is not defined.	
	For this reason, we did not present the data points. Instead, we undeted	
	the text to avoid confusion.	

Section 5, Line 430: I do not understand the intention of showing the tsunami fragility models based on simulated intensity values? When the tsunami simulations are calibrated reasonably well with the observations, using the same damage data, the fitted fragility models are expected to be similar (as demonstrated in Figure 13). But I do not see the benefit of using the simulated tsunami intensity values unless the authors use the damage data where the observations are not available and thus the tsunami intensity values need to be estimated. But this work does not investigate this aspect. Altogether the simulated cases can be removed.	We understand the point of view of the reviewer. We highlighted the benefits of the simulated fragility curves in the abstract and the introduction. The main reason is that 2018 Sunda Strait and Sulawesi-Palu tsunamis are uncommon events still poorly understood compared to the 2004 IOT. The flow depth is the only tsunami intensity measure recorded during the field surveys. So, to improve our understanding of the structural damage caused by the Sunda Strait and Sulawesi-Palu tsunamis and to discuss the impact of wave period, ground shaking and liquefaction events, we reproduce their tsunami intensity measures (i.e., flow depth, flow velocity and hydrodynamic force). Moreover, this is the first attempt to develop fragility curves as functions of the flow depth, the flow velocity and the hydrodynamic force for the 2018 Sunda Strait and 2018 Palu	Please, see the revised abstract and the last paragraph of the introduction.
	tsunamis based on TUNAMI two- layer model.	
Figure 13: as discussed by the authors, the fragility functions based on flow velocity and (probably) hydrodynamic force do not show realistic features and thus not really useful. It may be useful to show such results for one case but for other cases, they are not really useful, especially for flow velocity. My concern is that careless readers may attempt to use such models as black box models.	We thank and agreed with the reviewer. In the discussion, we discussed whether the tsunami intensity measures are efficient predictors of damage (Section 6.1). The flow velocity and the hydrodynamic force (please, see the drag force formula) are not providing a good description of the tsunami damage, compared to the flow depth. This is a valid contribution to the field. Therefore, the 2 nd part of the discussion (Section 6.2) is based on the curves function of the flow depth only. Careful readers should rather use fragility curves based on observation as they are of higher quality.	Line <u>172:</u> during the tsunami inundation. The hydrodynamic force acting on buildings and infrastructure is defined as the drag force per unit width of the structure (Koshimura et al., 2009). $F = \frac{1}{2}C_D\rho u^2 D$ C_D represents the drag coefficient ($C_D =$ 1.0), ρ is the water density ($\rho =$ 1000 kg/m ³), <i>u</i> stands for the current velocity (m/s), and <i>D</i> is the inundation depth (m). Please, see the added Section 6.1 and the revised Section 6.2.
shown for x values greater than 1? Should they start with the theoretical	this out. It does not mean that there is no potential damage between 0-1	14a,b, there is no data to predict the shape of the curves between 0-1 m and
constraints that zero fragility for zero hazard values? My concern is again that careless users may take such unrealistic models as they are.	m flow depths or 0-1 m/s flow velocity. The reason is that we do not have data to predict the shape of the curves.	0-1 m/s. The curves
Figure 15: I understand that the results are based on statistical fitting but these	We agreed with the reviewer. The reliability of the curves is discussed	Please, see the added Section 6.1.
curves do not look realistic. Are they reliable? I think the reliability of the	in Section 6.1. Compared to the flow depth, the flow velocity and	

curves should be a part of the discussion (beyond the statistical confidence level etc). Can one use these functions reliably? Figure 16: From my perspectives, the comparison of the curves based on flow velocity and hydrodynamic force	the hydrodynamic force are not good predictors of damage. For this reason, we are not discussing the building damage probability based on these tsunami intensity measures for the 2018 Sunda Strait and Palu tsunami.
rom my perspectives, the opparison of the curves based on	on these tsunami intensity measur for the 2018 Sunda Strait and Pa
is not robust. I would suggest focusing on the flow depth based models which show some realistic fragility features.	tsunamı.

• Minor comments

Reviewer comments	Our answers	Corrected manuscript
Page 1, Line 18: cumulative distribution functions -> delete cumulative distribution. Strictly speaking, the fragility function is not the cumulative distribution function and this expression is confusing. I would suggest deleting 'cumulative distribution'. There are a few places that have the same expression.	We are very sorry for this confusing expression and we corrected it.	These cumulative distribution functions express the likelihood of a structure reaching or exceeding a damage state in response to a tsunami hazard intensity measure.
Page 1, Line 28: 'liquefaction events: : ' The majority of the damage and loss during the Palu earthquake was due to slope failures (which involve liquefaction as physical failure mechanism). It is not clear (especially in the abstract), this 'liquefaction' refers to the slope failure cases (e.g. Petobo) or the flat coastal area along Palu Bay. Given the nature of this event, it would be better to rewrite this sentence to be more specific which area/incidences the authors are referring to.	We are very sorry and cleared this part. Here, we mentioned liquefaction events related to ground failures in the waterfront of Palu- City. We also made the distinction with the slope failure cases observed inland in Section 6.2 (e.g., Petobo, Jono and Balaroa).	Abstract: Similar to the Banda Aceh case, the Sulawesi-Palu tsunami load may not be the only cause of structural destruction. The buildings susceptibility to tsunami damage in the waterfront of Palu-City could have been enhanced by liquefaction events triggered by the 2018 Sulawesi earthquake. Please, see the revised Section 6.2. <u>Conclusion:</u> The Sulawesi-Palu tsunami is a complex event as it may not be the only cause of structural destruction. The 2018 Sulawesi earthquake caused minor damage to buildings and most importantly could have triggered liquefaction events in the waterfront of Palu-City (e.g., coastal retreats) increasing the building susceptibility to tsunami damage.
Page 1, Line 38: vertical -> vertical and horizontal.	Corrected	causing horizontal and vertical movement of the ocean floor
Page 1, Line 41: period -> periods.	Corrected	longer wave periods attacking the coast
Page 2, Line 44: were -> was.	Corrected	strong ground shaking was reported
Page 2, Line 49: few -> a few.	Corrected	After a few months
Page 2, Line 50: delete finally.	Corrected	the Anak Krakatau Volcano finally erupted
Page 2, Line 60: reported to -> reported at.	Corrected	the wave height reported at the Pantoloan tidal gauge

Page 2, Line 60: what is 'largely exceeded'? The meaning is not clear.	Corrected	The fault mechanism did not suggest that the tsunami would be so destructive. The wave reached rapidly Palu (~8 min), implying that its source was inside or near the bay (Muhari et al., 2018; Omira et al., 2019). Its short wave
Page 2, Line 62: assumption -> hypothesis (I think hypothesis is more appropriate).	Corrected	the main hypothesis is that
Page 2, Line 68: The sentence 'Koshimura et al. : : :' reads strangely in a sense that the tsunami fragility concept existed before this work. I agree that the work by Koshimura et al. was very influential.	Corrected	The term "tsunami fragility" is a new measure to estimate structural damage and casualties caused by a tsunami, as mentioned by Koshimura et al., 2009b.
Page 2, Line 69: delete 'cumulative distribution'.	Corrected	Tsunami fragility curves are <u>cumulative distribution</u> functions expressing
Page 3, Line 86: treated -> analyzed.	Corrected	are analysed separately
Page 3, Line 93: exposed -> investigated.	Corrected	are investigated.
Page 5, first line: are -> is.	Corrected	is ignored
Page 14, Line 284: appear -> appears.	Corrected	as the two curves appears to
Page 19, Line 384: depicted -> listed or summarized.	Corrected	are listed in
Page 20, Line 398: identical curves - > identical slopes?	Corrected	identical slopes

Figure A1. Two-layer modelling of a subaerial/submarine landslide (from the original sketch of Pakoksung et al., 2019), (a) pre-failure, (b) generation of negative and positive waves due to the landslide and (c) landslide in progress and wave propagation.

