We would like to thank the referees for carefully reading our manuscript and for their
constructive comments and suggestions. Please find below our point-by-point responses. If a
change in the manuscript will be made, we explicitly say so and present the new excerpts below
in red.

Reviewer 1:
“The paper presents a Bayesian multi-level model to estimate residential flood losses.

The study is meticulously undertaken and the manuscript is very clear. The authors infer
that flood source/type is an important aspect that causes variability in damage model
parameters. This is determined based on significant differences in damage model
parameters/hyper-parameters across flood types such as levee breach, riverine, surface
and groundwater flooding. Additionally, the study claims that the model with predictors
- water depth, building area, contamination, duration, precaution, insurance uptake and
flood experience performs the best.”

We thank Dr. Sairam for this positive and encouraging assessment of our study. Please
find below the answers to each comment.

R1-Cl. Line 11: ’may complicate’ lacks clarity. Please rephrase to directly mention the
impact of the developed modelling approach.

A: We rephrased this to:
“We argue that failing to do so may unduly generalize the model and systematically bias
loss estimations from empirical data.”

R1-C2. Line 31: Abbreviation - BMM is not used anywhere in the paper

A: The abbreviation was used in previous versions of the manuscript. We apologize for
the confusion and removed the abbreviation.

R1-C3. Lines 36-45: This paragraph about data could be moved to the section 2.1 — Data

A: We agree with the suggestion, and moved the original paragraph to section 2.1.,
replacing it with a simpler introduction to the dataset. The paragraph now reads:

“In this study, we use survey data from households affected by large floods throughout
Germany between 2002 and 2013 (Thieken et al., 2017). These data go beyond addressing
physical inundation characteristics by offering a broad view of the damaging process including
the flood types that affected the households (i.e., floods from levee breaches, riverine floods,
surface water floods, or rising groundwater floods). Mohor et al. (2020) used this database to
explore ... ”

R1-C4. In table 2, Please also provide the split of data samples across events and regions for
each flood type. The different flood types may be relevant event characteristics when split
across regions.



A: We split the data guided by the intersect of flood type, event year and region, thus
conserving the proportions across each group: the training set contains ~70% of each subgroup
in Table 2 (original numbers). Thus, we found it best to replace the numbers in Table 2 by the
size of the training set rather than showing both training and test datasets. The revised Table 2
looks like this:

Table 2. Number of instances in the training set used across grouping variables of flood
type, region, and event year (n = 1269)
Event\ Flood Types Levee Breach Riverine Surface Groundwater n

2002 110 252 103 106 571

2005 8 35 7 6 56

2006 0 25 2 3 30

2010 31 86 19 5 141

2011 1 49 5 11 66

2013 108 236 16 45 405

Regions of Germany

South 52 174 53 58 337

East 205 469 80 111 865

West and North (W+N) 1 40 19 7 67
Sum (n) 258 683 152 176 1269

R1-C5. In the model selection, please explicitly explain what ‘little gain’ means? From the
values, I understand that elpd diff > 4 when adding each variable is considered as significant
improvement. Is it correct?
(https://avehtari.github.io/modelselection/CVFAQ.html#15 How to_interpret_in_Standard
_error_(SE)_of _elpd_difference_(elpd_diff)) Also, please refer to STAN/BRMS forums for
considerations while choosing models based on LOO-ELPD differences. Studies commonly
consider elpd differences above 2SE as a significant improvement (e.g.
https://iopscience.iop.org/article/10.1088/1748-

9326/ab4937). Here, the STAN developers recommend 4SE as a safe threshold
(https://discourse.mc-stan.org/t/loo-comparison-in-reference-to-standarderror/ 4009/2).
However, since it is a measure of balance between bias and variance, | would like to leave it
to the authors’ discretion.

A: Thank you for this helpful comment and the further information. To avoid an
automatic forward selection of the most suitable model, we followed three steps of comparison
that we presented in Tables 3 + Sl1, 4 + S12 and 5 + SI3. In general, we avoided being too strict
in the selection because we wanted to keep the same set of predictors for all model variants,
i.e., the variants in which we considered different grouping variables. One advantage of
Bayesian inference is the explicit treatment of uncertainty; our interpretations are based on full
distributions rather than point estimates. Thus, we focused on exploring the differences across
posterior parameter values rather than simply seeking the “best” model.

