Dear Referee 1,

We would like to thank you for the time spent on our manuscript. We are very pleased that you highly evaluated our work. We highly appreciate your constructive comments and suggestions. You also pointed out the clarifications required to improve the original manuscript. We modified the manuscript according to your recommendations. Please find our answers and corrections below (all changes are highlighted in red in the manuscript).

Major comments

Reviewer comments	Our answers	Corrected manuscript
In Section 3.1.1, the two-layer model	The flux Q1 is water while the flux	Line 167: ρ_1 and ρ_2 are the densities of
is explained. Can the authors explain	Q2 is granular material (soil). We	the seawater and the landslide. The fifth
more on how physically the layer 1	added more explanations and Fig.	term of the momentum equations (Eqs.
and layer 2 interact? From the	A1 to better understand the meaning	2, 3, 5, 6) represents the interaction
equations, the interacting aspects of	of each term.	between the two layers. The tsunami
the two layers are expressed in terms		model
of the water level gradients Z1 and Z2.		
So the flux Q1 in layer 1 is fluid, while		Line 170:, respectively (Fig. A1 -
the flux Q2 in layer 2 is soil mass? A		Appendix A)
figure would be useful addition for		
this section.		Please, see Fig. A1 below (Appendix
		A).
Equation (7): please specify the units.	We thank the reviewer for pointing	<u>Line 189:</u> n_o corresponds to the
	this out. We added the units as well	Manning's roughness coefficient ($n_o =$
	as more explanations.	0.025 s.m ^{-1/3}), C_D represents the drag
		coefficient ($C_D = 1.5$ (Federal
		Emergency Management Agency
		(FEMA), 2003)) and the constant d
		signifies the horizontal scale of
		buildings (~15 m). θ is the building
		occupation ratio in percent $(0-100\%)$ for
		each computational cell of 20 x 20 m^2
		and $1 \times 1 \text{ m}^2$ resolutions for Sunda Strait
		and Palu areas, respectively. θ is
		obtained by computing the building area
		over each pixel using GIS data. The
		computational cell corresponding to buildings can be inundated by the n
		Manning coefficient through the term D ,
		which represents the simulated flow
		depth (m). In the urban areas of Sunda
		Strait and Palu, the average occupation
		ratios are 24 % and 84 % respectively
		(Fig. 2b,d). In non-residential area, we
		set the Manning's roughness
		coefficients inland and on the seafloor to
		0.03 and 0.025 respectively, which are
		typical values for vegetated and shallow
		water areas (Kotani, 1998).
Figure 2 and Section 3.1.2: It is not	The computational cell	Line 193:using GIS data. The
clear how the computational cells that	corresponding to buildings can be	computational cell corresponding to
correspond to buildings (Figure 2d)	inundated by the n Manning	buildings can be inundated by the n
can be inundated or not in tsunami	coefficient through the last term of	Manning coefficient through the term D,
simulation.	Eq (7): D, which represents the	which represents the simulated flow
	simulated flow depth (m).	depth (m). In the urban
In Section 3.2: could you comment on	Corrected.	Line 180: BATNAS and DEMNAS,
the vertical accuracies of the		Indonesia, provided the bathymetric and
DEM/DSM used for the		topographic data with 180 and 8 m-

