

1
2
3
4
5
6
7
8
9
10
11

12 **Vulnerability and Site Effects in Earthquake Disasters in Armenia
13 (Colombia). II – Observed Damages and Vulnerability**

14
15

16 by
17

18
19 Francisco J. Chávez-García¹, Hugo Monsalve-Jaramillo², Joaquín Vila-Ortega³

20
21
22
23
24
25
26
27
28
29

30 ¹Professor Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510
31 CDMX, México paco@pumas.iingen.unam.mx

32

33

34 ² Correspondence to: Professor Facultad de Ingeniería, Universidad del Quindío, Cra. 15 #12N, Armenia, Quindío,
35 Colombia hugom@uniquindio.edu.co

36

37

38 ³Professor Facultad de Ingeniería, Universidad del Quindío, Cra. 15 #12N, Armenia, Quindío, Colombia
39 jjvilaortega@uniquindio.edu.co

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54 **Abstract**

55
56 Damage in Armenia, Colombia, for the January 25 1999 (Mw6.2, PGA 580 gal) event was disproportionate. We
57 analyse the damage report as a function of number of storeys and construction age of buildings. We recovered two
58 vulnerability evaluations made in Armenia in 1993 and in 2004. We compare the results of the 1993 evaluation with
59 damages observed in 1999 and show that the vulnerability evaluation made in 1993 could have predicted the relative
60 frequency of damage observed in 1999. Our results show that vulnerability of the building stock was the major factor
61 behind damage observed in 1999. Moreover, it showed no significant reduction between 1999 and 2004.

62
63 Key words: earthquake damage; vulnerability; construction type; construction age; building inventory.

64 **1 Introduction**

65 Destructive earthquakes occur relatively frequently in Colombia (the first reported event dates from 1551, Espinosa,
66 2003). However, the development of earthquake engineering began only relatively recently, punctuated by several
67 major, significant events. The first building code in the country was published in 1984 (CCCSR-84, 1984), partly as a
68 result of the heavy toll caused by the Popayán earthquake in March, 1983 (Ingeominas, 1986). Increasing building
69 requirements have improved earthquake resistance, for example phasing out non engineered construction. The
70 development of earthquake engineering has led to a decrease in the vulnerability of buildings in Colombia but progress
71 has been slow, in pace with the development of building codes. In addition, as favoured construction styles evolve,
72 additional challenges appear. For example, the cost of land pushes current housing projects consisting of tall concrete
73 structures for which there is little experience regarding their seismic behaviour in that country. Instrumenting some of
74 those buildings to analyze their motion during small earthquakes would provide useful data and may eventually become
75 a necessity (e.g., Meli et al., 1998). Meanwhile, it is important to learn as much as possible from past destructive events.

76
77
78 Damage evaluation after large earthquakes is recognized as a primary input to understand structural response subject to
79 dynamic excitations. It offers valuable data on the behaviour of structures to actual seismic motion. In addition to very
80 significant efforts like GEER (Geotechnical Extreme Events Reconnaissance, 2020), local initiatives have contributed
81 significantly to understand damage occurrence, especially in relation to site effects (e.g., Chávez-García et al., 1990;
82 Midorikawa, 2002; Sbarra et al., 2012; Montalva et al., 2016; Panzera et al., 2018; Fernández et al., 2019).

83
84 One seismic event that has had a long lasting impact in Colombia is the January 25, 1999, earthquake in the Quindío
85 department, close (18 km) to the city of Armenia. This moderate (Mw6.2), normal fault earthquake had profound
86 economic and social consequences in the country. There was only one accelerograph in Armenia, and it recorded PGA
87 of 518/580/448 gal in the EW/NS/Z components. Strong ground motion duration was very short (smaller than 5 s) and
88 ground motion energy peaked at periods shorter than 0.5 s. The source of the main shock and aftershocks was studied in
89 Monsalve-Jaramillo and Vargas-Jiménez (2002), while macroseismic observations were presented in Cardona (1999).
90 The city of Armenia sustained heavy damage (maximum intensity was IX in EMS-96 scale): 2000 casualties and 10,000
91 injuries due to the collapse of 15,000 houses, with a further 20,000 houses severely damaged (SIQ, 2002). Site effect
92 evaluation during this event in Armenia was addressed by Chávez-García et al. (2018). Earthquake and ambient noise
93 data were analysed with the objective of characterizing local amplification due to soft surficial layers using a variety of
94 techniques. The results showed that, while local amplification contributed significantly to destructive ground motion,
95 observed damage distribution in 1999 was incompatible with the rather small variations in dominant frequency and
96 maximum amplification throughout the city.

