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Abstract. Model predictions of monetary losses from floods mainly use physical metrics like inundation depth or building

characteristics but largely ignore indicators of preparedness. The role of such predictors may vary between regions and events,

challenging the transferability of flood loss models. We use a flood loss database of 1812 German flood-affected households

to explore how Bayesian multilevel models can estimate normalised flood damage stratified by event, region, or flood process

type. Multilevel models acknowledge natural groups in the data and allow each group to learn from others. We obtain posterior5

estimates that differ between flood types, with credibly varying influences of water depth, contamination, duration, implemen-

tation of property-level precautionary measures, insurance, and previous flood experience; these influences overlap across most

events or regions, however. We infer that the underlying damaging processes of distinct flood types deserve further attention.

Each reported flood loss and affected region involved mixed flood types, likely explaining the uncertainty in the coefficients.

Our results emphasise the need to consider flood types as an important step towards applying flood loss models elsewhere. We10

argue that failing to do so may complicate reliable loss estimation from empirical data.

1 Introduction

The estimation of flood losses is a key requirement for assessing flood risk and for the evaluation of mitigation strategies like

the design of relief funds, structural protection, or insurance design. Yet loss estimation remains challenging, even for direct15

losses that can be more easily determined than indirect losses (Figueiredo et al., 2018; Vogel et al., 2018; Amadio et al., 2019;

Meyer et al., 2013). Numerous methods of inferring flood damage from field or survey data have been tested, if not validated,

with varying degrees of success (Gerl et al., 2016; Molinari et al., 2020).

Without standard loss documentation procedures in place, the highly variable losses caused by different flood types (e.g.

pluvial, fluvial, coastal) can make loss modelling particularly challenging, especially where data are limited or heterogeneous.20

This lack of detailed or structured data motivates most modelling studies concerned with flood loss to assign just a single type of

flooding to each event (Gerl et al., 2016). Another confounding issue is scale: inventories of flood damage are often aggregated

at administrative levels such as municipalities or states (Spekkers et al., 2014; Bernet et al., 2017; Gradeci et al., 2019). This

aggregation masks links between damage and exposure or vulnerability at the property scale (Meyer et al., 2013; Thieken
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et al., 2016). These unstructured or aggregated data make damage models prone to underfitting, whilst training models with25

numerous predictors may lead to overfitting, reducing the ability to generalise and transfer to situations where information

is unavailable (Meyer et al., 2013; Gelman et al., 2014; Gerl et al., 2016). Previous work has emphasised this challenge of

transferring models with respect to different flood types, events, or locations (Jongman et al., 2012; Cammerer et al., 2013;

Schröter et al., 2014; Figueiredo et al., 2018).

In this context, multilevel or hierarchic models offer a compromise between a single pooled model fitted to all data and many30

different models fitted to subsets of the data sharing a particular attribute or group. Bayesian multilevel models (BMMs) use

conditional probability as a basis for learning the model parameters from a weighted compromise between the likelihood of

the data being generated by the model and some prior knowledge of the model parameters. These models explicitly account

for uncertainty in data, low or imbalanced sample size, and variability of model parameters across different groups (Gelman

et al., 2014; McElreath, 2016).35

In this study we use the data from a joint effort that conducted surveys among households affected by large floods throughout

Germany to investigate various aspects of the flood damaging process more systematically. Beginning with the large central-

European floods of 2002, this database has more than 4000 entries from six different flood events (Thieken et al., 2017).

These data go beyond addressing physical inundation characteristics, and also include aspects of warning, preparedness and

precaution at the level of individual households. This gathering of socioeconomic information and building characteristics thus40

offers a broad view of the damaging process rarely found elsewhere (Thieken et al., 2017). This dataset also specifies the

flood types that affected the households in four categories: floods from levee breaches, riverine floods, surface water floods, or

rising groundwater floods. Multiple flood types were reported for the same event, even within the same city, thus giving rise

to compound events that can be defined as the synchronous or sequential occurrence of multiple hazards (Zscheischler et al.,

2020).45

Mohor et al. (2020) used this database to explore the most relevant factors for estimating relative loss of residential buildings

with a regression model. From a larger pool of candidate variables, the authors selected 13 predictors of the flood hazard,

building characteristics, and preparedness, including flood type as an indicator, and suggested that the influencing factors

contribute with different magnitudes across flood types. Vogel et al. (2018) trained Bayesian Networks and Markov Blankets

(MBs) for different flood events and types in Germany, obtaining varying compositions of meaningful predictors. Bayesian50

Networks focus on the dependence between variables and flow of information (Vogel et al., 2018), rather than the weight of

each factor into the final loss, which is the case of Bayesian Inference.

Here we expand on the model of Mohor et al. (2020) by acknowledging structure in the dataset and explore whether a single

regression model can apply to different regions or flood types. We estimate relative flood losses in Germany with a Bayesian

multilevel model featuring three different groups, i.e. (i) flood types, (ii) administrative regions, and (iii) individual flood55

events to learn which predictors might aid the transferability of loss models. We hypothesise that the effect of some predictors

varies with flood type, administrative region, or flood event. We use multilevel linear regression to explore these possible

differences. Judging from previous work, we expect differing socioeconomic conditions or preparedness across regions of
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Germany (Thieken et al., 2007; Kienzler et al., 2015), a gradual development of building standards and preparedness (Kienzler

et al., 2015; Vogel et al., 2018), and differing hazard characteristics and resistance across flood types (Mohor et al., 2020).60

2 Data and Methods

2.1 Data

The dataset comprises four surveys that were conducted via computer-aided telephone interviews (CATI; Thieken et al. (2017)).

