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Abstract. Floods are the most common and damaging natural disaster in Bangladesh, and the effects of floods on public health
have increased significantly in recent decades, particularly among lower socio-economic populations. Assessments of social
vulnerability on flood-induced health outcomes typically focus on local to regional scales; a notable gap remains in comprehen-
sive, large-scale assessments that may foster disaster management practices. In this study, socio-economic, health, and coping
capacity vulnerability and composite social-health vulnerability are assessed using both equal-weight and principal component
approaches using 26 indicators across Bangladesh. Results indicate that vulnerable zones exist in the northwest riverine areas,
northeast floodplains, and southwest region, potentially affecting 42 million people (26% of total population). Subsequently,
the vulnerability measures are linked to flood forecast and satellite inundation information to evaluate their potential for pre-
dicting actual flood impact indices (distress, damage, disruption, and health) based on the immense August 2017 flood event.
Overall, the forecast-based equally weighted vulnerability measures perform best. Specifically, socio-economic and coping
capacity vulnerability measures strongly align with the distress, disruption, and health impacts records observed. Addition-
ally, the forecast-based composite social-health vulnerability index also correlates well with the impact indices, illustrating its
utility in identifying predominantly vulnerable regions. These findings suggest the benefits and practicality of this approach
to assess both thematic and comprehensive spatial vulnerabilities, with potential to support targeted and coordinated public

disaster management and health practices.

1 Introduction

Flood-induced mortality, one of the most telling statistics of flood impacts, has been studied extensively in conjunction with
environmental and socio-economic factors. For example, Kundzewicz and Takeuchi (1999) demonstrate the relationship be-
tween economic losses per death and overall national wealth for the most severe flood events of the 1990s. Kundzewicz and
Kundzewicz (2005) also emphasize that flood-related mortality is indirectly related to wealth level and instead is more directly
related to social and health factors and perceptions of flood risk, based on information from flood victims in Poland in 1997.
According to Jonkman and Vrijling (2008), the primary causes of flood-related mortality are a lack of warning, inability to

reach shelter, building collapse, flood level and velocity, and impacts on children and elderly. Doocy et al. (2013) review global
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flood fatality data during 1980-2009 and related articles, concluding that socio-demographic factors such as population growth,
urbanization, land use change, disaster warning systems, and response capacity all contribute to flood mortality.

Public health outcomes stemming from flood events are typically acute and severe, particularly in developing or tropical
regions, potentially including death and injury, contaminated drinking water, endemic and infectious diseases, and community
disruption and displacement. Although the impacts of floods on public health have been investigated (Ahern et al., 2005;
Alderman et al., 2012; Batterman et al., 2009; Du et al., 2010; Tapsell et al., 2002), integrated management of flood and health
risks is technically and institutionally limited.

Unsurprisingly, public health research on the impacts of natural disasters predominantly focuses on clinical, microbiological,
and ecological aspects, including vaccines, therapy, and improved treatment (Colston et al., 2020; Schwartz et al., 2006).
Development of flood prediction and disaster management has principally targeted advancing climate and hydrologic aspects,
with much less focus on considerations of health vulnerability, community risk, and early warning systems, particularly in
developing countries (Kovats et al., 2003). This often results in under-prediction of event outcomes on marginalized and
susceptible communities (WHO, 2013). Only recently has the global community started calling for multi-sectoral disaster
forecast and warning systems to support integrated disaster management (UNISDR, 2015), including novel indicators of public
health risk and vulnerability. In addition to prioritizing forecast-informed health risks, identifying vulnerable regions and
populations to establish targeted and coordinated public health practices is critical (Akanda et al., 2011).

In Bangladesh, floods are the most significant and damaging natural disaster. A vast majority (75%) of the country is within
10 meters above mean sea level, and an even higher fraction of landmass (80%) is classified as floodplain (BBS, 2018).
Approximately 78% of Bangladesh’s total population, mostly rural and poor, live in floodplain regions (BBS, 2016). On
average, 18% of the country is inundated in any given year. Catastrophic events have occurred most recently in 1988, 1998,
2007 and 2017, affecting 60% of the nation for nearly 3 months and causing erosion, landlessness, mortality, environmental
refugees, destruction of property and crop lands, and disruption of communication and health systems (BBS, 2018; CEGIS,
2003). In addition, these floods have led to outbreaks of water-borne disease and epidemics as a result of contaminated drinking
water. The effects of floods on diarrheal diseases have been a major public health concern, as diarrheal disease is one of the
leading causes of morbidity and mortality, particularly among people with low socio-economic status and poor sanitation
(Alderman et al., 2012; Kosek et al., 2003); risks have significantly increased in recent decades (Hashizume et al., 2008).
These conditions, when combined with social inequity, low literacy rates, deprivation, and insufficient institutional capacity,
can lead to precarious situations (Mazumder et al., 2015; Shahid, 2010; Mani and Limin Wang, 2014).