References:

Arikawa, T., Muhari, A., Okumura, Y., Dohi, Y., Afriyanto, B., Sujatmiko, K. A. and Imamura, F.: Coastal subsidence induced several tsunamis during the 2018 Sulawesi earthquake, Journal of Disaster Research, 13, 1–3, doi:10.20965/jdr.2018.sc20181204, 2018.

Carvajal, M., Araya-Cornejo, C., Sepúlveda, I., Melnick, D. and Haase, J. S.: Nearly instantaneous tsunamis following the Mw 7.5 2018 Palu earthquake, Geophysical Research Letters, 46(10), 5117–5126, doi:10.1029/2019GL082578, 2019.

Federal Emergency Management Agency (FEMA): Coastal construction manual, FEMA 55, Third Edition (FEMA 55), 296p., 2003.

Gusman, A. R., Supendi, P., Nugraha, A. D., Power, W., Latief, H., Sunendar, H., Widiyantoro, S., Wiyono, S. H., Hakim, A. and Muhari, A.: Source model for the tsunami inside palu bay following the 2018 palu earthquake, Indonesia, Geophysical Research Letters, 46(15), 8721–8730, doi:10.1029/2019gl082717, 2019.

Heidarzadeh, M., Muhari, A. and Wijanarto, A. B.: Insights on the source of the 28 September 2018 Sulawesi tsunami, Indonesia based on spectral analyses and numerical simulations, Pure and Applied Geophysics, 176(1), 25–43, doi:10.1007/s00024-018-2065-9, 2018.

Koshimura, S., Namegaya, Y. and Yanagisawa, H.: Tsunami fragility - A new measure to identify tsunami damage, Journal of Disaster Research, 4(6), 479–488, doi:10.20965/jdr.2009.p0479, 2009.

Kotani, M.: Tsunami run-up simulation and damage estimation using GIS, Pacific Coast Engineering, Japan Society of Civil Engineers (JSCE), 45, 356–360, 1998.

Muhari, A., Imamura, F., Arikawa, T., Hakim, A. R. and Afriyanto, B.: Solving the puzzle of the September 2018 Palu, Indonesia, tsunami mystery: clues from the tsunami waveform and the initial field survey data, Journal of Disaster Research, 13(Scientific Communication), sc20181108, doi:10.20965/jdr.2018.sc20181108, 2018.

Omira, R., Dogan, G. G., Hidayat, R., Husrin, S., Prasetya, G., Annunziato, A., Proietti, C., Probst, P., Paparo, M. A., Wronna, M., Zaytsev, A., Pronin, P., Giniyatullin, A., Putra, P. S., Hartanto, D., Ginanjar, G., Kongko, W., Pelinovsky, E. and Yalciner, A. C.: The September 28th, 2018, tsunami in Palu-Sulawesi, Indonesia: a post-event field survey, Pure and Applied Geophysics, 176(4), 1379–1395, doi:10.1007/s00024-019-02145-z, 2019.

Pakoksung, K., Suppasri, A., Imamura, F., Athanasius, C., Omang, A. and Muhari, A.: Simulation of the submarine landslide tsunami on 28 September 2018 in Palu Bay, Sulawesi Island, Indonesia, using a two-layer model, Pure and Applied Geophysics, 176(8), 3323–3350, doi:10.1007/s00024-019-02235-y, 2019.

Ulrich, T., Vater, S., Madden, E. H., Behrens, J., van Dinther, Y., van Zelst, I., Fielding, E. J., Liang, C. and Gabriel, A. A.: Coupled, physics-based modeling reveals earthquake displacements are critical to the 2018 Palu, Sulawesi tsunami, Pure and Applied Geophysics, 176(10), 4069–4109, doi:10.1007/s00024-019-02290-5, 2019.

Dear Referee 2,

We would like to thank you for the time spent on our manuscript. We are very pleased that you highly evaluated our work. We highly appreciate your constructive comments and suggestions. You also pointed out the clarifications required to improve the original manuscript. We modified the manuscript according to your recommendations. Please find our answers and corrections below (all changes are highlighted in red).

<u>Major comments</u>

Reviewer comments	Our answers	Corrected manuscript
The authors present the fragility	We thank the reviewer for this	Please, see the revised Section 6.2.
curves for the three events in the four	comment. In Banda Aceh, the ground	
locations (Fig. 16a). The curves	acceleration of the 2004 Indian	
demonstrate that for low flow depth	Ocean earthquake was not recorded	
values (less than 2 m flow depth)	in the damage zone. The earthquake	
building fragility was largest in Palu	intensity is estimated to VII to VIII	
2018 followed by 2004 Banda Aceh,	on the Modified Mercalli Scale.	
followed by 2004 Khao Lak,	Ghobarah et al. (2005) also	
followed by Sunda Strait 2018.	mentioned that buildings in Banda	
Above 2 m flow depth, the curves for	Aceh was strongly affected by the	
2004 Banda Aceh demonstrate the	ground shaking (which lasted ~10	
largest building fragility. The authors	min) and tsunami damage was	
conclude that ground shaking and	distinguished from seismic damage	
liquefaction contributed to the	(e.g., substantial damage to	
fragility curves for Palu 2018 and	infrastructure with 3-5 stories	
Banda Aceh 2004. Although it is	compared to low rise structures). For	
possible that both ground shaking	the 2018 Sulawesi-Palu tsunami, the	
and liquefaction may contribute to	main cause of structural damage is	
the fragility curves, the authors do	still investigated. The earthquake	
not demonstrate this. Hence their	intensity is estimated to VII to VIII	
claim is pure speculation. To	on the Modified Mercalli Scale	
demonstrate that ground shaking	(Supendi et al., 2019) but Kijewski-	
played a significant role, the authors	Correa and Robertson (2018)	
should present a measure of ground	mentioned that the ground motion	
shaking that allows inferring the	only slightly damaged the buildings	
damage of buildings that have not	in Palu-City.	
been hit by the tsunami. Maybe they		
could use seismic intensities or peak		
ground acceleration to infer the		
damage of buildings that have not		
been hit by the tsunami.		
Alternatively, they could comment		
on which extent buildings were		
damaged outside the tsunami		
inundation area to foster their		
hypothesis.		
The authors write in the conclusions,	We thank and agreed with the	Please, see the revised Section 6.2
page 30, line $5/3$ f. : : : :, it is clearly	reviewer. In this study, the term	and Fig. 17 below.
demonstrated that liquefaction events	liquefaction refers to the ground	
can increase building susceptibility.	failures in the waterfront of Palu-	
and page 30, line 5/4 f. : : : :, the	City. Even though the largest	
building were previously affected by	inqueraction areas were recorded	
severe inqueraction episodes. This	(Wathingon and U-11, 2010).	
sentence is not a conclusion from	(watkinson and Hall, 2019), Sassa	
ineir work. Most importantly is to	and Takagawa (2019) and Kijewski-	
mention that the largest liquetaction	Correa and Robertson (2018)	
areas were located outside the	observed land retreats along coastal	