The surveys had approximately 180 questions, with slight adaptations and improvements in clarity in each edition, and were

conducted after major floods that hit Germany in 2002, 2005, 2006, 2010, 2011, and 2013. These floods happened in different65

seasons and involved different weather conditions that led to varying flood dynamics, i.e. riverine floods, surface water floods,

rising groundwater floods, and levee breaches (Kienzler et al., 2015; Thieken et al., 2016). While the floods in 2002, 2005,

and 2010 evolved quickly, the floods in 2006, 2011 and 2013 were slow-onset events. In all cases, the eastern and the southern

parts of Germany were affected the most.

From this dataset, Mohor et al. (2020) identified thirteen predictors via variable selection in a multiple linear regression frame-70

work. Flood type was considered as a categorical or indicator variable (Gelman and Hill, 2007). These selected predictors

are ranked in order of importance, according to the number of times the predictor was kept in an iterative variable selection

procedure with random sampling (Table 1). A more detailed description of the variables and the method can be found in Vogel

et al. (2018) and Mohor et al. (2020).

In this study, we used three characteristics to group our data: (i) flood type, with categories levee breaches, riverine, surface,75

and groundwater floods; (ii) regions of Germany, with categories south (Bavaria and Baden-Wurttemberg), east (Brandenburg,

Mecklenburg-Western Pomerania, Saxony, Saxony-Anhalt, and Thuringia); as well as west and north (Hesse, Lower Saxony,

North Rhine-Westphalia, Rhineland Palatinate, and Schleswig-Holstein – grouped together due to the low number of cases);

and (iii) flood year, i.e. 2002, 2005, 2006, 2010, 2011, and 2013. We tested three model variants, each using only one group

variable at a time (Table 2). We refer to these model variants as the flood-type model, the regional model, and the event model,80

respectively.

2.2 Methods

Single-level multiple linear regression is adequate for capturing general trends in data, but ignores structure in the data, such

as flood type or region affected. We explore the suitability of a Bayesian multilevel model to estimate relative building loss85

(or loss ratio) from models with different predictor combinations. We use a numerical sampling scheme for Bayesian analysis

implemented in the brms package (version 2.11.1; Bürkner (2018)) in the R programming environment (version 4.0.1; R Core

Team (2020)). We test and compare various multilevel models with differing complexity. We trained the model on 70% of the

complete dataset (no missing data), with a total of 1269 data points in the training dataset and 543 data points in the testing
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Table 1. Description of potential predictors of flood loss

Predictor abbr. Unit /description

1 Water depth WD in cm

2 Building area BA originally in m2; due to high skewness, the variable is log-

transformed

3 Contamination Con indicator from 0 (none) to 2 (heavy contamination)

4 Duration Dur originally in h; due to high skewness, the variable is log-

transformed

5 Property-level Precautionary Measures (PLPM) Pre indicator from 0 (none) to 2 (very good precaution)

6 Insured Ins yes/no

7 Perceived efficacy of PLPMs Eff Likert-type scale from 1 (highly effective) to 6 (highly inef-

fective)

8 Emergency measures Eme indicator from 0 (no emergency measures performed) to 17

(many emergency measures performed effectively; Thieken

et al. 2005)

9 Cellar Cel yes/no

10 Relative flow velocity Vel Likert-type scale from 0 (no flow) to 6 (very high velocity)

11 Flood experience Exp 5 classes from 0 (no previous flooding) to 4 (more often and

recent previous flooding)

12 Building quality BQ Likert-type scale from 1 (very high quality) to 6 (very low

quality)

dataset. Although the dataset consists of more than 4000 datapoints, due to random missing data, the testing and training90

subsets size depends on the variables included in the model. Thus, 1812 datapoints were available in our case.

2.2.1 Bayesian multilevel model

Bayesian multilevel models weigh the likelihood of observing the given data under the specified model parameters by prior

knowledge. Bayesian models thus express the uncertainty in both the prior parameter knowledge and the posterior parameter

estimates. A multilevel structure allows for partial pooling such that each level or group can learn from the others by shrinking95

the posterior regression coefficients towards the pooled mean, while reducing effects of collinearity, and offering a natural

form of penalised regression (McElreath, 2016). The (unnormalized) posterior density, i.e. the probability distribution of the

model parameter(s) θ given the observed data y of a Bayesian model is proportional to the product of the prior of the model
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Table 2. Number of instances used across grouping variables flood type, region, and event year (n = 1812)

Flood Types Levee Breach Riverine Surface Groundwater Sum

Flood events

2002 157 360 148 152 817

2005 12 50 10 9 81

2006 0 36 2 4 42

2010 44 123 27 7 201

2011 1 70 8 15 94

2013 154 337 22 64 577

Regions of Germany

South 74 249 76 84 483

East 292 670 114 157 1233

West and North

(W+N)