In this regard, a number of studies investigate health vulnerability to floods based on demographic and socio-economic
factors in Bangladesh. Kunii et al. (2002), for example, associate the impacts of the 1998 Bangladesh flood on community
health, such as fever, diarrhea, and respiratory problems, with socioeconomic status, water handling, and household sanitation.
Hashizume et al. (2008) examine flood-related diarrheal incidents during the 1998 flood in Dhaka and discover substantially
higher flood-related cases in the post-flood period for populations with low socio-economic status and weak sanitation and
hygiene facilities. Schwartz et al. (2006) analyze demographic and clinical data of patients with flood-related diarrhea in Dhaka

and find an increase in flood-related epidemics in populations with low socioeconomic status, inferior sanitation, dwellings in
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flood-prone areas, and minimal access to care. Shahid (2010) discusses direct and indirect impacts of climate change on public
health and highlights high poverty rates and limited access to sanitation facilities in Bangladesh as significantly impacting
diarrheal-related health problems. Nahar et al. (2014) note that women and poor populations in Bangladesh are especially
vulnerable to poor mental health status in the post-flood period.

While these studies illustrate the underlying relationships between demographic and socio-economic vulnerability factors
and flood-induced health risks at specific locations (e.g., Dhaka), there is no explicit link to disaster management practices
for more rural and poor regions. Presumably, if such vulnerability factors are aggregated and concurrently evaluated with
physical flood information to estimate at-risk populations, this collective information may be strategic for informing pre- and
post-flood disaster management plans. This motivates evaluation of combined socio-economic and health factors to develop
comprehensive and practical vulnerability metrics.

Thus, we develop a social-health vulnerability (SHV) index based on a variety of demographic, socio-economic, health, and
infrastructural indicators for all of Bangladesh to identify the most vulnerable regions, means for vulnerability/risk reduction,
and to enhance response capacity and efficiency for international and local disaster management agencies. We also examine
the predictability of flood impacts on livelihood, community, and health sectors by linking vulnerabilities to flood forecasts and
satellite inundation for the catastrophic 2017 Bangladesh flood event. While the emphasis here is on the impacts of flood on

social and health, multi-sectoral risk warning systems, coupled with vulnerability and risk characteristics, can be envisioned.

2 Data

In this study, as is generally adopted in the literature, an indicator represents an individual variable, an index represents a
composite vulnerability, and a score indicates the value of an indicator or index (Birkmann, 2006; Fekete, 2009). Here we
describe the data necessary to establish vulnerability indicators, including survey and census data, spatially explicit flood
forecasts, satellite inundation, and population data. Flood impact records for the 2017 August event from post-disaster reports

are also presented.
2.1 Survey, census, and population data

A large number of relevant data, resources, and documents are available across various governmental agencies, including the
Bangladesh Bureau of Statistics (BBS), Department of Disaster Management (DDM), and Directorate General of Health Ser-
vices (DGHS). These agencies typically report outcomes for administrative units defined as (large-to-small): division, district,
Upazila, and union.

A census is conducted in Bangladesh approximately every 10 years, with 2011 being the most recent. Upazila-scale popu-
lation, household census data, and various demographic and socio-economic records are available via the BBS (BBS, 2015).
This census data provides a significant proportion of the indicators of socio-economic vulnerability used in this study. Poverty
estimates (population below the upper poverty line) in 2010 measured by the World Bank and BBS in conjunction with World
Food Programme (WFP) are also obtained from the BBS.
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Information outlining comprehensive measures of coping capacity at local scales is often incomplete or not available. In
Bangladesh, the BBS conducts household surveys and quantifies disaster-related statistics for twelve main natural disasters
(BBS, 2016). From this report, we adopted district-level statistics to represent coping capacity and public health vulnerability
indicators for flood disasters. Examples include knowledge and perceptions of disasters (population assume that natural process
causes critical disasters), damages and losses, households receiving financial support, population lacking safe drinking water,
etc.

Additionally, health facility (e.g., location, capacity, etc.) and physician data are obtained from the Facility Registry (http:
/Mfacilityregistry.dghs.gov.bd) (last access: 30 April 2021) and the Health Dashboard (https://dghs.gov.bd/index.php/en/home)
(last access: 30 April 2021), respectively. From this data, the number of hospital beds and physicians are estimated to reflect
the capacity of health system and health workforce of each Upazila. The national average of hospital beds per 1,000 people
and physicians per 10,000 people in 2019 are measured as 0.6 (0.8 in 2015 by World Bank) and 0.58 (0.53 in 2017 by World
Bank), respectively.