tsunami inundation areas. The authors should consult Watkinson and Hall (2019) and Syifa et al. (2019). Even though Sassa and Takagawa (2019) conclude that they found evidence for extensive liquefaction in coastal areas, the authors should quantify how many of the database's observed buildings were affected by liquefaction. The authors could overlap the liquefaction areas with figure 8 to see how many of the buildings were affected. The current state of the manuscript does not allow to conclude that buildings were weakened by liquefaction. Moreover, Mas et al. (2020) write that tsunami hydrodynamic and debris impact forces may have been the principal causes of failure and collapse in Palu Bay's waterfront area.	areas of Palu-City, which is highly vulnerable to liquefaction disaster (Darma and Sulistyantara, 2020; Kijewski-Correa and Robertson, 2018). In Palu post-tsunami database (DB_Palu2018), many masonry-type buildings do not have a flow depth value because they have been washed away. In Figure 17, many masonry- type buildings completely damaged are very close to these coastal retreats. Moreover, the likelihood of complete damage is very high for low inundation depth levels. This feature is usually observed for building suffering prior damage (e.g., ground shaking and/or liquefactions episodes), as mentioned by Charvet et al. (2014), for the 2011 Great East Japan event. Here, the likelihood of complete damage is higher in Palu than in Banda Aceh under 2-m flow depth. So, even if ground shaking is not the main cause of destruction, it may have triggered liquefactions in the waterfront of Palu-City and enhanced the building susceptibility to tsunami damage. This assumption cannot be verified through satellite images, it needs direct and close observations, which might have been erased by the tsunami. On the other hand, Mas et al. (2020) suggested that the tsunami hydrodynamic or debris impact might be the main cause of structural destruction in the waterfront area of Palu-Bay. As the flow velocity and the hydrodynamic force are not good descriptors of	
	force are not good descriptors of tsunami damage, we cannot support this assumption.	
The conclusion that the building fragility curves for Banda Aceh and Khao Lak are different because of the ground shaking in Banda Aceh are incomplete. Just because the locations were hit bit the same tsunami event, does not necessarily mean that the wave period was the same in both locations. The rupture at the Sunda Megathrust was longer than 1000 km, and slip rates along the fault were heterogeneous (Rhie et al. 2007, Koshimura et al. 2009). Consequently, waves with different periods and hydrodynamic features may have impacted Khao Lak and Banda Aceh. Applying numerical	We agreed with the reviewers. We compared the tsunami waveform at both locations and computed the wave period. Along Banda Aceh shores, the simulated tsunami wave period is ranging from 40 to 45 min (Prasetya et al., 2011; Puspito and Gunawan, 2005) and the one simulated in Khao Lak/Phuket is estimated to approximatively 40 min (Karlsson et al., 2009; Puspito and Gunawan, 2005; Tsuji et al., 2006). Therefore, the tsunami periods are very similar at both locations, and are unlikely responsible for the difference between Banda Aceh and Khao Lak/Phuket curves. In Figure	Please, see the revised Section 6.2. Line 577: The city of Banda Aceh and Khao Lak/Phuket area have been damaged by the 2004 IOT. Along Banda Aceh shores, the simulated tsunami wave period is ranging from 40 to 45 min (Prasetya et al., 2011; Puspito and Gunawan, 2005) and the one simulated in Khao Lak/Phuket is estimated to approximatively 40 min (Karlsson et al., 2009; Puspito and Gunawan, 2005; Tsuji et al., 2006).

models for both sites could show the differences, but the authors do not present tsunami simulations for Banda Aceh and Khao Lak.	16a, the building resilience is higher in Khao Lak/ Phuket than in Banda Aceh. It comes from the fact that the Khao Lak/Phuket curve is developed for reinforced concrete buildings while the ones in Banda Aceh are produced for mixed buildings (Koshimura et al., 2009a). Another reason is that seismic damages due to the 2004 Indian Ocean earthquake were not recorded in Khao Lak/Phuket before the tsunami arrival. Furthermore, in Banda Aceh, the likelihood of complete damage is very high for low inundation depth levels; this feature is usually observed for building suffering prior damage (e.g., ground shaking and/or liquefactions episodes) (Charvet et al., 2014).	
Regarding the numerical modelling in the manuscript, the authors should comment on why they use modelling for the 2018 Palu and Sunda Strait events but not for the 2004 Indian Ocean tsunami. I believe the authors could draw interesting conclusions if they would compare impacting wave shapes for the 2004 Indian Ocean tsunami in Khao Lak and Banda Aceh.	We thank the reviewer for this comment. We highlighted the benefits of the simulated fragility curves in the abstract and the introduction. The main reason is that 2018 Sunda Strait and Sulawesi-Palu tsunamis are uncommon events still poorly understood compared to the 2004 IOT. The flow depth is the only tsunami intensity measure recorded during the field surveys. So, to improve our understanding of the structural damage caused by the Sunda Strait and Sulawesi-Palu tsunamis and to discuss the impact of wave period, ground shaking and liquefaction events, we reproduced their tsunami intensity measures. This is also the first attempt to develop fragility curves as functions of the flow depth, the flow velocity and the hydrodynamic force of the Sunda Strait and Palu tsunamis based on TUNAMI two-layer model.	Please, see the revised abstract and the last paragraph of the introduction.
Further, the authors should clearly state the motivation for their numerical modelling efforts. It is not clear why they use models where many observations exist.	Please, see the explanations above.	Please, see the revised abstract and the last paragraph of the introduction.
The Digital Elevation Model (DEM) for Palu has a resolution of 1 m. The DEM for the Sunda Strait event has a resolution of 20 m. If the authors want to compare the cases, they should use the same cell size for DEMs or explain why they believe	We thank the reviewer for pointing this out. The resolution of the DEM is now part of the discussion (Section 6.1). In Sunda Strait and Palu, we performed simulations with bathymetry and topography of 20x20 m ² and 1x1 m ² respectively. For both	Line 180: BATNAS and DEMNAS, Indonesia, provided the bathymetric and topographic data with 180 and 8 m-resolutions, respectively. The data was established from SAR images (http://tides.big.go.id/DEMNAS/ind ex.html). Both datasets were

that simulations are comparable when using 400 times bigger cell size. Apart from that, I believe the reader would be interested in the data that allows building a DEM with 1 m resolution for Palu. The authors should also name the references for the dataset used in all DEMs.	events, the curves based on the observed and simulated flow depths are similar, so we are confident to compare Sunda Strait and Palu curves based on the flow depth. However, De Risi et al. (2017) illustrated well the influence of the DEM resolution on the efficiency of the flow velocity as a tsunami intensity measure. In Sunda Strait, the DEM resolution is relatively high (20 m), this is one of the limitations in this study and it could explain why the flow velocity is not a good descriptor of tsunami damage. Therefore, we cannot compare the Sunda Strait curve based on the flow velocity with the one for Palu, where we perform two-layer numerical modelling using the finest grid size of 1 m. We also added the references for the DEMs.	resampled to three computational domains with a grid size of 20-m resolution (Fig. 2a,b). In Palu-City, the bathymetric and topographic data with 1-m resolution were obtained through Lidar images and supplied by the Agency for Geo-spatial Information (BIG), Indonesia (Fig. 2b,c). For tsunami inundation Please, see the added Section 6.1.
The authors use hypothetical landslide sources for the 2018 Palu event. Those are not in agreement with some other published studies (Ulrich et al. 2019, Gusman et al. 2019). In figure 6, the authors present those hypothetical landslides as principal tsunami source without explaining why they have this assumption. The authors must include a review of previously published sources and comment on the reasons for modifying the sources in their manuscript. In figure 9, they compare the observed with simulated flow depth and claim that their model is in good agreement with the observations. To my understanding, figure 9 in the manuscript demonstrates that the simulation does not match the observation. The authors must explain why they believe the model is of good quality. Further in the manuscript's conclusion, the authors write on page 30, line 574 f.: 'Although Palu-Bay was hit by a non-seismic tsunami: : '. These are the authors' assumptions and therefore are not valid as a conclusion and need to be rewritten. Please also note that figure 9 is misspelt.	We agreed with the reviewer. We clarified the choice of the tsunami inundation model, which is also part of the discussion (Section 6.1). The conclusion has been rewritten too. In Figure 9, some observed and simulated flow depths are different in Palu-City. To tackle this issue, we decided to develop Palu curves based on the flow depth data included in the 1-m confidence interval only. The observed and simulated curves based on the flow depth are relatively similar, especially for ds_1 and ds_3 , so we believe that the curves based on the simulated flow depth are accurate enough.	Line 233: We increased the mean sea level (MSL) by 2.3 m to reproduce the high tide during the 2018 Palu tsunami. As shown by Pakoksung et al. (2019), the observed waveform at Pantoloan tidal gauge does not fit the simulated one with the Finite Fault Model of TUNAMI-N2. Although recent studies show that seismic seafloor deformation may be the primary cause of the tsunami (Gusman et al., 2019; Ulrich et al., 2019), in this study, the main assumption is that the 2018 Sulawesi- Palu was triggered by subaerial/submarine landslides. According to Heidarzadeh et al. (2018), a large landslide to the north or the south of Pantoloan tidal gauge is responsible for the significant height wave recorded. Arikawa et al. (2018) also identified several sites of potential subsidence in the northern part of Palu-Bay. Based on these previous studies, we assume two large landslides: L1 and L2. Small landslides (S1-S12) also occurred in the bay; their location stands on observations from satellite imagery, field surveys and video footage (Arikawa et al., 2018; Carvajal et al., 2019) (Fig. 6). The trial and error method aims to achieve the volume of the landslides (Table 3). In Figure