2 57 27 10 96

Sum 368 976 217 251 1812

parameters—a probability distribution describing previous knowledge about the model parameters—and the plausibility of

observing the data given the model under these parameter choices, also known as likelihood (Gelman et al., 2014):100

p(θ|y)∝ p(θ)p(y|θ) (1)

In a multilevel model, the data are structured into J groups, with model parameters allowed to vary between these groups

(θj). The vector of group-level parameters θj is itself drawn from a distribution specified by hyperparameter(s) τ . The model

returns parameter estimates for both the entire (pooled) data and its J groups, although all parameters are learned jointly via

the specified distribution of the hyperparameters. The group-level (hyper-)parameters are unknown and learned from the data105

to inform the posterior distribution. This relationship can be written as the joint prior distribution (Gelman et al., 2014):

p(θ,τ)∝ p(τ)p(θ|τ) (2)

The joint posterior distribution can then be written as (Gelman et al., 2014):

p(θ,τ |y)∝ p(θ,τ)p(y|θ) (3)

The brms package is an interface for building multilevel models (Bürkner, 2018) and calls STAN, a programming language110

for Bayesian statistical inference (Carpenter et al., 2017). STAN uses a Hamiltonian Monte Carlo (HMC) method, a type of
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random sampling to approximate posterior distributions that are without analytical solutions (Kruschke, 2014), or the extension

of HMC, the No-U-Turn Sampler (NUTS), which is the default option in brms (Bürkner, 2018).

The choice of the likelihood and the priors should follow assumptions about the data-generation process (Gabry et al., 2019).

Our response variable is relative loss, and relates total direct, tangible flood loss such as repair and replacement costs (Merz115

et al., 2010) to the total asset value of a given residential building; relative loss thus varies from 0 to 1. Recent work on flood

loss modelling used an inflated beta distribution to first model the probability of no loss (Rözer et al., 2019), or of total loss

using a zero-and-one inflated beta distribution (Fuchs et al., 2019); a beta distribution then serves to estimate intermediate

losses (Evans et al., 2000). This approach is useful in cases where flood damages remain unreported or unaccounted for. Our

dataset of affected households has only 15 instances where relative flood loss was either 0 or 1. Hence, we dismissed those120

instances and modelled only partial loss ratios using the beta distribution:

y ∼ Beta(µφ,(1−µ)φ) (4)

Where y is the loss ratio that we assume follows a beta distribution with parameters mean µ and precision φ. The mean (µ)

is estimated from a multiple linear regression with K predictors as:

logit(µi) = α0 +αj[i] +Xi,kβk,j[i] (5)125

Where subscript i refers to each datapoint, subscript k refers to the predictors; subscript j refers to the groups; α0 is the

population-level intercept, αj is the vector of group-level intercepts; Xi,k is the i× k matrix of predictor values; and βk,j is

the k× j coefficient matrix. Each data point i is thus a vector of group-level coefficients, expressed by the j[i]th-column of β.

The model therefore has one population-level parameter (α0) and (k+ 1) ∗ j group-level parameters (αj and βk,j).

In brms, the multilevel structure of the regression specifies Gaussian prior distributions for the intercepts αj and for the130

predictor coefficients βj with fixed zero means and unknown standard deviations. The group-level standard deviations are

hyperparameters that are common to all group levels, but individual for the intercept or for each given predictor (σα and

σβk
). Therefore, we use standardised input data that are centred at zero and scaled to unit standard deviation. The prior of

each group-level standard deviation is in turn a weakly informative Gamma distribution with shape and inverse scale (or rate)

parameters (2, 5), which accumulates most probability mass at low positive values below 1. This choice of prior is appropriate135

for standardised input data even without any specific prior knowledge, for example, from other studies on flood damage. While

previous studies have indicated consistently that the effect of water depth is positive, we decided to keep the priors weak enough

to allow for the possibility of either positive or negative estimates for all predictor coefficients to explore possible effects of the

multi-level model. The prior for φ is non-informative.

αj ∼N (0,σα) (6)140
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σα ∼Gamma(2,5) (7)

βk,j ∼N (0,σβk
) (8)

σβk ∼Gamma(2,5) (9)

φ∼Gamma(0.1,0.1) (10)

Each model run consisted of four chains, each with 3,000 iterations and 1,500 warm-up runs; we used a thinning of every145

three samples and obtained a total number of 2,000 post-warmup samples. To assess whether the simulations converged, we

checked the Gelman-Rubin potential scale reduction factor R̂, which, if below 1.01, indicates that the Markov chains have con-

verged (Kruschke, 2014). We also checked the effective number of independent samples Neff , indicating lower autocorrelation

and higher efficiency of the convergence (McElreath, 2016).