For spatial population data, the WorldPop population per pixel data in 100m resolution is obtained and rescaled linearly with

a World Bank population record of 2017 (World Bank, 2018; Worldpop et al., 2018) (Figure S1).
2.2 Flood forecast, satellite inundation, and population data

In Bangladesh, the Flood Forecasting and Warning Centre (FFWC) provides flood forecasts and warning services country-
wide. FFWC’s flood forecasting system is based on the MIKE 11 model, a one-dimensional water modeling software for the
simulation of water levels and discharges in river networks and flood plains. Two-dimensional flood inundation (flood depth)
forecasts are created using Digital Elevation Models (DEM) at 300 m spatial resolution. The current early flood warning system
offers a 120 hour lead-time (FFWC, 2018). The FFWC acknowledges that flood forecasts may underestimate or overestimate
inundation depths and extent given the lack of model updates and coarse spatial resolution. These FFWC issued flood forecasts
are utilized for the August 2017 event (issued August 16th) evaluated here. These forecasts were verified by FFWC with
observed inundation maps from Sentinel-1 satellite images, illustrating good agreement in the northwestern and northeastern
regions (FFWC, 2018). We obtained the satellite inundation data for the August 2017 flood event generated using Sentinel-1
Synthetic Aperture Radar images (August 22nd, 24th, 27th, and 29th) from the International Centre for Integrated Mountain
Development (Uddin et al., 2019) (Figure 1).

2.3 Flood impact records

The Global Shelter Cluster has aggregated relevant post-disaster reports and data for the August 2017 flood event in Bangladesh
through government agencies and international relief organizations (https://www.sheltercluster.org/response/bangladesh-m
onsoon-floods-2017) (last access: 30 April 2021). Specifically, we leverage the 72-hour Rapid Assessment report published
August 21st, the flood damage data reported on September 3rd by the DDM and Natural Disaster Response Coordination
Group, and monthly hazard incident report from the Network for Information, Response and Preparedness Activities on Disas-

ter (NIRAPAD) (NIRAPAD, 2017b). The DGHS reported health outcomes from the August 2017 flood collected between July
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Figure 1. (Left) FFWC’s flood forecast issued on Aug-16, 2017 and (right) Sentinel-1 based satellite flood inundation for the August 2017

flood event. The borderline represents the boundary of divisions.

to September. From this, we extract the number of diarrheal incidents and other adverse health outcomes, including incidents

of respiratory tract infections (RTI), eye and skin diseases, snake bites, drowning, and other injuries.

3 Methods

Spatially explicit vulnerability and risk maps can support decision-makers by enhancing their ability to take appropriate actions.
However, vulnerability assessment is complicated by environmental, social, economic, and political patterns of societies. To
date, no standard model or methodology exists to guide spatial vulnerability assessments for natural disasters, although the
number of related studies is rapidly increasing (Villagrdan de Léon, 2008; Ward et al., 2020). In this study, we select socio-
economic, health, and coping capacity vulnerability domains consisting of 26 indicators based on the literature, availability
of data, and their vulnerability influences. The domain-level vulnerability (DV) index is estimated using two approaches of
vulnerability calculation, namely equal-weights and Principal Component Analysis (PCA); social-health vulnerability (SHV)

index is measured using equal weights. The flood forecast and satellite inundation information are applied to estimate affected
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Figure 2. Vulnerability and impact assessment framework.

population during the August 2017 flood event. Finally, vulnerability of the affected population is assessed and validated

against records of post-disaster flood impacts. The overall framework of this study is illustrated in Figure 2.
3.1 Social-health vulnerability assessment
3.1.1 Domain and Indicators selection

Previously, assessments of spatial vulnerability conditioned on socio-economic factors have been conducted for a number of
regions of Bangladesh (Ahsan and Warner, 2014; Dewan, 2013; Gain et al., 2015; Hoque et al., 2019; Rabby et al., 2019; Roy
and Blaschke, 2015) and more broadly for the entire country (DDM, 2017; Islam et al., 2013). Method of assessment, indicators,
study area, scale, and data are summarized in Table 1. These studies typically select vulnerability domains and indicators based
on the context of the target disaster and study area or from a pre-defined approach in the literature. In previous studies, the
domains include socio-economic, adaptive or coping capacity, and unique exposure or hazard domains, such as agricultural,
physical (climate, flood, or coastal hazard), and infrastructure. For vulnerability models, an addictive model (equal weights) or
analytic hierarchy process analysis (AHP) (custom weights from stakeholder engagement or expert opinion (Saaty and Vargas,
2012)) are most common. A PCA analysis (e.g. Cutter et al. (2003)), is also frequently employed to identify dominant spatial
patterns and to generate a composite vulnerability. The majority of studies adopt the equal weights approach such that each

domain contributes equally to the composite vulnerability index.
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In this study, the SHV index includes 26 indicators along with three indicator domains: socio-economic (15 indicators),
health (5 indicators), and coping capacity (6 indicators) domains. Some studies of vulnerability assessments to flood include
physical indicators (e.g., floodplain area, low elevation, proximity to river, etc.) in their composite vulnerability index to reflect
flood susceptibility or risk (Dewan, 2013; Islam et al., 2013; Roy and Blaschke, 2015; Hoque et al., 2019). In this study,
however, the SHV index precludes those physical indicators, as flood hazard information (i.e., flood inundation) will be linked
later through the impact assessment. Instead, we include a health domain uniquely reflecting flood-induced health risk that has
rarely been considered in previous studies (Ahsan and Warner, 2014; Gain et al., 2015; Rabby et al., 2019) (Table 1). Indicators
are selected on the basis of their relevance to each domain vulnerability and availability of data for the country at Upazila or
district level (Table 2).