		 7, the submarine landslides model reproduces well the tsunami observations at Pantoloan. The calibration Figure 9. Comparison between observed and simulated flow depths at damaged building for a S8 ratio of 1.2; a confidence interval is set at 1-m flow depth.
		and the revised conclusion
The authors should include a paragraph on proposed flank collapse sources from other studies on the 2018 Sunda Strait tsunami. Please include Williams et al. (2019), Grilli et al. (2019), Omira and Ramalho (2020), Dogan et al. (2021).	We thank the reviewer and included the references.	Line 56: The tsunami generation process is unclear. The subaerial/submarine landslide volume is still investigated and ranges between 0.10 and 0.30 km ³ according to recent studies (Dogan et al., 2021; Grilli et al., 2019; Omira and Ramalho, 2020; Paris et al., 2020; Williams et al., 2019).
The authors write that they automatically corrected the flow depth traces for the 2018 Sunda Strait event. It is not clear how the authors do that. Are they using GPS field measurements or LIDAR data? If the authors use a method previously presented, then they must cite the corresponding reference. They observe a mean difference of flow depth values of 0.28 m for 94 traces. How far is this value representative for the 94 traces? It is not clear if the authors use this value for correction? I suggest rewriting this section. The resolution of the DEM is 20 m. Do the authors believe this resolution is sufficient to obtain reasonable values of flow depth and flow velocity?	We agreed with the reviewer and rewrote the section. The resolution of the DEM is part of the discussion (please, see the explanations above). The Digital Surface Model (DSM) was established from SAR images. We removed the vegetation, buildings and infrastructures elevations based on the linear smoothing method. However, in some areas, the simulated flow depths are underestimated compared to the observed ones (mean difference of 0.28 m +/- 1 m). Consequently, we corrected the DEM once again by removing 0.28 m at buildings using QGIS. Based on the 2 nd DEM, which is more reliable at buildings, we achieved "good agreement" for the 2018 Sunda Strait tsunami model.	Almost Line 180: BATNAS and DEMNAS, Indonesia, provided the bathymetric and topographic data with 180 and 8 m-resolutions, respectively. The data was established from SAR images (http://tides.big.go.id/DEMNAS/ind ex.html). Both datasets were resampled to three computational domains with a grid size of 20-m resolution (Fig. 2a,b). In Palu-City Line 211: To correct the Digital Surface Model (DSM), we removed the vegetation, buildings and infrastructures elevations based on the linear smoothing method and used the resulting Digital Elevation Model (1 st DEM) as topography in the tsunami inundation model (Fig. 3). The vertical accuracy of the DSM/DEM is about 4 m. The 2018 Sunda Strait
		Line 221:difference of 0.28 m \pm 1 m. Using QGIS software, we smoothed the 1 st DEM to remove these mean difference in elevation at buildings where the flow depth is underestimated. The resulting DEM (2 nd DEM) provides a topography more reliable (Fig. 3). Three cross-sections along the Sunda Strait coasts show the different corrections

		applied to the DSM (Fig. 4). <i>K</i> and κ Update of Figure 4 caption. (a) Cross-sections along Sunda Strait coasts. One cross section is realized in the computational areas (b,e) 1, (c,f) 2 and (d,g) 3 to illustrate the topographic corrections applied to the Digital Surface Model (DSM) using QGIS (background ESRI and © Google Maps). Please, see the added Section 6.1.
Consistency with abbreviations and variables. Sometimes the authors use for Indian Ocean tsunami IOT (e.g. page 1, line 23, line 31; page 3, line 91; etc.) sometimes they use IO (e.g. page 2, line 81; page 4, line 101; page 20, line 416). The authors use GEM as an abbreviation on page 2, line 82 but only introduce the Global Earthquake Model (GEM) on page 13. The authors also use the abbreviation AIC without stating what the abbreviation stands for (page 18 ff.). In 4.1 the authors use the Greek letter pi as probability, and in 4.2 they use P. What is the difference?	We are sorry and corrected it.	Please, see the changes in the manuscript.

• Minor comments

Reviewer comments	Our answers	Corrected manuscript
Page 2, line 51: Some other studies	Corrected	Please, see the changes in "Major
consider less volume and other		comments" table.
particularities of the collapse. Please		
include them (Williams et al. 2019,		
Grilli et al. 2019, Omira and Ramalho		
2020, Dogan et al. 2021).		
Page 2, line 81: IO or IOT? Please be	Corrected	Please, see the changes in "Major
consistent.		comments" table.
Page 2, line 82: Please indicate what	Corrected	Please, see the changes in the
the abbreviation GEM stands for.		manuscript.
Page 3, line 91: I suggest rewriting	We agreed with the reviewer and	Line 96: Then, we compared the
the sentences since seismic and non-	rewrote this sentence.	fragility curves of the Sunda Strait,
seismic curves is not clear.		Sulawesi-Palu and Indian Ocean
		(Khao Lak/Phuket) tsunamis with the
		curves of the 2004 IOT, in Banda
		Aceh, Indonesia, produced by
		Koshimura et al. (2009a).
Page 4, line 101: IO or IOT?	Corrected	Please, see the changes in the
Consistency!		manuscript.
Page 4, line 106: Why do the authors	We thank the reviewer for this. We	Please, see the revised Sections 2
believe the databases are statistically	acknowledge the confusion that	and 4.
representative since they explain later	might cause to the reader. We	
in section 4 that they use reduced	decided to change the section and to	