2.2.2 Model comparison150

We trained the models using several different combinations of predictors to find the best balance between complexity and

predictive accuracy. Our main motivation was to achieve a good balance of sufficiently detailed, but available data, which is

often challenging (Meyer et al., 2013; Molinari et al., 2020). Each predictor in a multilevel model requires more than one

parameter (i.e. J group-level coefficients plus one hyperparameter). Hence, considering more parameters may offer small

increases in predictive accuracy only at the risk of overfitting. We selected the model with the highest improvement compared155

to next simpler one, while retaining the same multi-level structure. On the one hand, testing all models possible without any

underlying concept is far from good practice and computationally inefficient; on the other hand, the predictors are rarely

fully independent. Hence, we fitted candidate models with a sequentially increasing number of predictors, starting with water

depth, which data are the most widely available and adopted in flood loss models (Gerl et al., 2016), to a maximum of twelve

predictors identified by Mohor et al. (2020) (Table 1). For example, model 2 (named "fit2") has water depth (WD) and building160

area (BA) as predictors, while model 3 ("fit3") has the previous two plus contamination (Con) as predictors, and model 12

("fit12") has all twelve predictors (Table 1). This order is a prior knowledge based on the single-level linear regression variable

selection from Mohor et al. (2020).

We compare these models via the expected log pointwise predictive density (ELPD), which is the sum of a log-probability score

of the predictive accuracy for unobserved data. The distribution of these unobserved data is unknown, but we can estimate the165

predictive accuracy with leave-one-out cross-validation (ELPD-LOO), which is the sum of the log-probability scores for the
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given data except for one data point at a time (Vehtari et al., 2017; McElreath, 2016). We compared all candidate models using

leave-one-out cross-validation (LOO-CV) with Pareto smoothed importance sampling (PSIS-LOO), which is an out-of-sample

estimator of predictive model accuracy (Vehtari et al., 2017), implemented in the R package loo (Vehtari et al., 2019).

Having identified the models with the most informative predictors, we checked for credible differences across levels using170

the 95% highest density interval (HDI) of the marginal posterior distributions of the model parameters. We refer to regression

intercepts and slopes as credible if their posterior HDIs exclude zero values, and to each pair of parameters as credibly different

if 95% of the distribution of the difference of posterior estimates is above (or below) zero.

3 Results

We begin by reporting results form the model selection where we aimed at a compromise between model complexity, predictive175

accuracy, and data availability. For example, the generic model (Equation 5) has the lowest complexity with one (K = 1)

predictor water depth (thus called "fit1"), and three group-levels for the regional model (J = 3). This model has eight parameters

already, i.e. the population-level intercept (α0); three group-level intercepts (αj); three group-level coefficients for water depth

(β1,3); and parameter φ. Candidate models with more predictors are more complex might fit the data better, but have a higher

chance of missing input data at random. We test the increase in predictive capacity by adding predictors parsimoniously in light180

of this constraint.

3.1 Model selection

Judging from the predictive capacity using LOO-CV we arrived at a number of models worth further inspection. Table 3

shows how predictive accuracy in terms of the ELPD-LOO changes from the simplest water-depth model to eleven more

complex candidates of the flood-type model (see Supplementary Material for other model variants). We consider a model to be185

significantly better if the difference of ELPD-LOO is larger than the standard error of the difference.

We find that models hardly improve beyond the complexity of model "fit6" (Table 3). Given that the choice of predictors

may affect other predictors’ contributions, we tested another set of models starting with the first six predictors but adding only

one of the remaining predictors at a time, to evaluate if the order of adding predictors mattered (Table 4).

We find that "fit6+11" is the candidate model with the highest accuracy, though "fit6+7" is comparable (Table 4). We tested190

a final set of models with combinations of the best candidates, i.e. the predictors that showed significant increase among the

further model candidates tested, namely predictors 6 (insured - Ins), 7 (perceived efficacy of PLPMs - Eff) and 11 (flood

experience - Exp), added to the first five predictors (i.e. water depth, building area, contamination, duration, and Property-level

Precautionary Measures (PLPM)). Note that fit5+6 equals fit6, but fit5+7 is not equal to fit7. The results for the Flood-type

model are shown in Table 5 (for other model variants, see Table S3).195

Table 5 shows that two models are significantly better than "fit6" (fit5+6), i.e. "fit6+11" and "fit6+7+11". These two models

are indistinguishable from each other in terms of their predictive accuracy, although model "fit6+11" has fewer predictors. We

obtain similar results for other model variants (see Supplementary Material): for the regional model, "fit6+7" is also within the
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Table 3. Comparison of flood-type model candidates of differing complexity and using their expected log pointwise predictive density

(ELPD-LOO), ranked by highest predictive accuracy, along with differences and their standard errors with reference to model "fit12" (see

Table S1 for all model variants).

Model ELPD-LOO difference
standard error

ELPD-LOO Predictors
of difference

fit12 0 0 2134.3 WD+BA+Con+Dur+Pre+Ins+Eff+Eme+Cel+Vel+Exp+BQ

fit11 -2.4 2.9 2131.8 WD+BA+Con+Dur+Pre+Ins+Eff+Eme+Cel+Vel+Exp

fit10 -8.4 4.6 2125.9 WD+BA+Con+Dur+Pre+Ins+Eff+Eme+Cel+Vel

fit9 -8.1 5.0 2126.2 WD+BA+Con+Dur+Pre+Ins+Eff+Eme+Cel

fit8 -8.8 5.3 2125.4 WD+BA+Con+Dur+Pre+Ins+Eff+Eme

fit7 -7.3 5.3 2127.0 WD+BA+Con+Dur+Pre+Ins+Eff

fit6 * -10.2 6.5 2124.0 WD+BA+Con+Dur+Pre+Ins

fit5 -20.9 7.8 2113.4 WD+BA+Con+Dur+Pre

fit4 -36.2 9.0 2098.1 WD+BA+Con+Dur

fit3 -41.0 9.5 2093.2 WD+BA+Con

fit2 -76.9 13.0 2057.3 WD+BA

fit1 -115.6 15.3 2018.7 WD

* model complexity after which little gain is observed

Table 4. Comparison of the flood-type model candidates by their difference in ELPD-LOO using the first six predictors plus one predictor at

a time, ranked by highest predictive accuracy, along with their differences and the standard error of the differences with reference to the top

model (see all model variants in Table S2)