The socio-economic domain broadly represents the potential impact of the hazard conditioned on the existing societal con-
text. Based on the literature review, we select 15 indicators relevant to demographic (3), built environment (5), social (4),
and economic (3) categories, drawing on the most recent population census data. Comparatively, the coping capacity domain
represents the ability to cope with or adapt to the hazard (Birkmann, 2005; Villagran de Léon, 2006).

In the literature, coping capacity indicators are surveyed for the local region, or proxy data from the census are used, such
as households with communication devices and vehicles, literacy rates, education levels, etc (Dewan, 2013; Roy and Blaschke,
2015). For this study, we apply 6 indicators specifically measured to represent the level of disaster resilience in each district
across Bangladesh, including: 1) percentage of households affected by floods, 2) percentage of children did not attend to
school due to disasters, 3) percentage of household have not taken disaster preparedness activities, 4) percentage of population
with knowledge and perception about disaster, 5) percentages of households received financial support from agencies, and 6)
ratios of total damage/loss to total income (Table 2). In Bangladesh, several studies and reports investigate appropriate health
indicators in the context of disaster management (DGHS, 2018; Schwartz et al., 2006; Shahid, 2010; WHO, 2013). However,
most indicators are either national or local scale, and thus not interpretable at a high resolution for the entire country. Here, we
include five indicators representing the health domain: 1) the proportion of population having suffered from diseases caused
by disasters, 2) the proportion of population having experienced diarrheal disease during disaster periods, 3) lack of drinking
water due to disasters, 4) the number of hospital beds, and 5) the number of physicians.

The Min-Max formula is applied to derive an indicator score of Upazila 7 as follows:

. T; — T

Indicator Score; = ———"" (D)
Tmaz — Tmin

where z; is the original value of the indicator, and x,,;, and x,,4, are the lowest and highest values of the indicator, respec-

tively. Indicator scores range from zero to one, with larger values representing an increase in vulnerability (Table 2). All data

is normalized to account for differences in magnitude of units.
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3.1.2 Vulnerability calculation

In this study, equal-weight and PCA approaches are proposed to calculate DV for the three domains (Table 2). The equal-
weight approach applies the addictive model with equal weights for all indicators in a domain as follows:

DV; = D=1 ISk

n

2

where DV; denotes the domain vulnerability index of Upazila 4, and I.5; . is kth indicator score of Upazila ¢ (here n indicates
the number of indicators in each domain shown in Table 2).

PCA is a common data-driven approach for construction of the Social Vulnerability Index proposed by Cutter et al. (2003).
Specifically, PCA reduces the number of indicators to a smaller number of components that account for a significant portion
of the variances of the indicators. Through grouping highly correlated and similar indicators, principal components (PC) are
formed. Here, varimax rotation is used to create more independence between PCs. Only PCs with eigenvalues > 1 are retained
in order to meet the Kaiser criterion (Kaiser, 1960). The domain vulnerability index for each Upazila is calculated by adding
the scores of all the retained PCs as follows:

DVSociofeconomici + DVHealthi + DVCoping capacity;
3

Thus, each domain vulnerability contributes equally to the SHV index value. SHV scores are classified into five categories

SHV, = 3)

based on their values: very-low vulnerability (0 to 0.2), low vulnerability (0.2 to 0.4), moderate vulnerability (0.4 to 0.6), high
vulnerability (0.6 to 0.8), and very-high vulnerability (0.8 to 1).

3.2 Impact assessment linking with flood forecast and satellite inundation information

Although social vulnerability is a complex function of social, economic, and cultural context, numerical vulnerability estimates
are often presented in terms of fatalities, economic losses, migration, etc. (Rufat et al., 2019; Villagran de Léon, 2006). One
can imagine that a region classified as highly vulnerable may experience severe impacts from a disaster, poor resilience, slow
recovery, or high rates of a particular action such as displacement or emergency shelter use (Fekete, 2009). However, validation
of social vulnerability is typically challenging due to limited availability and quality of data during/after the disaster period.
Moreover, given the compound characteristic of a composite vulnerability, a comparison of vulnerability with a particular
disaster outcome may be difficult to validate in a traditional sense (Rufat et al., 2019). That withstanding, the objective here
is to develop vulnerability measures for impact assessment, and specifically evaluate its utility for the August 2017 flood
by merging with physical flood hazard information (i.e., flood forecast and satellite inundation) in order to aid in pre- and
post-disaster management practices.