samples of the databases DB_Palu2018' and DB_Sunda2018'. For example, from 463 observations in Palu they use 124 observation. I recommend restructuring the manuscript combining section 2 and 4 or put the final databases used in section 2. Is the number of timber buildings enough to be statistically significant?	reflect the numbers which we will actually use to section 4 and to provide the reader explanations of why this course of actions is taken, where to find further explanations and what is the expected impact on the shape of the fragility curves in section 4. We decided against merging the two sections as we need to present the databases first since they are being used in section 3 to validate the simulations.	
Page 5, line 142 f.: Please specify the appropriate kinematic and dynamic boundary conditions for the interfacing layers.	The flux Q1 is water while the flux Q2 is granular material (soil). We added more explanations and a figure to better understand the meaning of each term.	Line 167: ρ_1 and ρ_2 are the densities of the seawater and the landslide. The fifth term of the momentum equations (Eqs. 2, 3, 5, 6) represents the interaction between the two layers. The tsunami model Line 170:, respectively (Fig. A1 - Appendix A) Please, see Fig. A1 below (Appendix A).
Page 6, Eq. 7 ff.: In equation 7 is d a constant? Please define theta.	We are sorry for this oversight. We corrected it. <i>d</i> is a constant.	Line 189: n_o corresponds to the Manning's roughness coefficient (n_o = 0.025 s.m ^{-1/3}), C_D represents the drag coefficient ($C_D = 1.5$ (Federal Emergency Management Agency (FEMA), 2003)) and the constant d signifies the horizontal scale of buildings (~15 m). θ is
Page 7, figure 2: It is not clear what the building occupation ratio is. Please introduce a definition. What do the polygons in 2(d) represent? Please add a legend. Are those cells 100% covered? What about the rest of the layer? 0% occupation? Please clarify!	We are sorry and corrected it. Through GIS, we delimited each building, then we computed the building occupation ratio over a pixel ($20x20 \text{ m}^2$ in Sunda Strait and $1x1 \text{ m}^2$ in Palu-City). We defined the building occupation ratio as the building area per pixel. In non- residential areas (building occupation ratio = 0 %), we set the Manning's roughness coefficients inland and on the seafloor to 0.03 and 0.025 respectively, which are typical values for vegetated and shallow water areas (Kotani, 1998). In Figure 2d, the polygon corresponds to $1x1 \text{ m}^2$ pixels with an occupation ratio of 100 % (dark red pixels).	Line 192: θ is obtained by computing the building area over each pixel using GIS data. The computational cell corresponding to buildings can be inundated by the <i>n</i> Manning coefficient through the term <i>D</i> , which represents the simulated flow depth (m). In the urban areas of Sunda Strait and Palu, the average occupation ratios are 24 % and 84 % respectively (Fig. 2b,d). In non- residential area, we set the Manning's roughness coefficients inland and on the seafloor to 0.03 and 0.025 respectively, which are typical values for vegetated and shallow water areas (Kotani, 1998).
Page 7, line 180: Please avoid having two letters for the same variable.	Corrected	<u>Line 200:</u> K (or μ) and κ (or σ) proposed
Page 8, figure 3: It is unclear how the corrections are applied to the Digital Surface Model.	Corrected	Please, see the changes in "Major comments" table.

Page 9, figure 4: What do mean by profile realized? Are those measurements?	We changed the term "profile" by "cross-sections". Using QGIS (Terrain Profile tool), we did three cross-sections showing the DSM, the 1 st DEM and the 2 nd DEM to illustrate the different topographic corrections. They are not field measurements.	Line 221: Using QGIS software, the 1 st DEM is smoothed to remove the elevation difference at buildings where the flow depth is underestimated. The resulting DEM (2 nd DEM) provides a topography more reliable at buildings (Fig. 3). Three cross-sections along the Sunda Strait coasts show the different corrections applied to the DSM (Fig. 4). <i>K</i> and κ Update of Figure 4 caption. (a) Cross sections along Sunda Strait coasts. Using QGIS, one cross section is realized in the computational areas
Page 10, figure 5: Do the triangles	We agreed with the reviewer and	Update of Figure 4 caption:to
represent single buildings? It is probably better to choose a representative area on a scale with many surveyed buildings like a city or village instead of large parts of the coast. The figure now does not illustrate well the flow depth close to	added the flow velocity plots in Appendix B. Each triangle corresponds to a single building.	illustrate the topographic corrections applied to the Digital Surface Model (DSM) at buildings (a triangle corresponds to a building), using QGIS (background ESRI and © Google Maps)
the buildings. What about the flow		Please, see the revised Figs. 5 and Pl (Appendix P) below
Page 10, line 213: Is landslide S8 oriented towards the city? Isn't that the slide that was captured by the pilot in the departing plane? Isn't the slide direction perpendicular to the hay?	Yes	<u>Line 248:</u> and (iii) it is close and ideally oriented to Palu-City; the slide direction, captured by an aircraft pilot, is perpendicular to the bay (Carvajal et al., 2019). The density
Page 10, line 215 f.: What is meant by landslide ratio of 1.2?	Corrected	Line 252: For a landslide ratio of 1.2 (i.e., S8 volume is multiplied by 1.2), the tsunami model
Page 10, line 217 f.: Why do you only overlay 175 traces?	In the west part of our computational zone, the simulated envelope is shorter than the surveyed one. For this reason, we overlaid 175 buildings while the surveyed tsunami envelope covers 220 buildings.	Line 253: (a = 1.027). The simulated tsunami inundation zone overlays 175 traces out of 371 because (i) 151 buildings with flow depth traces are not included in our computational area (Fig. 2c) and (ii) 45 buildings are outside the simulated envelope, which is shorter than the surveyed one (Fig. 8). The geometric
Page 10, line 220 – 225: This section is not very clear.	We are sorry and simplified it.	<u>Line 257:</u> RMSE = 0.92 m). Therefore, to develop accurate and reliable curves, we set a 1-m confidence interval including 124 flow depth traces at buildings out of 175 (Fig. 9). In section 4.2, the Sulawesi-Palu tsunami fragility assessment is based on these 124 buildings (DB_Palu2018). <i>K</i> and κ
Page 11, table 3: What are the sources for the volume of the landslides?	Corrected	Please, see the changes in "Major comments" table.

Page 12, figure 8: What is the source of the topography and bathymetry data for the DEM with 1 m resolution?	Corrected	Please, see the changes in "Major comments" table.
Page 12, figure 9: Figure is misspelt. The figure demonstrates that the model does not well represent the observations. What is an S8 ratio of 1.2? Page 12, line 237 – page 13, line 239: I suggest putting the number and type	Thank you very much. We corrected it. We thank the reviewer for his recommendations.	Please, see the changes in "Major comments" table. Line 252: For a landslide ratio of 1.2 (i.e., S8 volume is multiplied by 1.2), the tsunami model Please, see the revised Tables 2 and 4.
of buildings for all locations in a table.	After the 2019 Subarrai Dalu	Line 252: (a 1.027) The
Page 13, table 4: Please specify why you only use 124 out of 463 flow depth values for Palu.	After the 2018 Sulawest-Palu tsunami, Paulik et al. (2019) created a database including 463 flow depth traces at buildings. In our computational area (Palu-City), there are only 220 buildings with observed flow depth values and our simulated tsunami envelope covers 175 buildings. According to Fig. 9, the standard deviation and the Root Mean Square Error (RMSE) are high ($\kappa = 2.18$, RMSE = 0.92 m), so we decide to set a 1-m confidence interval, including 124 flow depth traces at buildings, to develop accurate curves.	Line 255: (a = 1.027). The simulated tsunami inundation zone overlays 175 traces out of 371 because (i) 151 buildings with flow depth traces are not included in our computational area (Fig. 2c) and (ii) 45 buildings are outside the simulated envelope, which is shorter than the surveyed one (Fig. 8). The geometric
Page 13, line 252: Please put 'Global Earthquake Model' the first time you use the abbreviation.	Corrected	Please, see the changes in "Major comments" table.
Page 13, section 4.1 & section 4.2: What is the difference? First, you identify the explanatory variable for building damage. Then in section 4.2 you include the damage states and the model selection. I believe you could make this section 4 much shorter by focusing on the relevant information. I suggest preparing a short and concise paragraph on the statistical methods used and then present the results for each site. I also miss a short introductory phrase to the Akaike Information Criterion (AIC) and the likelihood ratio tests you applied. Page 14, 284 f.: There is something wrong in this sentence 'The intercept of the curves for the two material types appear be sustainably	We thank the reviewer for their feedback. We changed the flow of section 4 in order to be more concise. The fragility assessment for each database includes two steps, in the first step, a simple model is fitted to subsets of the database to identify trends in the data. Then a more complex model is built which is fitted to the whole database based on the observations of the exploratory analysis. We also added a very brief description of the two goodness-of-fit tests we adopted and added references where the reader can find more information or examples regarding these tests. Many thanks for this. It was meant to read substantially.	Please, see the revised Section 4. Line 381: The curves for the two construction types appear to be substantially different.
Page 15, 16 and 17, figures 10, 11 and 12: I recommend plotting the confidence intervals with lines only	We thank the reviewer for this. We decided to change the legend. Indeed the term construction type is more	Please, see the revised Figs. 10-16 below.