We note that Vehtari’s CV-FAQ
(https://avehtari.github.io/modelselection/CVFAQ.html) considers an elpd_diff > 4 to be
relevant. Our model selection consisted of three steps following this consideration as a
guideline, although this was perhaps less clear in our original manuscript. We made this point
clearer by restructuring the Tables and extending the explanation of the three steps. In the first
step, only the elpd_diff > 4 was considered. In the second and third step, we added the
relationship between elpd_diff and its SE to the criteria. Assuming the elpd_diff is Gaussian



indicates that using two standard errors can be a meaningful measure of potential overlap. In
the discussions of the STAN developers and users, again, these measures of model comparison
are already understood as containing some variance. We were less strict in our study for the
reasons outlined above. In the manuscript, we thus improved the tables by changing the
reference model and extended the description of the three steps explicating the used criteria.
The following paragraphs replaces lines 156-169:

“On the one hand, testing all models possible without any underlying concept is far
from good scientific practice and computationally inefficient; on the other hand, predictors are
rarely fully independent. Hence, we fitted candidate models in three steps of model comparison
outlined below. We compare the model candidates in each step via the expected log pointwise
predictive density (ELPD), which is the sum of a log-probability score of the predictive
accuracy for unobserved data. The distribution of these unobserved data is unknown, but we
can estimate the predictive accuracy with leave-one-out cross-validation (ELPD-LOQ), which
is the sum of the log-probability scores for the given data except for one data point at a time
(Vehtarietal., 2017; McElreath, 2016). According to Vehtari (2020), an ELPD-LOO difference
>4 may be relevant and should also be compared to the standard error of the difference. Hence,
we selected models as follows:

1- We compared models with a gradually increasing number of predictors, based on
the prior knowledge of predictor importance reported in a study using single-level
linear regression by Mohor et al. (2020). This study considered water depth, for
which data are the most widely available and adopted in flood loss models (Gerl et
al., 2016) up to a maximum of twelve predictors (Table 1). For example, model 2
(named "fit2") has water depth (WD) and building area (BA) as predictors, while
model 3 ("fit3") has the previous two plus contamination (Con) as predictors; model
12 ("fit12") has all twelve predictors (Table 1). The model candidate with an ELPD-
LOO difference >4 compared to the previous candidate was selected for the next
step.

2 — For the model selected in step 1 — “fit_s1” with predictors XY = {x, ... , Xs1}, we
compared models with X® predictors plus one of the remaining predictors at a
time, i.e., {X®V}, {X, xa1+1}, {XOY, Xs142}, ..., {XOY, x12}. All model candidates
that present an ELPD-LOO difference larger than four and with a difference larger
than its standard error were selected for step 3.

3 — We compared the model candidates combining the selected candidates from step 2.
If, for example, two different candidates {X®Y, xs1+a} and {X®Y, xs14p} were selected,
we compared the model candidates {XCY}, {X®V, xs1+a}, {XOV, Xs1+0}, {XOV, Xs1+a,
Xs1+b}. The model candidate with the least number of predictors and an ELPD-LOO
difference >4 as well as a difference larger than the estimated standard error was
selected eventually.

We compared all candidate models using leave-one-out cross-validation (LOO-CV) with the
Pareto smoothed importance sampling (PSIS-LOQ), which is an out-of-sample estimator of
predictive model accuracy (Vehtari et al., 2017), implemented in the R package loo (Vehtari et
al., 2019).«



Reference: Vehtari, A.: Cross-validation FAQ, https://avehtari.github.io/modelselection/CV-
FAQ.html, 2020.

We replaced Table 3 by the new table below, using model “fitl” as reference, and ranking the
models by elpd_loo:

Table 3. Comparison of flood-type model candidates of differing complexity and using their
expected log pointwise predictive density (ELPD-LOQ), ranked by increasing highest
predictive accuracy, along with differences and their standard errors with reference to model
"fitl" (see Table S1 for all model variants).