investigations? How were they		resolutions respectively. The data was
Throughout the investigations, were they derived? I would guess local LiDAR data? Throughout the investigations, were the tidal effects taken into account? For the 2018 Palu earthquake, the tidal levels have important contributions (e.g. Goda et al., 2019). In Section 3.2.3, how credible the landslide source model for the Palu event? For example, a detailed seismic source model can explain the majority portion of the observed tsunami in Palu Bay (e.g. Ulrich et al., 2019). How were the effects due to the coseismic deformation and tidal level considered (e.g. Goda et al., 2019)? In light of the missing elements in the tsunami source model, the landslide source model may be considered to be biased. I think this discussion is important for the NHESS journal audience This is a comment: the scatter plot shown in Figure 9 is not well correlated (i.e. simulation vs observation), which may be due to mis-specified tsunami source.	We agreed with the reviewer. The tsunami inundation model is now part of the discussion (Section 6.1). Contrary to Sunda, we took into account tidal effects in Palu. As mentioned by Pakoksung et al. (2019), TUNAMI-N2 does not reproduce the effect of seismic deformation. So, we considered that the 2018 Palu tsunami was triggered by subaerial/submarine landslides only (TUNAMI two-layer model). Furthermore, some observed and simulated flow depths are very different in Palu. To tackle this issue, we decided to set a confidence interval of 1 m to develop accurate curves. The observed and simulated curves based on the flow depth are relatively similar, so it shows the consistency of the 1-m confidence	resolutions, respectively. The data was established from SAR images (http://tides.big.go.id/DEMNAS/index. html). Both datasets were resampled to three computational domains with a grid size of 20-m resolution (Fig. 2a,b). In Palu-City, the bathymetric and topographic data with 1-m resolution were obtained through Lidar images and supplied by the Agency for Geo-spatial Information (BIG), Indonesia (Fig. 2b,c). For tsunami inundation Line 211: To correct the Digital Surface Model (DSM), we removed the vegetation, buildings and infrastructures elevations based on the linear smoothing method and used the resulting Digital Elevation Model (1 st DEM) as topography in the tsunami inundation model (Fig. 3). The vertical accuracy of the DSM/DEM is about 4 m. The 2018 Sunda Strait Line 233: We increased the mean sea level (MSL) by 2.3 m to reproduce the high tide during the 2018 Palu tsunami. As shown by Pakoksung et al. (2019), the observed waveform at Pantoloan tidal gauge does not fit the simulated one with the Finite Fault Model of TUNAMI-N2. Although recent studies show that seismic seafloor deformation may be the primary cause of the tsunami (Gusman et al., 2019; Ulrich et al., 2019), in this study, the main assumption is that the 2018 Sulawesi- Palu was triggered by subaerial/submarine landslides. According to Heidarzadeh et al. (2018), a large landslide to the north or the south of Pantoloan tidal gauge is responsible for the significant height wave recorded. Arikawa et al. (2018) also identified several sites of potential subsidence in the northern part of Palu-Bay. Based on these previous studies, we assume two large landslides: L1 and L2. Small landslides (S1-S12) also occurred in the bay: their location stands on
important for the NHESS journal audience This is a comment: the scatter plot shown in Figure 9 is not well correlated (i.e. simulation vs observation), which may be due to	observed and simulated curves based on the flow depth are relatively similar, so it shows the consistency of the 1-m confidence	for the significant height wave recorded. Arikawa et al. (2018) also identified several sites of potential subsidence in the northern part of Palu-Bay. Based on these previous studies, we assume two large landslides: L1 and L2. Small

		Please, see the added Section 6.1.
Also note that 'Figure 9' is misspelled.	Thank you very much. We corrected it.	Figure 9. Comparison between observed and simulated flow depths at damaged building for a S8 ratio of 1.2; a confidence interval is set at 1-m flow depth.
Page 13: Can other link functions other than probit be used?	We thank the reviewer for this request. We decided to include the sensitivity analysis of the statistical model based on the link function. Following the GEM guidelines, we considered overall three functions: the probit, logit and cloglog. Overall, the choice of link function does not change the discussion. It was found that the probit function fits the Sunda data best. The logit function fits the Palu and Thailand data best. The change in the link function does not notably change the shape of the fragility curves.	Please, see the revised Sections 4.1 and 4.2, and the updates in Appendix C and Appendix D.
Figure 10 (and other figures as well): Can the data also be displayed? Can the authors clarify the confidence interval indicates the confidence interval of the regression line or the prediction interval of the prediction model? I think by including the data points in Figure 10, this becomes obvious. I think this clarification is important because the number of data is small.	We thank the reviewer for this comment. Figures 10-12, which we believe the reviewer refers to, are part of the exploratory analysis. The sole aim is to show trends in the data which will be useful to construct the statistical model in the following section. All we need to see is whether the intercept and/or the slope of a best estimate curve changes for different variables. For this reason, we use the inverse of the cumulative standard normal distribution in the y axis and the natural logarithm of the tsunami intensity in the x axis. To present the data points will mean to estimate the inverse standard normal cumulative distribution function of the probability that a given building will experience a given damage state or above. For our case, we have building-by-building damage data therefore this probability (e.g., $P(DS \ge ds_I Flow depth))$ is either 0 or 1 for which the inverse of the standard normal cumulative distribution function is not defined. For this reason, we did not present the data points. Instead, we updated the text to avoid confusion.	Line 319: curves. The confidence in the exact shape of the mean curves is estimated and presented in terms of the 90 % confidence intervals around the best-estimate curves.
Section 5, Line 430: I do not understand the intention of showing the tsunami fragility models based on simulated intensity values? When the tsunami simulations are calibrated	We understand the point of view of the reviewer. We highlighted the benefits of the simulated fragility curves in the abstract and the introduction. The main reason is	Please, see the revised abstract and the last paragraph of the introduction.