without shaded areas because in the overlapping areas you get different colours than depicted in the legend. In case some reader would like to print the manuscript in black and white, only it will be more illustrative. Furthermore, I suggest introducing a symbol for the variable flow depth. I believe it is better to delete the word material in the legend since it creates some ambiguity with the symbols used. Also, confined masonry is not a material; it is a construction or building type. In figures 10 and 11, you use the same symbol for timber and reinforced concrete, I suggest selecting a unique symbol for each construction type.	appropriate. We also decided to add lines to highlight the 90% confidence intervals. However, we also decided to keep the fill to also indicate the confidence intervals as this way we found it easier to read the figure in print or online.	
Page 15, line 301: Instead of material I would suggest using construction or building type. Confined masonry or reinforced concrete are construction types, not materials.	We changed the term. It now reads construction type.	Please, see the changes in the manuscript.
Page 15, figure 10 and line 293, etc.: You use a couple of times 'in order to'. There is no need for using 'in order', a simple 'to' is enough.	Corrected	Please, see the changes in the manuscript.
Page 16, line 305 f.: Instead of 'GLM models are finally fitted to DB_Thailand2004 in order to construct fragility curves and their 90 % confidence intervals for the three individual damage states, as depicted in Fig. 12.' I suggest to writing: 'We fit GLM model to DB_Thailand2004 to construct fragility curves for the three damage states and plot them with their 90 % confidence interval in Fig. 12.'. Generally, I suggest avoiding passive voice use because of this increase the readability of a manuscript.	Thank you for the correction. We rewrote as much as possible the passive voice to the active one.	Please, see the changes in the manuscript.
Page 17, Eq. 18: The indexing of the model equations is not precise. Please check the standard of the journal.	Corrected	$\eta_{ij} = \begin{cases} \theta_0 + \theta_1 \tilde{x}_j & (19.1) \\ \theta_0 + \theta_{1i} \tilde{x}_j & (19.2) \\ \theta_0 + \theta_1 \tilde{x}_j + \theta_2 class & (19.3) \\ \theta_0 + \theta_{1i} \tilde{x}_j + \theta_2 class & (19.4) \\ \theta_0 + \theta_1 \tilde{x}_j + \theta_2 class + \theta_3 \tilde{x}_j class & (19.5) \end{cases}$
Page 18, lines 329 – 337: I suggest depicting the functions in exemplary plots, and possibly you could simplify the verbal description. Line 331: Eq. 8.2 does not exist.	Corrected	Line 348: By contrast, Eq.(19.2) allows
Page 18, line 348: Please explain what is meant by AIC values.	Corrected	Line 360: Firstly, we compare the Akaike Information Criterion (AIC) values (Akaike, 1974), which estimates the prediction error of the examined models.

Page 19, line 380: Please define hydrodynamic force and explain how you compute it.	We are sorry and corrected it.	Line 172: The hydrodynamic force acting on buildings and infrastructure is defined as the drag force per unit width of the structure (Koshimura et al., 2009b). $F = \frac{1}{2}C_D\rho u^2 D$
		= 1.0), ρ is the water density (ρ = 1000 kg/m ³), <i>u</i> stands for the current velocity (m/s), and <i>D</i> is the inundation depth (m).
Page 20, line 409 – 415: This is much text for a simple conclusion. Please simplify.	Corrected	Line 452: Based on the observations of the exploratory analysis, we consider model M1 as the most suitable. To test its goodness of fit, model M2, which relaxes the assumption that the slope of all three curves is identical, is also fitted to the data. The comparison of the AIC values for the two models also shows in Table 9 that the M1 is the model which fits the data best for all three link functions considered in this study (i.e., probit, logit and cloglog). We also perform a likelihood ratio test to confirm that the improvement in the fit provided by the more complex M2 model over M1 is not statistically significant. The <i>p</i> -value is found to be equal to 0.76, 0.95 and 0.33 for the probit, logit and cloglog functions, respectively, which is significantly above the 0.05 threshold. This suggests that M2 does not provide a statistically better fit to the data, therefore the less complex M1 model fits the data best. The regression coefficients of the 2004 Indian Ocean (Thailand) fragility curves for the best fitted model M1 with logit link function can be found in Table D3 (Appendix D).
Page 20, line 416: IO. Please be	Corrected	Please, see the changes in "Major comments" table
Page 21, line 434 f.: Here you write: 'The curves suggest that confined masonry-type buildings have higher performance than timber structures.' On page 19, line 388: 'A timber building is found to sustain more damage than a confined masonry one for all damage states.' Please clarify.	We are sorry and rephrase the second sentence.	Line 416: A timber building is found to sustain more damage than confined masonry buildings for the more intense damage states.
Page 22, figure 13: It is unclear which curve was produced by Syamsidik et al. (2020). The red dashed line is	Thank you very much for your suggestions. We only displays the ds_3 -data as they are useful for the	Please, see the revised Figs. 13-16 below.

Syamsidik et al. (2020)? Please put the reference also in the legend of the figure to be exact. Can you explain why the curve of Syamsidik et al. (2020) is that different to yours? I do not understand why you put the data points in the figures. Is there no better way to illustrate your data? It is hard to distinguish the data points some of the red points that superimpose orange ones are hard to see. In figure 13 (a) and (b) why are the points distributed differently? Moreover, I propose putting 'confined masonry buildings' in the figure. Maybe in the legend or in a figure title. Otherwise, the reader may mix up the figures of confined masonry and timber. I suggest plotting the observed flow depth's fragility curves with the ones of the simulated flow depth. Otherwise, it is hard to see any difference. Is there a difference?	discussion. We also added the references to the figures. We mainly attribute the difference between our ds_3 -curve and the one produced by Syamsidik et al. (2020) to the fact that a few data are available beyond 4.5-5 m, so the uncertainty increases and the confidence interval widens.	
Page 23, figure 14: Please consider the comments of figure 13 also for this figure 14. I suggest putting 'timber buildings' somewhere in the figure. Maybe in the legend or a figure title. Otherwise, the reader may mix up the figures of confined masonry and timber.	Corrected.	Please, see the revised Figs. 13-15 below.
Page 24, line 458: Please review and correct the following sentences: 'The fragility curves based on observation and simulation are similar enough to consider the computed curves as functions of the hydrodynamic features of the tsunami reliable (Fig. 15c,d).	Corrected	Line 474: Consequently, the tsunami functions based on observation and simulation are highly similar, which illustrates the accuracy and the reliability of the tsunami inundation model. We also display the curves as functions of the maximum simulated flow velocity in Figs. 13b,14b, and the hydrodynamic force in Figs. 13c,14c. Line 495: The fragility curves based on the observed and simulated flow depths are relatively similar, especially for ds_1 and ds_3 . The curves based on the flow velocity and the hydrodynamic force are also displayed in Fig. 15b,c.
Page 25, figure 15: Please consider the comments for figures 13 and 14 for this figure. I suggest plotting the fragility curves of observed and simulated flow depth in the same graph (hence combine (a) and (b)).	Corrected	Please, see the revised Figs. 13-15 below.
Page 25, table 11: Why do you use tsunami intensity measure values	As we combine the curves based on the simulated and observed flow depths, we deleted Tables 10 and 11.	Please, see the changes in the manuscript.