In 2017, after devastating floods in the pre-monsoon period (mid-April) and the monsoon period (early July), the second
monsoon rains began on August 11th, causing intense floods in 42% of the country, including 5 divisions and 32 districts in the
northern, northeastern and central parts of the country, affecting a total of more than 11 million people (Figure 1). According
to the Ministry of Disaster Management and Relief, this flood has been recorded as the worst in the last four decades (FFWC,
2018; NIRAPAD, 2017b).
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First, we estimate the affected population based on flood forecast and satellite inundation maps and spatial population data.
All spatial data is linearly downscaled to a 30m resolution. Flood forecasts are represented as flood depths. The affected
population is assumed to increase linearly from no impact at a flood depth of zero to maximum impact at a flood depth of
3 m. Satellite-based inundation conveys whether or not a grid (30m resolution) is flooded. For flooded grids, we assume the
full population of that grid is affected. We acknowledge that this may result in an overestimation of the affected population,
however explicit flood protection infrastructure data is not available widely. This approach does still capture spatial patterns of
affected population.

Post-disaster records were aggregated and reported at the district-level for the August 2017 flood event, therefore we calcu-
late the district-level domain vulnerability by taking the population-weighted average of Upazila-level domain vulnerabilities
as follows:

2.1 (POP; x DV;)
POP;

DV; = *)

where POP and DV are the affected population and domain vulnerability of Upazila ¢ and district j, respectively. Thus, the
district-level DV indicates the average vulnerability of the affected population in each district.

In lieu of evaluating and comparing vulnerability directly with all disaster outcomes, we group the disaster records into four
index types, including distress, damage, disruption, and health (Table 3), as utilized by local management agencies and defined
in post-disaster reports. Specifically, the distress index includes the percentage of the affected population and the number of
deaths, the damage index includes the number of damaged houses and crop land areas, the disruption index includes the number
of affected educational institutions and damaged tube-wells, and the health index includes the number of diarrheal and other
disease cases (e.g., injury, drowning, RTI, skin, snakebite, etc.) (Table 3).

The variables within each group are normalized and averaged to form a group impact score. Validation is carried out by

calculating correlations between developed vulnerability scores and group flood impact scores.

4 Results
4.1 Relationships between vulnerability indicators

To evaluate cross-correlations, selected indicators (Table 2) are compared at the Upazila or district levels (Figure 3). As neces-
sary, Upazila level indicators are upscaled to compare with district-level indicators using population or household weights.

In general, socio-economic domain indicators are positively correlated with each other. In particular, demographic and
built-environment indicators have a significantly positive correlation with most all socio-economic indicators. Within the
socio-economic domain, only the ratios of ethnic population and rented houses exhibit some negative correlation with other
socio-economic indicators. The socio-economic domain indicators show little correlations with district-level indicators in other
domains, which may be due to reduced variability through the upscaling process. In the health domain, the number of hospital
beds (number of physicians) show significantly positive (negative) correlations with most socio-economic indicators. How-

ever, the percentages of population who suffered from disease or experienced diarrhea from disaster are poorly correlated with
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Figure 3. Cross-correlation matrix of the selected indicators calculated at Upazila-level unless followed by an asterisk (district-level.) The

plus sign indicates a statistically significant correlation (p < 0.05).

other indicators. The coping capacity domain includes indicators that represent historic flood impacts, such as the number
of households affected by floods and the number of children not attending school due to disasters. These indicators present
positive correlations with indicators in the socio-economic domain, including the percentage of weak population, building ma-
terials, electricity, literacy, and education level, which may imply their root causes. The indicator for households with disaster

knowledge and perceptions does not correlate well with any other indicators due to its relatively low variability across districts.
4.2 Vulnerability assessment

Spatial representation of the DV index is determined using the equal weight and PCA approaches for each of the three domains:
socio-economic, health, and coping capacity (Figure 4). In the PCA analysis, 3 PCs are included in the socio-economic and
coping capacity domains, and 2 PCs are retained in the health domain per the eigenvalue criterion (Figure S2).

Both socio-economic DVs based on the two approaches clearly represent the expected demographic, social, and economic
characteristics of major cities, for example lower vulnerability (standard deviation (SD) < —1.0) near the country center

(Dhaka; capital city) and the southeast coast (Chittagong; the second largest city) and high vulnerability (SD > 1.0) in the

10
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Figure 4. The domain vulnerability index of (a and d) socio-economic, (b and e) health, and (c and f) coping capacity domains using the

equal weight (upper row) and PCA (bottom row) approaches. The unit is the standard deviation (SD) from the mean.

northeast floodplain and sparsely populated southeast region (Figure 4a and 4d.) While the equally weighted socio-economic
DV results in relatively high vulnerabilities in the northern and northwestern regions, the PCA-based socio-economic DV
exhibits medium vulnerabilities in these regions. Interestingly, the first PC of the socio-economic domain has a very similar
pattern with the equally weighted socio-economic DV (r = 0.87), which implies that the equally weighted socio-economic DV
reflects the pattern with the largest variance of the variables, however this is modulated by the other two PCs representing a
relatively lower vulnerability for these regions (Figure S2a). The PCA-based socio-economic DV also produces exceptionally
high vulnerabilities (SD > 1.5) in the southwestern coastal and southeastern mountain regions due to the second PC pattern
(Figures 4 and S2b).