reasonably well with the observations, using the same damage data, the fitted fragility models are expected to be similar (as demonstrated in Figure 13). But I do not see the benefit of using the simulated tsunami intensity values unless the authors use the damage data where the observations are not available and thus the tsunami intensity values need to be estimated. But this work does not investigate this aspect. Altogether the simulated cases can be removed. Figure 13: as discussed by the authors, the fragility functions based on flow velocity and (probably) hydrodynamic force do not show realistic features and thus not really useful. It may be useful to show such results for one case but for other cases, they are not really useful, especially for flow velocity. My concern is that careless readers may attempt to use such models as black box models.	that 2018 Sunda Strait and Sulawesi-Palu tsunamis are uncommon events still poorly understood compared to the 2004 IOT. The flow depth is the only tsunami intensity measure recorded during the field surveys. So, to improve our understanding of the structural damage caused by the Sunda Strait and Sulawesi-Palu tsunamis and to discuss the impact of wave period, ground shaking and liquefaction events, we reproduce their tsunami intensity measures (i.e., flow depth, flow velocity and hydrodynamic force). Moreover, this is the first attempt to develop fragility curves as functions of the flow depth, the flow velocity and the hydrodynamic force for the 2018 Sunda Strait and 2018 Palu tsunamis based on TUNAMI two- layer model. We thank and agreed with the reviewer. In the discussion, we discussed whether the tsunami intensity measures are efficient predictors of damage (Section 6.1). The flow velocity and the hydrodynamic force (please, see the drag force formula) are not providing a good description of the tsunami damage, compared to the flow depth. This is a valid contribution to the field. Therefore, the 2 nd part of the discussion (Section 6.2) is based on the curves function of the flow depth only. Careful readers should rather use fragility curves based on	Line 172: during the tsunami inundation. The hydrodynamic force acting on buildings and infrastructure is defined as the drag force per unit width of the structure (Koshimura et al., 2009). $F = \frac{1}{2}C_D\rho u^2 D$ C_D represents the drag coefficient ($C_D =$ 1.0), ρ is the water density ($\rho =$ 1000 kg/m ³), u stands for the current velocity (m/s), and D is the inundation depth (m). Please, see the added Section 6.1 and the revised Section 6.2.
Figure 14: why the data are only shown for x values greater than 1?	quality. We thank the reviewer for pointing this out. It does not mean that there	<u>Line 469:</u> DB_Sunda2018'. In Fig. 14a,b, there is no data to predict the
Shown for x values greater than 12 Should they start with the theoretical constraints that zero fragility for zero hazard values? My concern is again that careless users may take such unrealistic models as they are.	is no potential damage between 0-1 m flow depths or 0-1 m/s flow velocity. The reason is that we do not have data to predict the shape of the curves.	shape of the curves between 0-1 m and 0-1 m/s. The curves
Figure 15: I understand that the results are based on statistical fitting but these curves do not look realistic. Are they reliable? I think the reliability of the curves should be a part of the discussion (beyond the statistical confidence level etc). Can one use these functions reliably? Figure 16: From my perspectives, the	We agreed with the reviewer. The reliability of the curves is discussed in Section 6.1. Compared to the flow depth, the flow velocity and the hydrodynamic force are not good predictors of damage. For this reason, we are not discussing the building damage probability based on these tsunami intensity measures	Please, see the added Section 6.1.