ELPD- ELPD- Standard

Model LOO LOO error of

difference | difference
fitl 2018.7 0.0 0.0
fit2 2057.3 38.6 8.7
fit3 2093.2 74.5 12.5
fit4 2098.1 79.4 12.8
fits 2113.4 94.7 13.6

fité 2124.0 105.3 141

fit7* 2127.0 108.3 14.5

fit8* 2125.4 106.8 145

fit9* 2126.2 107.5 14.8

fit10* 2125.9 107.2 14.8

fit11 2131.8 113.1 15.1

fit12* 2134.3 115.6 15.3

* Difference between ELPD-LOO values between two subsequent models is <4.

We replaced Table 4 by the table below, directly comparing the model candidates to model
“fit6™:

Table 4. Comparison of the flood-type model candidates by their difference in ELPD-LOO
using the first six predictors plus one predictor at a time, ranked by highestpredictive accuracy,
along with their differences and the standard error of the differences with reference to model
“fit6” (see Table S2 for all model variants)

Model | ELPD-LOO | ELPD-LOOQ difference | Standard error of difference
fit8 2122.3 -1.7 0.5
fit10 2123.2 -0.9 1.4
fit6 2124.0 0 0
fit12 2124.2 0.2 2.0
fit9 2124.4 0.3 2.0
fit7 2127.0 3.0 3.5
fitl1 * 2130.8 6.7 3.9

* model with relevant improvement compared to others (elpd_diff > 4 and elpd_diff > se_diff)




We hope that these revisions now clarify our model selection process and criteria.

R1-C6. Please provide (in main manuscript) the ELPD differences and SE across the four
model types — single level, flood type, event and region for fit6+11 (From SI, table S3). Are
there significant differences? Which of the models perform the best?

A: The table in the supplementary information includes all model variants and is too
large for the main manuscript. Hence, we decided to present the information as a chart that
complements Table 5. Please note that we addressed the discussion about significant model
differences in our reply to the preceding comment.

FloodType Region Event
fit6+7+11 —— fit6+7+11 = — fit6+7 - 1o
fit6+11 - —— fit6+7 A —— fit6+7+11 —o—
fit6+7 - o— fit6+11 - fit6 - -I-
fit5+7+11 - —I— fit5+7+11 fit6+11 o
it6 - fit6 . fit5+7+11 —e—
it5+11 o ———— fit5+7 A fits+7 o —e—
fit5+7 18— fit5+11 A fit5+11 1 —&—]
-10 0 10 -10 0 10 -10 0 10
elpd diff + se_diff elpd_diff + se_diff elpd diff = se_diff

Figure 1. Comparison of model candidates by their difference in ELPD-LOO using
combinations of the first five predictors (fit5) plus predictors 6, 7, and 11, along with their
differences and the standard error of the differences with reference to candidate model "fit6"
for each model variant.

R1-C7. Please present some discussion on the model diagnosis (section 3.2)

A: Thank you for this general suggestion. We added the following paragraph to the
Discussion section, following the current line 264.

"After comparing the predictive accuracy estimates of models with different sets of
predictors, we selected the model “fit 6+11" that uses water depth, building area, contamination,
duration, PLPMs, insurance, and previous flood experience as predictors. Considering that we
aim to explore the role of predictors in estimating flood losses, rather than finding the best fit
model, chains convergence and posterior predictive checks are a necessary step before
interpreting the fitted model (Gabry et al., 2019; Gelman et al., 2020). The three model variants
trained with 1,269 datapoints, and sampled with four chains each, converged well, with
Gelman-Rubin scales below 1.004 (ideal values are <1.01) and effective sample size ratios
above 0.58 (ideal values are >0.5). Visual assessment of the predictive posterior density plot is
an important step, whether the model generates data similar to the observed data. Figure 2
shows that the model replicates well the data distribution, and visual inspection confirmed only
unimodal estimates.

Reference: Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., and Gelman, A.: Visualization
in Bayesian workflow, Journal of the Royal Statistical Society: Series A (Statistics in Society),
182, 389-402, https://doi.org/10.1111/rssa.12378, 2019.

Gelman, A., Vehtari, A., Simpson, D., Margossian, D., Carpenter, B., Yao, Y., Kennedy,
L., Gabry, J., Burkner, P., Modrak, M.: Bayesian Workflow,



https://statmodeling.stat.columbia.edu/2020/11/10/bayesian-workflow/,  last  access: 9
December 2020

R1-C8. The concept of transferability is only discussed in lines 260-263. Please provide
further analysis or information regarding how the model addresses the transferability
challenge.