11
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Figure 5. The SHV index score estimated by (a) the equal-weight and (b) PCA approaches.

The health DV exhibits very similar patterns between the two approaches (r = 0.91). Relatively high health DV are found
in the northeastern floodplains, northwestern riverine areas, and southeastern regions (Figures 4b and 4e). The coping capacity
DV also expresses very similar patterns between the two approaches (r = 0.84). The central and northern regions are highly
vulnerable, while the southern regions are relatively less vulnerable. The second PC of the coping capacity DV produces
the highest correlation (r = 0.58) with the equally weighted coping capacity DV (Figures 4c and S2g). Given equivalent
prioritization of all three domains, regions with relatively high vulnerability in all domains tend to have high SHV scores, such
as in the northeastern floodplains (Figure 5). The major difference between the two approaches appears in the northwestern
riverine regions; while the equal-weight approach indicates a relatively higher vulnerability (> 0.7), the PCA approach yields
moderate vulnerability ranging from 0.4 to 0.6 (Figure 5). As discussed above, this difference is mainly due to a relatively
lower socio-economic DV in the PCA approach (Figure 4d).

For both approaches, vulnerable zones (> 0.6) appear proximal to major rivers and tributaries from northwest to central
Bangladesh, and more broadly across low floodplains in the northeast (Haor basin; Figure 5). Although we did not include
any physical factors (e.g., proximity to river), this could imply that historical floods have led to the disruption and depreciation
of riverine communities. The identification of the Haor region as vulnerable provides confidence in the framework, although
not surprising, given that Haor is typically flooded for 7-8 months each year and generally has a low socio-economic status
(ACAPS, 2014; Start Network, 2018). High socio-economic, health, and coping capacity DVs (Figure 4) contribute to this
elevated vulnerability (SHV > 0.8) as measured across the region by both approaches. There are also highly vulnerable zones
around the southeastern border between Bangladesh and Myanmar, which are sparsely populated with high socio-economic
DVs (ACAPS, 2014) (Figure 4 and 5)
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Figure 6. Percentage of affected population from (a) flood forecast, (b) satellite inundation, and (c) post-disaster reports. The division codes

are Barisal (10), Chittagong (20), Dhaka (30), Khulna (40), Mymensingh (45), Rajshahi (50), Rangpur (55), and Sylhet (60).

Low (< 0.4) and very-low (< 0.2) SHV scores exist for densely populated areas, such as Dhaka, Chittagong, and south-
western regions (Khulna division) where socio-economic, health, and coping capacity DVs are typically low (Figure 4 and 5).
Southern coastal regions are often classified as vulnerable regions due to periodical coastal hazards and cyclones, however, both
approaches present very low coping capacity DVs (< —1.0) in these regions (Figure 4). This is because our coping capacity
indicators have included existing active disaster management practices and financial supports from agencies in those regions
that have resulted in low coping capacity DV and SHV scores.

On average, considering approaches, half of the country (45%) is classified as moderately vulnerable (0.4 < SHV < 0.6),
with the remaining 55% split between high vulnerability zones (SHV > 0.6), including 42 million people or 26% of the
population, and low vulnerability zones (SHV < 0.4), with 46 million people or 29% of the population. As proposed in the
framework (Figure 2), DV and SHV indices can also be merged with physical flood information to assess predictability of
flood impacts. However, identifying highly vulnerable zones based solely on indicators is also informative for government and

relief agencies to enhance the resilience of these regions through long-term management practices.
4.3 TImpact assessment

For the August 2017 event, flood forecast and satellite inundation estimates indicate that 16.8 (10.6%) and 15.3 (9.7%) million
people nationally were impacted from flood inundation, respectively. Post-disaster reports claim 9.2 million (5.8%) of the
population was impacted (Figure 6). This overestimation of the affected population is likely attributable to the simplified
approaches and a lack of data on flood management and properties. For example, the two approaches adopted here do not

consider the level of flood protection (e.g., embankment, levee, early warning, etc.) but rather assume that all regions have an
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Figure 7. Impact index maps of the August 2017 flood event for (a) distress, (b) damage, (c) disruption, and (d) health.

equivalent level of protection and management. Furthermore, the current flood forecasts and satellite inundation information
do not provide specific physical flood properties, such as duration of the flood, which is a key factor in increasing flood
impacts, as indicated in the post-flood reports. Geographical contexts may also contribute to this discrepancy. For example,
both forecasts and satellite information estimate a high number of affected people in the northeastern floodplain (i.e., Haor
region), whereas a relatively low percentage of affected population is reported (Figure 6). This region is known to be highly
vulnerable to flooding, but home styles and small households (lowest population density in Bangladesh) are well adapted
to regular monsoon floods (ACAPS, 2014). At the Upazila-scale (Figure S3) impacted population estimates from these two
sources differ. For example, relatively highly affected populations appear near major rivers based on the forecast, such as
the Jamuna (northwest) and Meghna (northeast) rivers, however the satellite information illustrates highly affected population
more broadly around riverine areas. Spatially, satellite-based estimates correlate better with the reported affected population
(r =0.6) than the forecast-based result (r = 0.1). Specifically, satellite inundation captures severely flooded regions in the
northwestern, as reported.