|--|

• Minor comments

Reviewer comments	Our answers	Corrected manuscript
Page 1, Line 18: cumulative distribution functions -> delete cumulative distribution. Strictly speaking, the fragility function is not the cumulative distribution function and this expression is confusing. I would suggest deleting 'cumulative distribution'. There are a few places that have the same expression.	We are very sorry for this confusing expression and we corrected it.	These cumulative distribution functions express the likelihood of a structure reaching or exceeding a damage state in response to a tsunami hazard intensity measure.
Page 1, Line 28: 'liquefaction events: : 'The majority of the damage and loss during the Palu earthquake was due to slope failures (which involve liquefaction as physical failure mechanism). It is not clear (especially in the abstract), this 'liquefaction' refers to the slope failure cases (e.g. Petobo) or the flat coastal area along Palu Bay. Given the nature of this event, it would be	We are very sorry and cleared this part. Here, we mentioned liquefaction events related to ground failures in the waterfront of Palu- City. We also made the distinction with the slope failure cases observed inland in Section 6.2 (e.g., Petobo, Jono and Balaroa).	Abstract: Similar to the Banda Aceh case, the Sulawesi-Palu tsunami load may not be the only cause of structural destruction. The buildings susceptibility to tsunami damage in the waterfront of Palu-City could have been enhanced by liquefaction events triggered by the 2018 Sulawesi earthquake.
better to rewrite this sentence to be more specific which area/incidences the authors are referring to.		<u>Conclusion:</u> The Sulawesi-Palu tsunami is a complex event as it may not be the only cause of structural destruction. The 2018 Sulawesi earthquake caused minor damage to buildings and most importantly could have triggered liquefaction events in the waterfront of Palu-City (e.g., coastal retreats) increasing the building susceptibility to tsunami damage.
Page 1, Line 38: vertical -> vertical and horizontal.		causing horizontal and vertical movement of the ocean floor
Page 1, Line 41: period -> periods.	Corrected	longer wave periods attacking the coast
Page 2, Line 44: were -> was.	Corrected	strong ground shaking was reported
Page 2, Line 49: few -> a few.	Corrected	After a few months
Page 2, Line 50: delete finally.	Corrected	the Anak Krakatau Volcano finally erupted
Page 2, Line 60: reported to -> reported at.	Corrected	the wave height reported at the Pantoloan tidal gauge
Page 2, Line 60: what is 'largely exceeded'? The meaning is not clear.	Corrected	The fault mechanism did not suggest that the tsunami would be so destructive. The wave reached rapidly Palu (~8 min), implying that its source was inside or near the bay

		(Muhari et al., 2018; Omira et al., 2019). Its short wave
Page 2, Line 62: assumption ->	Corrected	the main hypothesis is that
hypothesis (I think hypothesis is		
more appropriate).	Composted	The terms "term and for allity" is a new
Page 2, Line 68: The sentence 'Koshimura et al. : : : ' reads strangely	Corrected	The term "tsunami fragility" is a new measure to estimate structural
in a sense that the tsunami fragility		damage and casualties caused by a
concept existed before this work. I		tsunami, as mentioned by Koshimura
agree that the work by Koshimura et		et al., 2009b.
al. was very influential.		
Page 2, Line 69: delete 'cumulative	Corrected	Tsunami fragility curves are
distribution'.		eumulative distribution functions expressing
Page 3, Line 86: treated -> analyzed.	Corrected	are analysed separately
Page 3, Line 93: exposed ->	Corrected	are investigated.
investigated.		
Page 5, first line: are -> is.	Corrected	is ignored
Page 14, Line 284: appear -> appears.	Corrected	as the two curves appears to
Page 19, Line 384: depicted -> listed	Corrected	are listed in
or summarized.		
Page 20, Line 398: identical curves -	Corrected	identical slopes
> identical slopes?		

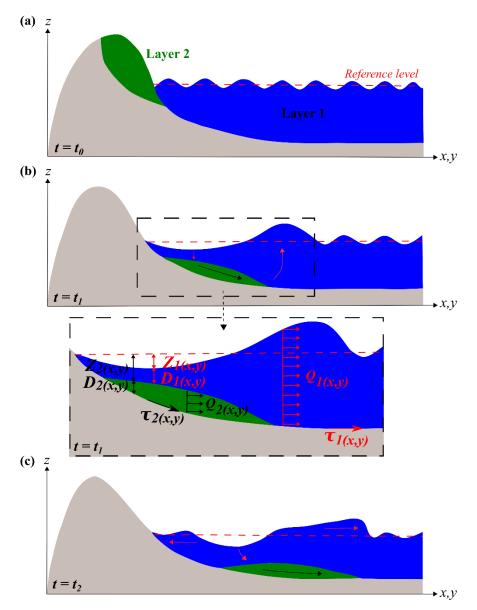


Figure A1. Two-layer modelling of a subaerial/submarine landslide (from the original sketch of Pakoksung et al., 2019), (a) pre-failure, (b) generation of negative and positive waves due to the landslide and (c) landslide in progress and wave propagation.