Model ELPD-LOO difference standard error of difference ELPD-LOO Predictors

fit6+11 * 0 0 2130.8 WD+BA+Con+Dur+Pre+Ins+Exp

fit6+7 * -3.8 5.0 2127.0 WD+BA+Con+Dur+Pre+Ins+Eff

fit6+9 -6.4 4.3 2124.4 WD+BA+Con+Dur+Pre+Ins+Cel

fit6+12 -6.6 4.6 2124.2 WD+BA+Con+Dur+Pre+Ins+BQ

fit6 -6.7 3.9 2124.0 WD+BA+Con+Dur+Pre+Ins

fit6+10 -7.6 4.1 2123.2 WD+BA+Con+Dur+Pre+Ins+Vel

fit6+8 -8.4 3.9 2122.3 WD+BA+Con+Dur+Pre+Ins+Eme

*models with predictive accuracy that is indistinguishable from that of the reference model fit6+11

best candidates, while for the flood-event model adding more predictors hardly improves the predictive accuracy. In summary,

we report that model "fit6+11" offered the best balance of complexity and performance among the model candidates considered.200
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Table 5. Comparison of Flood-type model candidates by their difference in ELPD-LOO using combinations of the first five predictors (fit5)

plus predictors 6, 7, and 11, along with their differences and the standard error of the differences with reference to candidate model "fit5+6"

(see Table S3)

Model ELPD-LOO difference standard error of difference ELPD-LOO Predictors

fit5+7 -6.2 6.1 2117.8 WD+BA+Con+Dur+Pre+Eff

fit5+11 * -3.5 6.4 2120.5 WD+BA+Con+Dur+Pre+Exp

fit6 * 0 0 2124.0 WD+BA+Con+Dur+Pre+Ins

fit5+7+11 * 0.1 7.4 2124.1 WD+BA+Con+Dur+Pre+Eff+Exp

fit6+7 * 3.0 3.5 2127.0 WD+BA+Con+Dur+Pre+Ins+Eff

fit6+11 6.7 3.9 2130.8 WD+BA+Con+Dur+Pre+Ins+Exp

fit6+7+11 9.6 5.4 2133.6 WD+BA+Con+Dur+Pre+Ins+Eff+Exp

*models with predictive accuracy that is indistinguishable from that of the reference model fit6

3.2 Model diagnosis

We fit three multilevel models with the selected candidates (fit "6+11", i.e. water depth, building area, contamination, duration,

PLPMs, insured, perceived efficacy of PLPMs) in each of the flood-type, regional, and event model. All three multilevel models

converged (R̂ < 1.004) with effective sample sizes Neff from 1,164 to 1,273 (out of 2,000 samples). The multilevel model was

trained with 70% of the dataset that was drawn through random sampling maintaining the proportion of group levels, totalling205

1,269 data points without missing data. The remaining 30% of the data were used for a performance check (Table 6).

Table 6. Performance indicators over mean values of the posterior predictive distribution (median of performance indicators over the full

posterior predictive distribution) and convergence indicators of the three model variants. RMSE = root mean squared error; MAE = median

absolute error; R̂ = Gelman-Rubin potential scale reduction factor; Neff = effective sample size.

Model Dataset RMSE MAE highest R̂ lowest Neff

Flood-type model
Train 0.102 (0.138) 0.046 (0.053)

1.003 1,236
Test 0.108 (0.143) 0.044 (0.055)

Regional model
Train 0.104 (0.140) 0.045 (0.054)

1.004 1,273
Test 0.110 (0.145) 0.045 (0.056)

Event model
Train 0.103 (0.139) 0.045 (0.053)

1.004 1,164
Test 0.111 (0.144) 0.043 (0.055)

We also ran posterior predictive checks by comparing the observed distribution of the loss ratio with the posterior predictive

distribution drawn from the training and the test data (Figure 1). The shapes of the posterior predictive distributions align well

with the observed data, indicating that the models suitably simulate the response variable.
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Figure 1. Density plot of observed loss ratio (y) and simulations drawn from posterior predictive distribution (yrep) over a) training (n =

1,269) and b) testing (n = 543) data with flood-type model

3.3 The roles of flood type, affected region, and flood event210

In this section we show the group-level coefficient estimate intervals of each model and whether they are credibly different

for different groups. We report the highest density interval (HDI) of the posterior model weights and compare these estimates

between the groups of each model. The models use a inverse-logit transformation over the linear regression (Equation 5) to

transform any real value to the unit interval. For example, a population-level intercept α0 =−2.37 means that, holding all

predictors fixed at zero (or their average), logit−1(−2.37 + 0) = 0.085; hence the estimated average loss ratio is 8.5%. Positive215

(negative) coefficient estimates of each predictor will result in a larger (smaller) loss ratio from the average on the log-odds

scale.