A: Most flood loss models are trained with data of one flood event (or sometimes
multiple though largely similar events). Whatever the method, most models will have a single
set of parameter estimates for all affected objects.

However, single flood events can affect cities differently across regions, which in turn reflects
different socioeconomic and geographic conditions and building codes, for example. These
characteristics reflect a given asset’s resistance to the hazard process (Thieken et al., 2005) so
that a model should have different parameters for different socioeconomic and geographic
conditions. These characteristics might not have been explicitly included in the model but may
be represented by a proxy such as an administrative region. Thus, we considered a multi-level
model structured by regions to explore whether geographic information has to be included in
loss modelling.

Furthermore, most similar studies on flood loss estimation consider single flood events to be of
asingle type only, i.e. fluvial floods, pluvial floods, or coastal floods. We argued, however, that
“multiple flood types were reported for the same event, even within the same city, thus giving
rise to compound events” (line 43-44): for example, flood waters from river channels that
overtop the banks (riverine floods) can meet with runoff-driven flood waters promoted by
insufficient urban drainage systems (surface water floods). Thus, a model of a single event
should have different parameter estimates for different flood types, and therefore we consider
an additional model variant structured by flood types. Finally, we observe that flood
preparedness evolved over time, documented, for example, by Kienzler et al. (2015) and
Thieken et al. (2016) for Germany. Economic situations may also change the relative value of
exposed assets and its recovery or repair costs (Penning-Rowsell, 2005; Kron, 2005). Such
effects or evolution in time are challenging to include in loss models, however. Therefore, we
considered a third model variant structured by flood events, capturing the timely situation.

We realize now that these structures were presented in the manuscript for flood types, but not
in full for the regions and flooding events. We, therefore, add to line 53:

“Here we expand on the model of Mohor et al. (2020) by acknowledging structure in
the dataset and explore whether a single regression model can apply not only to different flood
types, but also to regions or flooding events. Single flood events can affect cities differently
across regions, likely reflecting socioeconomic and geographic conditions and building codes,
for example. These characteristics reflect a given asset’s resistance to the hazard process
(Thieken et al., 2005). These characteristics may differ on the level of administrative regions,
and hence we considered a multi-level model variant structured by regions. Additionally, flood
preparedness evolved over time, documented, for example, by Kienzler et al. (2015) and



Thieken et al. (2016) for Germany. Economic situations may also change the relative value of
exposed assets and its recover or repair costs (Penning-Rowsell, 2005; Kron, 2005). Such
changes are challenging to include in loss models, however. Therefore, we considered a third
model variant structured by flood events, capturing the timely aspect. Therefore, we estimate
relative flood losses in Germany with a Bayesian multilevel model featuring three different
groups ...

We argue that exploring these model variants provides more clarity about whether we should
use simple average models or more specific multi-level models to be able to transfer predicted
loss estimates to new regions, flood types or other structures in the data.

The topic of transferability was also addressed by the second Referee. Therefore, we have added
the following paragraph at the end of the Discussion:

“When addressing transferability, we seek models that can generalize well and go beyond
local or case-specific data. Wagenaar et al. (2018) trained two flood loss models using
data from two different countries (Germany and the Netherlands) and tested how well each
model could predict losses in the other country. They found that the number of flood events
in the data was more important than simply the number of reported flood loss cases.
Although we trained our models with data from a single country, the data used by
Wagenaar et al. (2018) for Germany, comprises six event years across twelve federal
states, four river basins (Danube, Rhine, Elbe, and Weser) and four flood types. We
expanded on this approach by training models on data from different flood-event years,
different flood types, and different regions, thus allowing for a broad range of
environmental, administrative, and socio-economic conditions (representing at least
Central Europe) that we treat explicitly as grouping levels in our analysis. We argue that
exploring these model variants provides more clarity about whether we should use simple
average models or more specific multi-level models to be able to transfer predicted loss

estimates to new regions, flood types or other structures in the data.”

References: Kron, W.: Flood Risk = Hazard ¢ Values * Vulnerability, Water International, 30,
58-68, https://doi.org/10.1080/02508060508691837, 2005.