different from Table 10? It makes		
Page 26, line 472: If Koshimura et al.	Even if the curves are for mixed	/
(2009a) building fragility curves are	buildings, it is difficult to compare	
for mixed buildings and your curves	them as the percentage of	
comparable? What are the	both locations Moreover Banda	
percentages of each construction	Aceh curve are based on visual	
type?	damage interpretation of remaining	
	roofs using the pre and post-tsunami	
	determine the percentage of each	
	construction type. According to	
	Koshimura et al. (2009a) and	
	Saatcioglu et al. (2006), there are	
	non-engineered reinforced-concrete	
	constructions in Banda Aceh.	
Page 26, line 488: How do you	The flow velocity and the force are	Please, see the revised Section 5.3
explain why Banda Aceh buildings	not good descriptors of tsunami	and the added Section 6.1.
whereas in Palu and Sunda Strait	damage. We discussed the building	
buildings sustain this flow velocity?	depth only.	
Page 27, figure 16: I suggest adding	Corrected	Please, see the revised Fig. 16
the reference to the legend of the		below.
Page 28, table 13: It is not proven that	We agreed with the reviewer.	Please, see the revised Table 13.
a non-seismic source triggered the	Corrected.	
Palu tsunami. You need to explain		
what the symbols + and – mean in the lines liquefaction and ground		
shaking. I suggest changing the line		
'Construction material' to		
'Construction type'.		
Page 28, line 514 f.: Why do you think the Sunda Strait event buildings	We made a mistake and corrected it.	<u>Line 5/1</u> : As few data points for completely damaged buildings are
reveal a better performance than in	buildings collapsed with flow depth	available beyond this value, the
Khao Lak? How many buildings	values larger than 5 m against 7	Sunda Strait and the Indian Ocean
were affected in Sunda Strait with	structures in Khao Lak/Phuket.	(Thailand) curves reliability is
How much area was inundated with		wave periods of the IOT (Thailand)
flow depth values larger than 5 m?		seem to increase the likelihood of
		building damage, the sample size of
		collapsed buildings beyond 5-m flow
		assumption
Page 28, line 527 f.: Please be aware	Corrected.	Please, see the changes in "Major
that the largest areas of liquefaction		comments" table.
are located outside of the tsunami		
Watkinson & Hall (2019) and Svifa		
et al. (2019). Although Sassa and		
Takagawa (2019) identified some		
small liquefaction areas near the		
coast, you need to quantify how		
damaged many buildings in your		

Page 28, line 529: It is not proven that only landslides generated the Palu- tsunami. I suggest changing the	We agreed and deleted the sentence. Palu tsunami inundation model is now part of the discussion.	Please, see the added Section 6.1.
phrasing' non-seismic source'.		
Page 29, lines 532 – 536: The problem here is that your estimates of the flow velocity are based on numerical modelling for the Sunda Strait with 20 m resolution and for the Palu event with 1 m resolution. This makes them hardly comparable.	We agreed with the reviewer. We discussed the impact of the DEM resolution on the flow velocity in Section 6.1. The flow velocity and the hydrodynamic force are not good descriptors of damage, we are not using them to discuss the tsunami impact on building damage probability.	Please, see the changes in "Major comments" table.
Page 29, lines 536 – 540: This argument is not enough to conclude that liquefaction was the principal cause for structural destruction. Mas et al. (2020) write that tsunami hydrodynamic, and debris impact forces may have been the principal causes of failure and collapse in Palu Bay's waterfront area.	Corrected	Please, see the changes in "Major comments" table.
Page 29, line 540: It is pure speculation that liquefaction episodes are mostly responsible for the building damage. Prove it. The rest of the manuscript is based on this hypothesis. Consequently, you should present some facts or rewrite the last part of the discussion and conclusion.	Corrected	Please, see the changes in "Major comments" table.

Figure 2. (a,c) Computational areas (1-3) in the Sunda Strait and Palu-City, magnified view of the building occupation ratio (b) in the Sunda Strait (20-m resolution) and (d) Palu-City (1-m resolution) (background ESRI and © Google Maps).

Figure 5. (a,c,d) Sunda Strait final tsunami inundation model with the maximum simulated flow depth overlaying on the damaged building data in the computational areas 1 to 3, magnified views of the maximum simulated flow depth in (b) Rajabasa, (d) Pejamben and (f) Sumur areas (background ESRI and © Google Maps).

Figure 10. Probit functions fitted for each individual damage state to (a) DB_Sunda2018 to assess whether the observed flow depth is an efficient descriptor of damage; (b) to assess whether the construction type affected the shape of fragility curves for ds_2 and ds_3 . In both cases, the 90 % confidence interval is plotted.

Figure 11. Probit functions fitted for each individual damage state to DB_Palu2018 to assess whether the observed flow depth is an efficient descriptor of damage. The 90 % confidence interval are plotted.

Figure 12. Probit functions fitted for each individual damage state to DB_Thailand2004 to assess whether the observed flow depth is an efficient descriptor of damage. The 90 % confidence interval are plotted.

<u>The 2018 Sunda Strait curves for confined masonry concrete buildings</u>

Figure 13. Best-estimate fragility curves as functions of (a) the observed and the maximum simulated flow depths (ds_3) , (b) the maximum simulated flow velocity and (c) the simulated hydrodynamic force. The curves are built with their 90 % confidence intervals for confined masonry concrete buildings of DB_Sunda2018 sustaining minor/moderate damage (ds_1) , major damage (ds_2) and complete damage/washed away (ds_3) in the Sunda Strait area.

<u>The 2018 Sunda Strait curves for timber buildings</u>

Figure 14. Best-estimate fragility curves, with their 90 % confidence intervals, as functions of (a) the observed and the maximum simulated flow depths, (b) the maximum simulated flow velocity and (c) the simulated hydrodynamic force for timber buildings of DB_Sunda2018 sustaining minor/moderate damage (ds_1), major damage (ds_2) and complete damage/washed away (ds_3) in the Sunda Strait area.

<u>The 2018 Sulawesi-Palu curves for confined masonry buildings</u>

Figure 15. Best-estimate fragility curves, with their 90 % confidence intervals, as functions of (a) the observed flow depth, (b) the maximum simulated flow depth, (c) the maximum simulated flow velocity and the simulated hydrodynamic force for confined masonry buildings with unreinforced clay brick of DB_Palu2018 sustaining partial damage repairable (ds_1), partial damage unrepairable (ds_2) and complete damage (ds_3) in Palu-City.

Figure 16. Best-estimate fragility curves for the 2018 Sunda Strait tsunami, 2018 Sulawesi-Palu tsunami, 2004 IOT in Khao Lak/Phuket, Thailand, and Banda Aceh, Indonesia, as functions of (a) the observed/maximum simulated flow depth, (b) the maximum simulated flow velocity, and (c) the simulated hydrodynamic force. These fragility functions are developed only for completely damaged or washed away buildings (*ds*₃) with their 90 % confidence intervals.

Figure 17. (a) Liquefaction areas surveyed inland near Palu-City and (b) magnified view of the maximum simulated flow depth of the 2018 Sulawesi-Palu tsunami overlaying on the masonry-type buildings completely damaged (ds_3) and location of the coastal retreats surveyed in the waterfront of Palu-City (background ESRI).

Figure A1. Two-layer modelling of a subaerial/submarine landslide (from the original sketch of Pakoksung et al., 2019), (a) pre-failure, (b) generation of negative and positive waves due to the landslide and (c) landslide in progress and wave propagation.

Figure B1. Magnified views of the maximum simulated flow velocity of the 2018 Sunda Strait tsunami overlaying on the damaged building data in (a) Rajabasa, (b) Pejamben and (c) Sumur areas (background ESRI and © Google Maps).

References:

Akaike, H.: A new look at the statistical model identification, IEEE transactions on automatic control, 19(6), 716–723, doi:10.1109/TAC.1974.1100705, 1974.

Arikawa, T., Muhari, A., Okumura, Y., Dohi, Y., Afriyanto, B., Sujatmiko, K. A. and Imamura, F.: Coastal subsidence induced several tsunamis during the 2018 Sulawesi earthquake, Journal of Disaster Research, 13, 1–3, doi:10.20965/jdr.2018.sc20181204, 2018.

Carvajal, M., Araya-Cornejo, C., Sepúlveda, I., Melnick, D. and Haase, J. S.: Nearly instantaneous tsunamis following the Mw 7.5 2018 Palu earthquake, Geophysical Research Letters, 46(10), 5117–5126, doi:10.1029/2019GL082578, 2019.

Charvet, I., Ioannou, I., Rossetto, T., Suppasri, A. and Imamura, F.: Empirical fragility assessment of buildings affected by the 2011 Great East Japan tsunami using improved statistical models, Natural Hazards, 73(2), 951–973, doi:10.1007/s11069-014-1118-3, 2014.