References:

Arikawa, T., Muhari, A., Okumura, Y., Dohi, Y., Afriyanto, B., Sujatmiko, K. A. and Imamura, F.: Coastal subsidence induced several tsunamis during the 2018 Sulawesi earthquake, Journal of Disaster Research, 13, 1–3, doi:10.20965/jdr.2018.sc20181204, 2018.

Carvajal, M., Araya- Cornejo, C., Sepúlveda, I., Melnick, D. and Haase, J. S.: Nearly instantaneous tsunamis following the Mw 7.5 2018 Palu earthquake, Geophysical Research Letters, 46(10), 5117–5126, doi:10.1029/2019GL082578, 2019.

Federal Emergency Management Agency (FEMA): Coastal construction manual, FEMA 55, Third Edition (FEMA 55), 296p., 2003.

Gusman, A. R., Supendi, P., Nugraha, A. D., Power, W., Latief, H., Sunendar, H., Widiyantoro, S., Wiyono, S. H., Hakim, A. and Muhari, A.: Source model for the tsunami inside palu bay following the 2018 palu earthquake, Indonesia, Geophysical Research Letters, 46(15), 8721–8730, doi:10.1029/2019gl082717, 2019.

Heidarzadeh, M., Muhari, A. and Wijanarto, A. B.: Insights on the source of the 28 September 2018 Sulawesi tsunami,

Indonesia based on spectral analyses and numerical simulations, Pure and Applied Geophysics, 176(1), 25–43, doi:10.1007/s00024-018-2065-9, 2018.

Koshimura, S., Namegaya, Y. and Yanagisawa, H.: Tsunami fragility - A new measure to identify tsunami damage, Journal of Disaster Research, 4(6), 479–488, doi:10.20965/jdr.2009.p0479, 2009.

Kotani, M.: Tsunami run-up simulation and damage estimation using GIS, Pacific Coast Engineering, Japan Society of Civil Engineers (JSCE), 45, 356–360, 1998.

Muhari, A., Imamura, F., Arikawa, T., Hakim, A. R. and Afriyanto, B.: Solving the puzzle of the September 2018 Palu, Indonesia, tsunami mystery: clues from the tsunami waveform and the initial field survey data, Journal of Disaster Research, 13(Scientific Communication), sc20181108, doi:10.20965/jdr.2018.sc20181108, 2018.

Omira, R., Dogan, G. G., Hidayat, R., Husrin, S., Prasetya, G., Annunziato, A., Proietti, C., Probst, P., Paparo, M. A., Wronna, M., Zaytsev, A., Pronin, P., Giniyatullin, A., Putra, P. S., Hartanto, D., Ginanjar, G., Kongko, W., Pelinovsky, E. and Yalciner, A. C.: The September 28th, 2018, tsunami in Palu-Sulawesi, Indonesia: a post-event field survey, Pure and Applied Geophysics, 176(4), 1379–1395, doi:10.1007/s00024-019-02145-z, 2019.

Pakoksung, K., Suppasri, A., Imamura, F., Athanasius, C., Omang, A. and Muhari, A.: Simulation of the submarine landslide tsunami on 28 September 2018 in Palu Bay, Sulawesi Island, Indonesia, using a two-layer model, Pure and Applied Geophysics, 176(8), 3323–3350, doi:10.1007/s00024-019-02235-y, 2019.

Ulrich, T., Vater, S., Madden, E. H., Behrens, J., van Dinther, Y., van Zelst, I., Fielding, E. J., Liang, C. and Gabriel, A. A.: Coupled, physics-based modeling reveals earthquake displacements are critical to the 2018 Palu, Sulawesi tsunami, Pure and Applied Geophysics, 176(10), 4069–4109, doi:10.1007/s00024-019-02290-5, 2019.