97
98 Chávez-García et al. (2018) referred to the damage distribution observed for the 1999 earthquake but no data were
99 analysed. In this paper, we present an analysis of damage observed during the 1999 earthquake. Earthquake damage
100 data is analysed in relation to geology and to the site classes defined in the microzonation map of Armenia (Asociación
101 Colombiana de Ingeniería Sísmica, 1999). In addition, the city of Armenia offers a very uncommon advantage in Latin
102 America. Two vulnerability studies have been conducted in the city, one in 1993 and one in 2004. We compare the
103 1999 damage distribution to vulnerability estimated in 1993 for the small downtown district of the city where the two
104 data sets overlap. The comparison of the two vulnerability studies, in 1993 and in 2004, allows an assessment of the
105 changes in vulnerability in the city as a consequence of a destructive earthquake, even if the method used was different
106 and the studied zones overlap only partially. We show that building vulnerability was the main factor behind the heavy
107 damage toll in Armenia during the 1999 earthquake. Our results substantiate the improvement of engineering practice
108 with time and provide evidence of the efficacy of simple methods to evaluate vulnerability. However, they also strike an
109 alarm bell as they show that vulnerability in Armenia remains high. Our results offer an unusually complete analysis of
110 the major factors behind seismic risk in a typical medium size city in Colombia. Seismic risk mitigation in Armenia,
111 and in similar midsize cities in Latin America, requires an increase in the number of permanent seismic stations and
112 support of additional efforts to improve our understanding of moderate size seismic events.

116 **2 Colombian Building Codes and Practice Evolution**

117
118 This paper will obviate a discussion of the geological setting of Armenia, as it can be found in Chávez-García et al.
119 (2018). The coffee growing region was occupied during the second half of the 19th century. For this reason, data on
120 historical earthquakes is scarce, even though it is located in a zone of high seismic hazard (the current Colombian
121 building code prescribes a PGA of 0.25 g for Armenia for a return period of 475 yr). During the second half of the 20th
122 century, seven earthquakes occurred in the region producing intensities as large as IX (Table 1, Espinosa, 2011).

123
124 Before 1960, construction in this region consisted mainly of bahareque and unreinforced masonry. In Colombia,
125 bahareque refers to structures that use guadua (a local variety of bamboo) for the skeleton elements. Walls are made
126 using a guadua-based mat, covered with mud mixed with dung as bonding agent. At about 1960, reinforced concrete
127 frames began to be used but Colombia lacked a building code until 1984, although conscientious engineers followed
128 guidelines from international codes, mostly American. Between 1977 and 1984 design practice for those structures
129 shifted from the elastic method to ultimate strength design. Unfortunately, this allowed construction companies to
130 decrease the quantity of steel reinforcement. Until 1984, no seismic provisions were considered.

131
132 A major milestone was the Popayán earthquake of March 31, 1983 (ML5.5). This small, shallow event caused major
133 destruction in Popayán, where important Spanish heritage sites were severely damaged. Although restricted in
134 extension, the heavy damage gave the final push for the adoption of a national building code including seismic
135 provisions in 1984. This code had been promoted since the end of 1970's by Asociación Colombiana de Ingeniería
136 Sísmica (Colombian Association for Earthquake Engineering), founded in 1975. A major consequence of the 1984 code
137 was to eliminate new construction using unreinforced masonry. This code was replaced by a new version in 1998. The
138 effects of two events in 1995 (Feb 8, Mw6.6, Aug 19, Mw6.5) convinced engineers that lateral drift requirements in the
139 1984 code were too lenient and stricter requirements were incorporated.