Darma, Y. and Sulistyantara, B.: Analysis of landscape impact on post-earthquake, tsunami, and liquefaction disasters in Palu City, Central Sulawesi, in IOP Conference Series: Earth and Environmental Science, vol. 501, p. 012003, IOP Publishing., 2020.

Dogan, G. G., Annunziato, A., Hidayat, R., Husrin, S., Prasetya, G., Kongko, W., Zaytsev, A., Pelinovsky, E., Imamura, F. and Yalciner, A. C.: Numerical simulations of December 22, 2018 Anak Krakatau tsunami and examination of possible submarine landslide scenarios, Pure and Applied Geophysics, 1–20, doi:10.1007/s00024-020-02641-7, 2021.

Federal Emergency Management Agency (FEMA): Coastal construction manual, FEMA 55, Third Edition (FEMA 55), 296p., 2003.

Grilli, S. T., Tappin, D. R., Carey, S., Watt, S. F. L., Ward, S. N., Grilli, A. R., Engwell, S. L., Zhang, C., Kirby, J. T., Schambach, L. and Muin, M.: Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia, Scientific Reports, 9(1), 1–13, doi:10.1038/s41598-019-48327-6, 2019.

Gusman, A. R., Supendi, P., Nugraha, A. D., Power, W., Latief, H., Sunendar, H., Widiyantoro, S., Wiyono, S. H., Hakim, A. and Muhari, A.: Source model for the tsunami inside palu bay following the 2018 palu earthquake, Indonesia, Geophysical Research Letters, 46(15), 8721–8730, doi:10.1029/2019gl082717, 2019.

Heidarzadeh, M., Muhari, A. and Wijanarto, A. B.: Insights on the source of the 28 September 2018 Sulawesi tsunami, Indonesia based on spectral analyses and numerical simulations, Pure and Applied Geophysics, 176(1), 25–43, doi:10.1007/s00024-018-2065-9, 2018.

Karlsson, J. M., Skelton, A., Sandén, M., Ioualalen, M., Kaewbanjak, N., Pophet, N., Asavanant, J. and Von Matern, A.: Reconstructions of the coastal impact of the 2004 Indian Ocean tsunami in the Khao Lak area, Thailand, Journal of Geophysical Research: Oceans, 114(C10), doi:10.1029/2009JC005516, 2009.

Kijewski-Correa, T. and Robertson, I.: StEER: structural extreme event reconnaissance network: Palu earthquake and tsunami, Sulawesi, Indonesia field assessment Team 1 (FAT-1) early access reconnaissance report (EARR)., 2018.

Koshimura, S., Oie, T., Yanagisawa, H. and Imamura, F.: Developing fragility functions for tsunami damage estimation using numerical model and post-tsunami data from Banda Aceh, Indonesia, Coastal Engineering Journal, 51(3), 243–273, doi:10.1142/S0578563409002004, 2009a.

Koshimura, S., Namegaya, Y. and Yanagisawa, H.: Tsunami fragility - A new measure to identify tsunami damage, Journal of Disaster Research, 4(6), 479–488, doi:10.20965/jdr.2009.p0479, 2009b.

Kotani, M.: Tsunami run-up simulation and damage estimation using GIS, Pacific Coast Engineering, Japan Society of Civil Engineers (JSCE), 45, 356–360, 1998.

Mas, E., Paulik, R., Pakoksung, K., Adriano, B., Moya, L., Suppasri, A., Muhari, A., Khomarudin, R., Yokoya, N., Matsuoka, M. and Koshimura, S.: Characteristics of tsunami fragility functions developed using different sources of damage data from the 2018 Sulawesi earthquake and tsunami, Pure and Applied Geophysics, 177(6), 2437–2455, doi:10.1007/s00024-020-02501-4, 2020.

Omira, R. and Ramalho, I.: Evidence-calibrated numerical model of December 22, 2018, Anak Krakatau flank collapse and tsunami, Pure and Applied Geophysics, 177(7), 3059–3071, doi:10.1007/s00024-020-02532-x, 2020.

Pakoksung, K., Suppasri, A., Imamura, F., Athanasius, C., Omang, A. and Muhari, A.: Simulation of the submarine landslide tsunami on 28 September 2018 in Palu Bay, Sulawesi Island, Indonesia, using a two-layer model, Pure and Applied Geophysics, 176(8), 3323–3350, doi:10.1007/s00024-019-02235-y, 2019.

Paris, A., Heinrich, P., Paris, R. and Abadie, S.: The December 22, 2018 Anak Krakatau, Indonesia, landslide and tsunami: preliminary modeling results, Pure and Applied Geophysics, 177(2), 571–590, doi:10.1007/s00024-019-02394-y, 2020.

Paulik, R., Gusman, A., Williams, J. H., Pratama, G. M., Lin, S., Prawirabhakti, A., Sulendra, K., Zachari, M. Y., Fortuna, Z. E. D., Layuk, N. B. P. and Suwarni, N. W. I.: Tsunami hazard and built environment damage observations from Palu City after the September 28 2018 Sulawesi earthquake and tsunami, Pure and Applied Geophysics, 176(8), 3305–3321, doi:10.1007/s00024-019-02254-9, 2019.

Prasetya, G., Borrero, J., de Lange, W., Black, K. and Healy, T.: Modeling of inundation dynamics on Banda Aceh, Indonesia during the great Sumatra tsunamis December 26, 2004, Natural Hazards, 58(3), 1029–1055, doi:10.1007/s11069-010-9710-7, 2011.

Puspito, N. T. and Gunawan, I.: Tsunami sources in the sumatra region, Indonesia and simulation of the 26 December 2004 Aceh tsunami, ISET Journal of Earthquake Technology, 42, 4, 2005.

De Risi, R., Goda, K., Yasuda, T. and Mori, N.: Is flow velocity important in tsunami empirical fragility modeling?, Earth-Science Reviews, 166, 64–82, doi:10.1016/j.earscirev.2016.12.015, 2017.

Sassa, S. and Takagawa, T.: Liquefied gravity flow-induced tsunami: first evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters, Landslides, 16(1), 195–200, doi:10.1007/s10346-018-1114-x, 2019.

Supendi, P., Nugraha, A. D., Widiyantoro, S., Abdullah, C. I., Puspito, N. T., Palgunadi, K. H., Daryono, D. and Wiyono, S. H.: Hypocenter relocation of the aftershocks of the Mw 7.5 Palu earthquake (September 28, 2018) and swarm earthquakes of Mamasa, Sulawesi, Indonesia, using the BMKG network data, Geoscience Letters, 6(1), 1–11, doi:10.1186/s40562-019-0148-9, 2019.

Tsuji, Y., Namegaya, Y., Matsumoto, H., Iwasaki, S.-I., Kanbua, W. and Sriwichai, Mongkonkorn Meesuk, V.: The 2004 Indian tsunami in Thailand: surveyed runup heights and tide gauge records, Earth, planets and space, 58(2), 223-232, 2006.

Ulrich, T., Vater, S., Madden, E. H., Behrens, J., van Dinther, Y., van Zelst, I., Fielding, E. J., Liang, C. and Gabriel, A. A.: Coupled, physics-based modeling reveals earthquake displacements are critical to the 2018 Palu, Sulawesi tsunami, Pure and Applied Geophysics, 176(10), 4069–4109, doi:10.1007/s00024-019-02290-5, 2019.

Watkinson, I. M. and Hall, R.: Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides, Nature Geoscience, 12(11), 940–945, doi:10.1038/s41561-019-0448-x, 2019.

Williams, R., Rowley, P. and Garthwaite, M. C.: Reconstructing the Anak Krakatau flank collapse that caused the December 2018 Indonesian tsunami, Geology, 47(10), 973–976, doi:10.1130/G46517.1, 2019.