Four indices of flood impact records (distress, damage, disruption and health) are normalized and compared to the tai-
lored district level SHVs and DVs (Figures 7 and S4; Table 4). According to post-flood reports, the August 2017 event had a
significant impact on the northwestern regions (Rangpur, Rajshahi, and Mymensingh divisions). Generally, the equal-weight
approach produces higher correlations than the PCA approach (Figure S4). This is mainly attributable to the relatively low
socio-economic DV score in the PCA approach for the northwest region. The forecast and satellite-based DVs correlate simi-
larly with the four indices from the two approaches, although the forecast-based are marginally higher, and correlations with
equal weights are notably higher than for the PCA approach (Table 4). Again, the moderate vulnerability of the PCA approach

on the northwestern regions substantially depreciates its correlations with overall flood impact indices (Figures 5 and 7).
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Specifically, the forecast-based socio-economic DV spatially correlates well with the equal weights approach indices, statis-
tically significantly capturing distress (r = 0.38) and disruption (r = 0.3) impact indices. For the same comparison, the coping
capacity DV also produces statistically significant correlations with disruption (r = 0.34) and health ( = 0.31) impact indices.
Surprisingly, the health DV demonstrates a low correlation with the health impact index, which consists of diarrheal and other
disease incidents. Given that the causes of disease outbreaks are quite complex (e.g., current vaccines and medical status)
and often do not have a simple relationship with hazard (Shahid, 2010), this reiterates that considering a capability to pre-
pare/manage natural disasters may provide a better indication of the likelihood of flood-induced health impacts and epidemics
as discussed by previous studies (Hashizume et al., 2008; Kunii et al., 2002; Schwartz et al., 2006).

Overall, the forecast-based SHV index is statistically significantly correlated with all types of flood impact indices (Table

4). This could play a critical role in disaster management by indicating comprehensive impacts across multiple sectors.

5 Discussion

This study presents development of flood-induced social and health vulnerability measures and evaluates the predictability of
flood impacts by linking vulnerability measures to flood forecast and satellite inundation information. Vulnerability domains
and indicators are developed at the Upazila level for Bangladesh based on literature review, and three domain vulnerability
(DV) (socio-economic, health, and coping capacity) and a composite social-health vulnerability (SHV) indices are spatially
constructed using both equal weight and PCA approaches (Figure 4 and 5). The DV and SHV are scaled up to the district level
conditioned on affected population weights estimated from flood forecast and satellite inundation information. The predictabil-
ity of flood impacts is assessed by comparing the tailored vulnerability measures with observed flood impact indices (distress,
damage, disruption, and health) aggregated from post-disaster reports on the August 2017 flood. Such an evaluation has not
been previously undertaken.

The proposed approach shows promising results. First, we find highly (SHV > 0.6) and very-highly (SHV > 0.8) vul-
nerable zones near the northwest riverine areas, northeast floodplains, and southwest region covering 42 million people (26%
of total population); most indicators illustrate consistently high vulnerability levels (Figure 5). A spatial discrepancy in SHV
between the equal weight and PCA approaches in the northwest riverine regions is evident, however, mainly attributable to the
socio-economic DV.

The affected population by the August 2017 flood event is estimated using flood forecast and satellite inundation informa-
tion (Figure 6). Although both sources overestimate the affected population due to a lack of the information, such as flood
protection/management and duration of flood, the satellite-based information exhibits a fairly consistent spatial pattern with
the reported population (r = 0.6). Given that the socio-economic DV is strongly correlated with the distress impact index,
which includes the number of affected people and deaths (Table 4), the inclusion of a socio-economic DV to represent the
level of overall flood protection and management is warranted. For this analysis, the equal weight approach has a stronger rela-

tionship with flood impact indices than the PCA approach (Table 4). Specifically, the socio-economic DV reflects the distress
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impact, and the coping capacity DV captures disruption and health impacts. This suggests that thematic vulnerability can play
an important role in contextualizing flood impacts.

Although the health vulnerability measure consists of indicators related to previous disease incidents, lack of drinking water,
hospital capacity, and health workforce, it does not reflect well the observed health impact. However, the coping capacity DV
does, suggesting that low resilience and lack of recovery mechanisms may better represent the potential for flood-induced
disease outbreaks. Overall, the forecast-based SHV index exhibits a significant relationship with all flood impact indices,
demonstrating its usefulness in identifying vulnerable regions. Satellite-based vulnerability measures are also promising, which
may be especially useful for countries with limited capacity to build flood forecast systems. Whereas these tailored vulnerability
measures can support pre- and post-flood disaster management activities, the original vulnerability measures based solely on
the indicators (Figure 5) can support identification of areas requiring long-term investment and management plans to reduce
particular aspects of vulnerability. Additionally, given that current post-disaster reports include only disaster-related statistics at
the district level (BBS, 2016; NIRAPAD, 2017a), the Upazila-level vulnerability measures developed in this study can provide

more specific and useful information as thematic or comprehensive vulnerability and resiliency measures.