140
141 Only a few months passed between publication of the 1998 building code and the occurrence of the 1999, Armenia,
142 earthquake. Some of the shortcomings identified during this event were addressed in improvements to the code
143 published in 2010; requisites for irregular buildings with weak storeys, short columns, p-Δ effects, and torsion related
144 problems among others. Microzonation of cities with more than 100,000 people became mandatory. However, those
145 studies are the responsibility of local authorities and are not necessarily considered a priority. In Armenia, nine years
146 after becoming compulsory, an update of the microzonation study carried out in the wake of the 1999 earthquake is still
147 missing. Currently, discussions for a new version of the building code centre on imposing requisites on the quality
148 control of the materials used and ensuring the correspondence between drawings and the real structure.

149
150 **3 Damage Observed in 1999**

151
152 In the aftermath of the 1999 event, the Sociedad de Ingenieros del Quindío (Quindian Society of Engineers) organised
153 teams that made a detailed evaluation of damaged structures in Armenia (SIQ, 2002). The status of a building was
154 determined by the attributes of damage level, damage type and usage status (Tang, et al., 2020). The priority was to
155 distinguish between those buildings that did not pose a risk to occupants from those that must be evicted. The template
156 used to qualify buildings allowed to grade the damage sustained by buildings and included information on year of
157 construction, structural system, and number of storeys. SIQ (2002) classified observed damage using a colour scale:

- 158 • Grey. Very light or no damage at all.
- 159 • Green. The building can still be used. Although some damage is apparent in non-structural elements, it poses
160 no risk to occupants.
- 161 • Yellow. Significant damage, to the point that partial occupancy restriction is required. The structure is not
162 evaluated as unsafe but access to parts of it must be restricted.
- 163 • Orange. Unusable structure. Damage to the structure implies a high risk and the building cannot be occupied.
- 164 • Red. Total collapse or danger of collapse due to severe damage to the structure or its foundation.

165 This scale is quite standard and very similar to that proposed by the European Seismological Commission (Xin et al.,
166 2020). For our purpose, we have simplified this scale. We use light damage to refer to structures classified in grey or
167 green. Moderate damage in this paper is used for buildings classified as yellow. Finally, severe damage corresponds to
168 structures classified as orange or red. The SIQ (2002) report presents an inventory of 43,023 structures classified as a
169 function of damage sustained. From this total, data for 1,946 sites could not be used due to incomplete information that
170 made it impossible to locate them on a map. This number suggests a lower limit for the uncertainties in our database,
171 inevitable in any post-earthquake damage survey and which we have no means to evaluate. However, the number of
172 samples is large enough to justify our confidence in average values. Our final database for Armenia includes 41,077
173 buildings. Data is available only for damaged structures and it is not possible to normalize the results relative to the
174 number of existing buildings in the city.

175
176 Five categories were used to classify the buildings structuring type, following CCCSR-84 (1984). In order of decreasing
177 seismic performance, the first four categories are: frame structures, confined masonry, unreinforced masonry, and
178 bahareque structures (wooden structures are included here). The fifth category, as written in the template used by SIQ

179 (2002), is “none of the preceding”, named as “other” in the following. This last category was used to refer to buildings
180 using hybrid structuring systems, a mix of different materials, and unstructured houses mixing wood with other
181 elements. Such precarious houses are non-engineered structures and are common in illegal settlements.
182