Penning-Rowsell, E. C.. The benefits of flood and coastal risk management: A
handbook of assessment techniques / Edmund Penning-Rowsell ... [et al.], Middlesex
University Press, London, 89 pp., 2005.

Wagenaar, D., Ludtke, S., Schroter, K., Bouwer, L. M., & Kreibich, H.: Regional and
temporal transferability of multivariable flood damage models, Water Resources Research, 54,
3688-3703. https://doi.org/10.1029/ 2017WR022233, 2018



R1-C9. Sl Table S3 — rephrase Year to Event

A: The term “Year” was rephrased to “Event”.

R1-C10. Please mention the corresponding Sl tables in the respective sections (main
manuscript). Where are tables S4 and S5 relevant?

A: Table S4 and Table S5 show statistical comparison across subsamples of regions and
flood events, respectively. Table S5 was already mentioned in line 294 of the original
manuscript. Details of Table S4 turned out to be unnecessary for the discussion. Hence, we
removed Table S4 and shortened Table S5 to contain only relevant information on hazard
characteristics and losses.

On behalf of all co-authors,

Guilherme S. Mohor



We would like to thank the referees for carefully reading our manuscript and for their
constructive comments and suggestions. Please find below our point-by-point responses. If a
change in the manuscript will be made, we explicitly say so and present the new excerpts below
in red.

Reviewer 2:

“This paper describes the development of a Bayesian multilevel model for flood damage
estimation. These two step models first group observations by event, flood type or
region and then build separate models. The study showed that grouping by flood type is
most useful for developing transferable flood damage models. The study seems to be
carried out well and the writing is generally good.”

We thank the referee for taking the time to comment on our manuscript and offering
constructive suggestions. Please find below our answers to each point raised.

R2-C1 One of the main conclusions seems to be that when developing transferable flood
damage models it works best to select models by flood type rather than by event or region.
This observation is very interesting but this is based on a dataset of just German data. | can
imagine that in a more international setting the regional difference might become more
important than the flood type differences. | think this needs to be emphasized in the
conclusions and I think the paper should therefore more promote the method than the finding
(which I expect to be specific to this dataset of a relatively homogenous region).

A: We agree that our results are informed by the detailed data we have about flood losses
in Germany. We emphasised this in our revision (please see below). Yet we point out that the
regional variation that our data cover are quite heterogenous. Since urban and land-use planning
follows defined administrative and legal guidelines, buildings codes, for example, are
constructed differently in different parts of Germany, partly also because of historic reasons.
Wagenaar et al. (2018) developed two flood loss models for different countries (Germany and
the Netherlands) and tested how well these models could be swapped between countries. They
found that the number of flood events in the data was more important than only the number of
datapoints from a single event. We expanded on this approach by training models on data from
different flood-event years, different flood types, and different regions, thus allowing for a
broad range of environmental, administrative, and socio-economic conditions that we treat
explicitly as grouping levels in our analysis. The topic of transferability was also addressed by
the first Referee. Therefore, we have added the following paragraph at the end of the
Discussion:

“When addressing transferability, we seek models that can generalize well and go beyond local
or case-specific data. Wagenaar et al. (2018) trained two flood loss models using data from
two different countries (Germany and the Netherlands) and tested how well each model
could predict losses in the other country. They found that the number of flood events in



the data was more important than simply the number of reported flood loss cases. Although
we trained our models with data from a single country, the data used by Wagenaar et al.
(2018) for Germany, comprises six event years across twelve federal states, four river
basins (Danube, Rhine, Elbe, and Weser) and four flood types. We expanded on this
approach by training models on data from different flood-event years, different flood
types, and different regions, thus allowing for a broad range of environmental,
administrative, and socio-economic conditions (representing at least Central Europe) that
we treat explicitly as grouping levels in our analysis. We argue that exploring these model
variants provides more clarity about whether we should use simple average models or
more specific multi-level models to be able to transfer predicted loss estimates to new

regions, flood types or other structures in the data.”

R2-C2 Can you maybe explain better why you go for a multilevel approach rather than just
adding variables like flood type, region and event to the dataset? You can then use variable
importance to see how much these variables add. In other words can you clarify the added
value of this approach better compared to this obvious/simpler alternative approach?