3.3.1 Flood-type model

Figure 2 shows the 95% HDI of the predictor weights grouped by flood types (flood-type model) compared to that of the

pooled model. The groups of surface water and groundwater flooding have fewer data (levee breaches, n = 258; riverine n =220

683; surface water n = 152; groundwater n = 176) and thus more uncertain parameter estimates with wider HDIs (Figure 2),

although several of these estimates are credible. Six out of seven predictors, i.e. water depth, contamination, duration, PLPMs,

insured, and flood experience, have at least one pair of flood types with credibly different estimates. In these cases the 95%

HDI of the differences between the posterior estimates is above or below zero. Most estimates are credibly positive or negative,

and only a few estimates HDI 95% contain zero.225

For example, the standardised group-level intercepts (α0 +αj) that estimate the loss ratio for average predictor values, are

credibly smaller for groundwater floods than for other flood types. Water depth has a credibly higher weight for levee breaches,

i.e. the effect of each unit increase in water depth on the loss ratio is higher for levee breaches, than for surface water floods
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(Figure 2-b, Table 7). In most cases, the differences show a higher effect of levee breaches over other flood types. The con-

tamination effect of surface water floods is also credibly higher than of riverine floods, and the effect of riverine flood duration230

credibly outweighs that of groundwater-flood duration.

The effects of flood duration (Figure 2-e), the insurance indicator (Figure 2-g), and the flood-experience indicator (Figure 2-h)

remain inconclusive concerning surface water or groundwater floods. Similarly, flood PLPM implementation (Figure 2-f) is an

ambiguous predictor of relative loss caused by levee breach or groundwater floods.

Figure 2. HDI 95% of regression estimates of the Flood-type model (across four flood types, coloured segments) and the single-level model

(black segments). The intercept is the sum of the population-level effect (common across levels) and group-level effects (for each flood type)

3.3.2 Regional model235

Figure 3 shows the HDI 95% of the regression coefficients if we group the loss data across various regions of Germany. The

group of flood-affected households from western and northern Germany is the smallest (south n = 337; east n = 865; west and

north n = 67), so the posterior parameter estimates are less certain and, in most cases, inconclusive for this part of the country.

Similar to the flood-type model, all estimates are credibly different from zero for water depth (Figure 3-b). The HDIs of all
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Table 7. Credibly different pairs of estimates with 95% probability

Comparison Predictor Median of differences % above 0

Levee Breach-Groundwater Intercept 0.323 99.4%

Riverine-Groundwater Intercept 0.212 98.6%

Surface-Groundwater Intercept 0.210 96.7%

Levee Breach-Surface Water Depth 0.155 98.4%

Riverine-Surface Contamination -0.167 1.6%

Riverine-Groundwater Duration 0.114 95.2%

Levee Breach-Riverine PLPMs implementation 0.162 99.0%

Levee Breach-Surface PLPMs implementation 0.207 98.6%

Levee Breach-Riverine Insured 0.107 96.7%

Levee Breach-Surface Insured 0.213 99.6%

Levee Breach-Groundwater Insured 0.186 98.9%

Levee Breach-Surface Flood Experience -0.228 0.6%

Levee Breach-Groundwater Flood Experience -0.195 1.9%

2002-2005 Intercept 0.521 100.0%

2002-2006 Intercept 0.448 98.7%

2002-2010 Intercept 0.261 99.6%

2002-2011 Intercept 0.612 99.9%

2005-2013 Intercept -0.517 0.2%

2006-2013 Intercept -0.447 1.2%

2010-2011 Intercept 0.346 95.2% *

2010-2013 Intercept -0.259 0.7%

2011-2013 Intercept -0.609 0.1%

2002-2005 Water Depth 0.343 99.5%

2005-2010 Water Depth -0.369 0.7%

2005-2013 Water Depth -0.394 0.2%

2011-2013 Water Depth -0.259 3.1% *

2002-2010 Duration 0.175 98.7%

2002-2010 PLPMs implementation -0.179 1.8%

2005-2013 Insured -0.157 4.5% *

* Although the one-sided hypothesis is satisfied, with 95% of the posterior distribution being above, or below, zero, the HDI 95% of the distribution of the differences contains zero

predictors overlap, i.e. there are hardly credible difference across regions under this model. The only estimate that is ambiguous240

in the southern region is that for flood experience (Figure 3-h).
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Figure 3. HDI 95% of regression estimates of the Regional model (across three regions, coloured segments) and the single-level model

(black segments). The Intercept is the sum of the population-level effect (common across levels) and group-level effects (for each region)

3.3.3 Event model

Figure 4 shows the HDI 95% of the posterior regression weights if grouping the data across individual flood events indexed by

years. The data subsets of flood-affected households in 2002 and 2013 are largest, (2002 = 571 cases; 2005 = 56; 2006 = 30;

2010 = 141; 2011 = 66; 2013 = 405), hence their estimates are more certain than those for other events. Similar to the results of245

the regional grouping, we notice a large overlap of parameter estimates across individual floods without credible differences.