183 Figure 1 shows the distribution of the 6,467 structures classified as severely damaged in Armenia. The background of
184 the figure shows the geological formations that can be found in the city (AIS, 1999), from a map at the scale 1:15,000.
185 No correlation is observed between geology and severe damage distribution. The same observation can be made for
186 moderate and light damage. Site geology seems irrelevant to explain damage distribution for this event, which shows no
187 clear pattern. It may be argued that the geological classification cannot reflect site effects caused by mostly thin layers.
188 That site effects in Armenia are related to thin layers is suggested by the values of dominant frequencies in the city,
189 shown to be comprised between 2 and 3 Hz by Chávez-García et al. (2018). Figure 2 shows the depth to the base of ash
190 deposits in Armenia (Ingeominas, 1999), determined from the inversion of 36 vertical electrical soundings. Dominant
191 frequencies computed for the thicknesses shown in Figure 2 using the average shear-wave velocities for the topmost
192 sedimentary layers (Chávez-García et al., 2018) are comprised between 2 and 3 Hz, similar to those observed. Shallow
193 soils in Armenia were mapped in the microzonation study of the city, carried out in the wake of the 1999 earthquake
194 (AIS, 1999). For example, Table 2 shows the shear-wave velocity soil profile at two representative sites in Armenia,
195 indicated by stars in Figure 2. From these profiles, we may compute the fundamental soil frequencies. We obtain 2.5 Hz
196 for site UNI and 2.8 Hz for site EST, in very good agreement with Chávez-García et al. (2018). The final microzonation
197 map proposed by AIS (1999) defined four different soil types: ash deposits (zone A), thin sedimentary fill deposits
198 (zone B), alluvial terraces, residual soils and ancient volcanic flows (zone C), and soils that have undergone shearing as
199 they are located close to Armenia fault that cuts through the city (zone D). The seismic coefficients proposed by AIS
200 (1999) decrease from zones A to C, implying similarly decreasing site amplification. Zone D was declared inapt for
201 construction. Figure 3 shows histograms of damage distribution for the city as a function of structuring type, damage
202 level, and soil class. Bahareque structures suffered the largest proportion of severe damage, followed by structures in
203 the category “other” and unreinforced masonry. Figure 3 shows clearly that damage distribution is independent of soil
204 type as classified by the seismic microzonation study. This result supports the conclusions of Chávez-García et al.
205 (2018). They observed that, while local amplification is far from being negligible, it does not vary greatly within
206 Armenia and is not helpful to explain damage distribution. Site effects may have enhanced building damage throughout
207 the city but the resulting damages are distributed homogeneously throughout the city, as was shown in Figure 1.
208

209 Consider now the role of two additional variables on damage distribution: number of storeys and building age. In order
210 to compare these results with the vulnerability study made in 1993 in Armenia, we restrict this analysis to the small
211 downtown district shown in Figure 2, where the 1993 study was carried out. In this sector, the damage database
212 includes 3,697 records corresponding to 470 bahareque, 884 unreinforced masonry, 195 confined masonry, and 745
213 frame structures. We dropped the data for 1,403 structures classified as “other”. Figure 4 shows damage distribution as
214 a function of number of storeys and structuring type. The diagram for all types of structures combined shows an
215 apparent decrease in severe damage and increase in light damage with increasing number of storeys. The diagrams for
216 each structure type do not show such progression. The reason for that apparent trend is that buildings smaller than five
217 storeys are overrepresented (90% of our sample) in the downtown district. One- to two-storey high bahareque structures
218 are 95% of the total. The tallest unreinforced masonry structures were one 6-storey and one 10-storey buildings. With
219 this caveat, it is clear that number of storeys was not a major factor in damage distribution during the 1999 earthquake
220 in Armenia. This observation suggests that we may discard the double resonance effect (soft soil resonance coupled to
221 building resonance) as a significant factor. Chávez-García et al. (2018) showed that the fundamental soil periods in
222 Armenia are comprised between 0.4 and 0.6 s (see their Figure 13). If the double resonance effect were significant, we
223 should observe a higher relevance of the number of storeys in damage distribution, given the large range of dominant
224 period expected for the buildings in Armenia as a function of number of storeys.
225