A: In a previous study by Mohor et al., (2020), we explored with simpler statistical
flood-loss models the differences across flood types. We found that slopes and intercepts
differed across flood types, while a complete pooling (or average) model had varying intercepts.
However, both these approaches overlooked potentially informative structure in the data, for
example, the role of flood types, timing, regional characteristics of building codes, or measures
of flood preparation. With the multilevel modelling under a Bayesian framework, we trained
regression models with varying intersects and varying slopes that duly and explicitly recognise
these differing characteristics. One major added value is that the multilevel approach expresses
these differing characteristics as individual model components and how they deviate from the
average model trained on all the data. The multilevel approach allows us to analyse all data in
one model while honouring structure or nominal groups in the data. Thus, the training of the
group-specific parameters occurs at the same time so that model parameters can inform each
other by means of specified (hyper-)prior distributions. This approach warrants more training
data than running stand-alone models on subsets of our data, which in turn are more prone to
over- and underfitting and overestimates of the regression coefficients. Given we do have an
identifiable structure in our dataset, we see these advantages as welcoming, if not necessary.
We extend our presentation of the method explicating these advantages and justifying our
method choice, by adding the following to Line 93:

“Bayesian multilevel models weigh the likelihood of observing the given data under the
specified model parameters by prior knowledge. Bayesian models thus express the uncertainty
in both the prior parameter knowledge and the posterior parameter estimates. The multilevel
approach allows us to analyse all data in one model while honouring structure or nominal



groups in the data. Thus, the training of the group-specific parameters occurs at the same time
so that model parameters can inform each other by means of specified (hyper-)prior
distributions. This approach warrants more training data than running stand-alone models on
subsets of our data, which in turn are more prone to over- and underfitting and overestimates

of the regressmn coefficients, —A—m&l%#eve#stmet&mu&”ea%ier—p&ﬁakpeehﬂg—swh%eaeh

tewards%h&peelmneapr Whlle reducmg effects of colllnearlty, and offermg a natural form of
penalised regression (McElreath, 2016).”

R2-C3 In the first sentence of the abstract you note that preparedness is typically ignored. |
agree with this statement but its not really what this paper is about and by adding it to the
first sentence of the abstract you confuse the reader. So | advice moving this statement.

A: Thank you for this observation. We agree and changed the abstract accordingly:

“Models for the predictions of monetary losses from floods mainly blend data deemed
to represent a single flood type and region. Moreover, these approaches largely ignore
indicators of preparedness and how predictors may vary between regions and events,
challenging the transferability of flood loss models. We use a flood loss database of [...] «

R2-C4 Maybe also mention synthetic models in the introduction.

A: We will reinforce this topic in the introduction. Synthetic models are a good approach
to harmonize loss estimation. However, when it comes to including behaviour they are limited
by their assumptions. In general, synthetic models tend to reduce (natural) variability of data
and are rarely validated (Sairam et al., 2020). We added the following text to the introduction:

“In contrast to empirical models, synthetic models are developed based on expert
opinion and offer a good approach to harmonize loss estimations. However, how these models
rely on assumptions is problematic when preparedness and other behavioural variables are
concerned. In general, synthetic models tend to reduce the variability of data and remain rarely
validated (Sairam et al., 2020). Therefore, we train our Bayesian model using reported data. «

Reference: Sairam, N., Schroter, K., Carisi, F., ... & Kreibich, H.: Bayesian Data-Driven
approach enhances synthetic flood loss models, Environmental Modelling & Software, 132,
104798. https://doi.org/10.1016/j.envsoft.2020.104798, 2020.

R2-C5 Line 26: The introduction frames that having a lot of detailed information
automatically leads to overfitting and reasons that you therefore need multi-level models.
This is not necessarily true, overfitting can be controlled in almost all data-driven methods



so its possible to produce more general models with detailed data. Multi-level models are just
another way of doing this not the only way.