Estimates of the intercept (Figure 4-a) are highest for 2002 and 2013, whereas the other, lower estimates overlap, except for

2010 and 2011 that are also distinct from each other (Table 7). This result underlines that the floods of 2002 and 2013 were

more damaging than other events on average.

The estimates of water depth (Figure 4-b), where the 95% HDIs for 2002, 2010, and 2013 are credibly higher than for 2005.250

The HDI for 2013 is also credibly higher than that for 2011, while other pairs of estimates overlap (Table 7). The coefficient

estimates for duration and the PLPMs implementation (Figure 4-e and -f) for 2002 surpass the estimates for 2010, which in
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turn are ambiguous. The estimate for the insurance indicator of 2013 exceeds that for 2005, although all 95% HDIs except for

the one for 2013 contain zero. We note that many parameter estimates cover mostly small values; especially flood experience

(Figure 4-h) is an inconclusive predictor in contrast to the other models (Flood-type model or Regional model) that showed255

credible estimates for at least one group. There is no clear tendency of estimates increasing or decreasing with time; on the

contrary, there is a large overlap across most events and predictors.

Figure 4. HDI 95% of regression estimates of the flood-event model (each event coded by colour) and the single-level model (black bars).

The intercept is the sum of the population-level effect (common across levels) and group-level effects (for each event)

4 Discussion

We trained three variants of a Bayesian multilevel model to test whether flood type, regions within Germany, or flood events

make a case for differing predictor influences on flood loss concerning these groups. The models help us to identify the factors260

most relevant for flood loss estimation and to assess whether there are credible differences between these contributions to the

estimated loss ratio. In other words, the models show how considering these groups is a useful step towards improved model
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transferability.

Our results show that, for most cases across regions or across flood events, the posterior regression weights are hardly different.

Therefore, distinguishing groups, at least in the form here implemented, adds little information over a pooled model taking into265

account all of the data. Out of the training dataset of 1,269 data points, the groups contained much smaller (<200 to <50)

samples, thus giving rise to higher uncertainties regardless of the shrinkage of coefficient estimates in a Bayesian multilevel

model towards the pooled means. Credible differences across estimates are found mostly if considering flood types and this

grouping also involves more balanced subsets. The estimated coefficients for loss-ratio modelling across flood events and

regions are mostly inconclusive. However, especially in western and northern Germany, the 2005, the 2006, or the 2011 flood270

events return many inconclusive parameter weights, likely owing to the much fewer data points. Leaving these very uncertain

estimates aside, we can observe several instructive patterns.

We note that the higher the water depth, the contamination of the floodwater, or the duration a building is inundated, the higher

is the loss ratio, assuming all other predictors fixed. This is a simple expectation (Kellermann et al., 2020) being confirmed,

also showing that these predictors add information to the model (see Figures 2, 3, 4-b and -e). Next, the larger the building, the275

lower the relative damage. This is also reasonable, since larger buildings, which mostly have more floors, would experience

lower relative damage with all else kept constant (Thieken et al., 2005). We also find that the more recently a household

experienced a flood, the lower the relative damage. People who experienced more recent floods (scored higher in the flood-

experience indicator), on average, appear to be better acquainted with how to act before and during a flood, thus reducing

its risks and direct impacts. The indicator of whether the household had an insurance has mostly positive weights, although280

often also ones that are ambiguous. This result is in agreement with previous studies showing an unclear effect of insurance

coverage on loss reduction (Surminski and Thieken, 2017). Finally, the indicator of PLPM implementation also has a mostly

negative weight on predicting the loss ratio. This may mean that the more PLPMs implemented, the lower the relative damage,

as shown by Kreibich et al. (2005) and Hudson et al. (2014). However, this indicator encompasses several measures so that the

damage reducing effect of each such measure in different flood situations is intractable. Hence, this result only shows a general285

tendency that PLPMs reduce relative damage, but to a much-varied degree that deserves further research.

Although previous work has indicated a more intense flood events in eastern than in southern Germany, except for the 2005

flood (Schröter et al., 2015), we found no credibly different estimates in our regional model (Figure 3). It is likely that different

precaution strategy of residents matter here, as more people in the East have relied on insurance (Thieken, 2018), although the

effect of having insurance on flood losses remains unclear; the effect of PLPMs also overlaps across estimates for southern and290

eastern Germany.

Despite the large overlap across estimates of the flood-event model, we find that the estimates for 2002, 2010, and 2013 for

water depth and contamination are larger and more credible, reflecting also larger average losses reported by the households

(Table S5). Although the 2006 subsample had a large average flood duration (Table S5), it still returns a highly uncertain

coefficient estimate. The severe Central European flood of August 2002 in Germany mainly affected the rivers Danube and295

Elbe, and only a few households had implemented PLPMs or had previous flood experience (Thieken et al., 2007); this situation

changed for later floods (Kienzler et al., 2015). Consequently, the implemented PLPMs made a larger difference for the flood
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of 2002 (the only credible estimate), whilst the role of previous flood experience remains ambiguous in the models. In contrast,

as insurance coverage increased over time, only the 2013 estimate was credibly positive; having an insurance seems to be

linked to a higher loss ratio. This finding that insurance has a positive effect—though only for the later event—may indicate300

that either moral hazard has increased (i.e. insured people declare more damage) or that more people in risk-prone areas have

purchased insurance coverage against flooding. The latter would indicate that risk communication was partly successful. To

confirm this, however, not only would the increase in insurance uptake need to be checked, but it would also need to be crossed

with flood risk zones. This is a task for future work.