6 Conclusions

In this study, we assess three domain vulnerabilities and a composite social-health vulnerability for all of Bangladesh. Results
indicate that vulnerable zones exist in the northwest riverine areas, northeast floodplains, and southwest region, potentially
affecting 42 million people (26% of total population). Then, for the first time, we incorporate predictive information (flood
forecast and satellite inundation) into vulnerability and validate it with the recent catastrophic August 2017 flood event. Our
findings suggest that the both forecast and satellite-based vulnerabilities can better inform observed flood impacts.

Compared to conventional and existing approaches, the approach and vulnerability measures developed here have unique
advantages and contributions. First, our approach covers all of Bangladesh at a high resolution (Upazila). While local studies
provide more specific analyses (e.g., key vulnerability factors within a city), our scale and resolution can support national-
level assessment and management when massive monsoon floods affect most of the country. Second, given the lead-time of
flood forecasts, the predicted vulnerability can dynamically anticipate flood impacts and actively support pre- and post-disaster
management rather than being applied as static vulnerability data as conventional approaches provide. We also demonstrate,
through a validation, that the thematic (domain) vulnerability can better estimate a particular aspect of flood impacts. This can
potentially facilitate tailored management actions, such as prioritizing different resources (e.g., foods, cash, medical supplies,
volunteers, etc.), for the given location.

We note that the proposed framework has been validated with a single observed flood event, and additional validation using
more flood events is warranted. Furthermore, the validation process could be improved using up-to-date data, indicators, and
flood records across the country to enhance management practices. Specifically, more detailed post-disaster impact records
at the local level (e.g., Upazila scale) may improve future vulnerability and risk assessments and impacts prediction. Flood

forecasts have clear value, however producing local scale information may pose challenges in countries with limited resources;
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existing global scale forecasts may be able to fill this role and should be evaluated (Alfieri et al., 2013; Emerton et al., 2018).
Understanding the prospects for extending forecast lead-times is also warranted, and may facilitate more proactive disaster
management practices (Coughlan de Perez et al., 2015). Finally, integrating more physical flood information and models to
estimate the affected population may enhance flood impact predictions.

Although this study includes Bangladesh as a single case study country, the proposed approach may be transferable to
different countries where sufficient data are available. Specifically, given that this approach focuses on social and health vul-
nerability, the demographic and socio-economic components of vulnerability require at least sub-national level census data. In
addition, data on observed flood impacts (i.e., post-disaster reports) are required to validate this approach at other locations.
Integrating this approach systematically with a flood forecast system, such as a web-based online tool, may be of further value
to international and local disaster managers. Overall, this study provides groundwork for the development of a multi-sectoral
(flood and health) risk warning system. Actionable flood and health risk predictions can radically improve existing disaster
management practices of NGOs and other private and public organizations and save lives and resources by providing advanced

preparedness and response strategies.
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Table 3. Flood impact indices and variables considered for the August 2017 flood event.

Index Description Source
. Percentage of affected population NIRAPAD (2017a)
Distress
Number of deaths NIRAPAD (2017a)
Number of damaged houses NIRAPAD (2017a)
Damage
Areas of damaged cropland NIRAPAD (2017a)
Number of affected educational institutions NIRAPAD (2017a)
Disruption
Number of damaged tube-wells NIRAPAD (2017a)
Number of diarrhea cases DGHS (2020)
Health
Number of other health outcome cases (injury, drowning, RTI, skin and eye
DGHS (2020)
disease, and snake bite)

Table 4. Correlation between SHV and domain vulnerability and observed flood impact indices.

Equal weight PCA
Vulnerability type
Distress | Damage | Disruption | Health | Distress | Damage | Disruption | Health

SHV 0.28%* 0.28* 0.33%** 0.32% 0.01 0.01 0.1 0.13
Socio-econ 0.38%%#%* 0.2 0.3* 0.26 -0.1 -0.21 -0.09 0.06

Forecast-based
Health 0.07 0.15 0.11 0.14 0.04 0.11 0.07 0.03
Coping capacity 0.19 0.27 0.34%** 0.31% 0.06 0.08 0.21 0.19
SHV 0.26 0.27 0.32% 0.29* -0.05 -0.05 0.04 0.08
Socio-econ 0.35%** 0.17 0.26 0.17 -0.2 -0.3* -0.2 -0.06

Satellite-based
Health 0.06 0.14 0.1 0.14 0.02 0.09 0.05 0.03
Coping capacity 0.18 0.26 0.33%%* 0.29* 0.05 0.06 0.19 0.17

4% p < 0.01, ** p<0.05, * p<0.1
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