A: We argued for a balance between too generalized and too detailed models. We agree
that multi-level modelling is not the only way. Indeed, we wrote that “multilevel or hierarchic
models offer a compromise [...]” (Line 30), meaning that there are of course alternatives. To
clarify, we added to this section the importance of other strategies, such as feature selection to
minimise overfitting by using cross-validation or regularization (the latter is something which
our Bayesian approach offers by design). The revised paragraph now reads:

“In this context, multilevel or hierarchic models are one alternative and offer a
compromise between a single pooled model fitted to all data and many different models fitted
to subsets of the data sharing a particular attribute or group. Bayesian multilevel models use
conditional probability as a basis for learning the model parameters from a weighted
compromise between the likelihood of the data being generated by the model and some prior
knowledge of the model parameters. These models explicitly account for uncertainty in data,
low or imbalanced sample size, and variability of model parameters across different groups
(Gelmanetal., 2014; McElreath, 2016). There are several approaches to the bias-variance trade-
off (McElreath, 2020). We conduct a variable selection through cross-validation to achieve a
balance between predictive accuracy and generalization. Using priors in the Bayesian
framework is using regularization by design and keeps the model from overfitting the data
(McElreath, 2020).”

R2-C6 The explanation in 2.2.1 and 2.2.2 is a bit difficult to follow. Could you try improve
the explanation, maybe using a figure.

A: Based on the comments of another referee (see R1-C5), we are updating the
Tables in section 2.2.2 Model comparison. We added also the following outline of the model
selection steps. This new presentation now clarifies our procedure. The following paragraphs
replaces lines 156-169:

“On the one hand, testing all models possible without any underlying concept is far from
good scientific practice and computationally inefficient; on the other hand, predictors are rarely
fully independent. Hence, we fitted candidate models in three steps of model comparison
outlined below. We compare the model candidates in each step via the expected log pointwise
predictive density (ELPD), which is the sum of a log-probability score of the predictive
accuracy for unobserved data. The distribution of these unobserved data is unknown, but we
can estimate the predictive accuracy with leave-one-out cross-validation (ELPD-LOQ), which
is the sum of the log-probability scores for the given data except for one data point at a time
(Vehtari etal., 2017; McElreath, 2016). According to Vehtari (2020), an ELPD-LOO difference



>4 may be relevant and should also be compared to the standard error of the difference. Hence,
we selected models as follows:

1- We compared models with a gradually increasing number of predictors, based on the
prior knowledge of predictor importance reported in a study using single-level linear
regression by Mohor et al. (2020). This study considered water depth, for which data are
the most widely available and adopted in flood loss models (Gerl et al., 2016) up to a
maximum of twelve predictors (Table 1). For example, model 2 (named "fit2") has water
depth (WD) and building area (BA) as predictors, while model 3 ("fit3") has the previous
two plus contamination (Con) as predictors; model 12 ("fit12") has all twelve predictors
(Table 1). The model candidate with an ELPD-LOO difference >4 compared to the
previous candidate was selected for the next step.

2 — For the model selected in step 1 — “fit_s1” with predictors X®9 = {x1, ... , xa1}, we
compared models with X® predictors plus one of the remaining predictors at a
time, i.e., {X®Y}, {X, xa1+1}, {XOY, Xs142}, ..., {XOY, x12}. All model candidates
that present an ELPD-LOO difference larger than four and with a difference larger
than its standard error were selected for step 3.

3 — We compared the model candidates combining the selected candidates from step 2.
If, for example, two different candidates {X®V, xs1+a} and {X¢V, xs14p} Were selected,
we compared the model candidates {X®V}, {X®Y, Xs1+a}, {X®V, Xs146}, {X&Y, Xs1+a,
Xs1+b}. The model candidate with the least number of predictors and an ELPD-LOO
difference >4 as well as a difference larger than the estimated standard error was
selected eventually.

We compared all candidate models using leave-one-out cross-validation (LOO-CV) with the
Pareto smoothed importance sampling (PSIS-LOQ), which is an out-of-sample estimator of
predictive model accuracy (Vehtari et al., 2017), implemented in the R package loo (Vehtari et
al., 2019). «

R2-C7 | think the title of 2.2.2 should be more like model tuning rather than model
comparison, because you really use the same model but with different settings.

A: We disagree with this statement. We compare models with different sets of
predictors, thus different number of parameters and input data (we maintain the same number
of datapoints, but use more predictor variables). Therefore, a better term would be “model
selection” and we decided to use this term in the revised version of the paper.

On behalf of all co-authors,

Guilherme S. Mohor