We emphasise that each event and each region of Germany contained mixed flood types (or pathways). For most predictors,305

the factors’ effects are much clearer across flood types. This reinforces the notion that their importance varies across flood

types. Given that mixed flood types were reported in all regions and years in our dataset, this might be the reason the predictors

effects are also less certain and overlapping across regions and years.

It is plausible that the effects of some variables are influenced by others, whether included or ignored in our initial set. Only

a few studies have so far directly compared the effect of predictors of flood loss ratio across groups in the data, such as flood310

types, events, or places. Two of them, i.e. Vogel et al. (2018) and Sairam et al. (2019), used a similar dataset. Although these

studies adopted different model structures, we compare below our results.

Sairam et al. (2019) trained and compared hierarchical Bayesian models for flood loss estimation as we did here, but they

considered only water depth as a single predictor. Sairam et al. (2019) tested as grouping variables the river basins, the event

years, and a combination of both, and concluded that the latter had the best predictive accuracy. This approach, however, masks315

the weight of effects across areas or events, as both effects are bundled. Despite the differences in the grouping, similarly,

Sairam et al. (2019) found significant differences between regression slopes, but not across intercepts, reinforcing that using

flood type as grouping variable seems to be more relevant compared to flood event or region.

Vogel et al. (2018) trained Markov Blankets (MBs) for estimating the flood loss ratio for different flood types and different

events, separately. MBs are the smallest components of Bayesian Networks (BNs) and contain all variables that are relevant,320

out of the originally chosen, for predicting the targeted variable (Vogel et al., 2018). Therefore, we cannot compare estimates,

but only the predictors set selection. We selected the predictors across all levels, which makes a direct comparison difficult,

trained independently. Still, we observe some similarities between ours and the results by Vogel et al. (2018). For example,

Vogel et al. (2018) showed that previous flood experience and flood duration are both relevant for households affected by

levee breaches, whereas building size, which is correlated to building area, is relevant for riverine floods. For the MBs trained325

for each flood event, Vogel et al. (2018) found water depth to be a common predictor for all events, except for the flood of

2011, which comprises one of the smallest subsamples, in which previous flood experience was the only predictor selected,

in contrast to our findings. Our very uncertain estimates across event years for this predictor suggests it may be biased and

deserve more attention before dismissing all estimates with HDI containing zero. More data should be collected or predictors

could represented differently, for example as a monotonic effect.330

Data availability, especially regarding preparedness indicators, is a possible limitation to transferring flood loss models and

their use for ex-ante loss estimation. While these indicators have been deemed relevant for loss prediction, they are rarely
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collected and are often unavailable in a suitable form. An alternative is to use proxy data, for example the aggregated insurance

coverage for Germany monitored by the German Insurance Association (GDV, 2018) as proxy for household insurance, a

good flood event database could be a rough estimate of flood experience for a specific region, or the precautionary behaviour335

of flood-affected residents (Bubeck et al., 2020) could be used as a prior estimate of PLPMs implementation. Nonetheless, the

role of data availability is directly captured in our models in terms of (un-)certainty of posterior parameter estimates. Bayesian

models excel in situations where data are limited, but also express the associated uncertainties.

5 Conclusions

Previous studies have indicated that the major damaging processes during floods may differ by flood type, event, and affected340

region. To better understand these differences and improve the transferability of flood loss models, we trained and tested

Bayesian multilevel models for estimating relative flood losses to residential buildings.

Our model selection identified seven predictors addressing the flood magnitude (water depth, contamination, and duration), the

building size (building area), and preparedness of the household (previous experience, insurance, and an indicator of imple-

mented PLPMs). For at least one group, all predictors show credible posterior estimates HDI 90%. This result confirms that all345

these predictors can aid flood loss ratio estimation, and reinforces the need to collect data after new flood events. This repeated

updating is at the core of Bayesian models, which can also handle missing data, account for uncertainty intrinsically, and are

effectively finding a compromise between existing models and new data. We argue that this strategy might pave one way for

transferring flood loss models more widely.

Credibly different estimates were found for six out of seven predictors across flood type, region, and event year, namely: water350

depth, contamination, duration, implementation of property-level precautionary measures, insurance, and previous flood expe-

rience. The Bayesian multilevel model grouped by flood type is the most informative of these three model variants, featuring

the most pronounced differences in the contributions of each predictor. Despite credible differences between different flood

events, the large uncertainties in the posterior estimates of the regional and the event models likely indicate that several flood

types may have mixed during a single flood event or region, thus making it difficult to disentangle individual controls better. In355

any case, the dataset hardly caters to reveal fully the underlying physical controls on flood losses.

Our results encourage using pooled data on flood events and regions, and thus mark some transferability in this regard, judging

from the minute differences in the posterior regression weights. The data indicate, however, that flood loss modelling should

consider different flood types explicitly. We acknowledge that other groups in the data or a different set of predictors could

improve predictions further, but recommend strategies that make use of previous knowledge as much as possible. We conclude360

by reporting that grouping models by flood type adds information and transferability to flood loss estimation and motivate

more research into this direction.
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