226 Figure 5 shows damage distribution as a function of structuring type and construction period, again for the small
227 downtown district. Our division of time corresponds to the evolution of construction practice in Colombia, as discussed
228 above. Severe damage in bahareque structures do not show a clear trend with time; it is larger than 60% for all periods,
229 except for the period 1985-1997. The period later than 1998 is not representative for bahareque structures as there is
230 only one light, zero moderate, and two severely damaged structures. In contrast, severe damage for frame and
231 unreinforced masonry structures shows a steady decrease with time (and the number of structures is significant). The
232 relative number of structures suffering light damage increases with decreasing age of the structure, while the relative
233 frequency of severe damage decreases significantly, showing the benefit of building code improvements. The number of
234 confined masonry structures built before 1959 was very small (10 buildings in our sample) making the histograms for
235 that period unreliable. For later periods, confined masonry shows an increase in the percentage of light damage and a
236 stable or decreasing percentage for moderate and severe damage.
237

238 **4 Vulnerability and Damage Distribution**

239 Earthquake damage is the result of strong ground motion and building vulnerability. Vulnerability of the building stock
240 has always been a key factor in seismic risk evaluations (e.g., Dolce et al., 2006; Vicente et al., 2014; Fikri et al., 2019),
241

242 or post-earthquake evaluations (e.g., Marotta et al., 2017). A review of current challenges has been presented in Silva et
243 al. (2019). A major problem is the large number of buildings for which a vulnerability estimate is required in a city.
244 When the number of structures is limited to a few hundreds, simple methods are often used, which usually consist in
245 simple evaluations of a limited number of parameters (e.g., Fikri et al., 2019). Larger building populations have to be
246 dealt with using probabilistic methods (e.g., Noh et al., 2017) or extremely indirect techniques (Geiß et al., 2014).

247
248 In Latin America, vulnerability studies of the building stock are not often made outside capital cities. However, in the
249 case of Armenia, we are fortunate to have available two vulnerability studies: one performed in 1993 (López et al.,
250 1993), six years prior to the 1999 event, and one made in 2004 (Cano-Saldaña et al., 2005). Those two studies followed
251 different procedures and the area coverage overlaps only partially (Figure 2). In this section, we will compare the results
252 of the 1993 vulnerability study with damage distribution observed in 1999. Then, we will compare the two vulnerability
253 evaluations between them.

254
255 In 1993, different sectors of the city were sampled but not all of the data were preserved. We analyse the results for the
256 downtown sector presented in López et al. (1993), shown in Figure 2. A census was made to count the number of
257 structures of each type. In the downtown sector, 3,364 buildings were counted and assigned to one of three categories:
258 bahareque structures (908), unreinforced masonry structures (1,877), and frame structures (579). It was not possible to
259 evaluate, even in a simplified way, all those structures. For this reason, a small sample of 84 buildings was designed,
260 assuming normal distribution and choosing a 95% confidence level of the extrapolation of the results to the total
261 population. The 84 buildings were randomly selected in the field and the vulnerability of each of them was evaluated
262 using the procedure described in Tassios (1989), which is very similar to that described in Inel et al. (2008) or Alam et
263 al. (2013). Each selected building was visited by a team of students of civil engineering and a detailed template was
264 completed with information on the structure. The compiled information consisted of: structuring type, relation with
265 neighbouring structures (possible interaction problems), year of construction, maintenance, vertical and horizontal
266 configuration, and roofing material. These factors were assigned numerical values and combined with arbitrary weights
267 based on expert opinions to compute a vulnerability index (VI) for each building. VI was made to vary between 0 and
268 100, where 0 corresponds to an absolutely safe structure and 100 to a totally vulnerable structure. Finally, the
269 vulnerability indexes determined for the sample were extrapolated to the complete population in the downtown district.
270

271 Figure 6 compares the VI values determined in 1993 with damage observed during the 1999 earthquake inside the
272 downtown district (solid line polygon in Figure 2). Percentages for VI values were extrapolated from the numbers
273 determined for the 84 building sample. In this figure, we counted together moderate and severe damage, while VI was
274 classified in two groups: larger and smaller than 20. We observe a very good correlation between VI estimated in 1993
275 and damage observed during the 1999 earthquake, six years later. Thus, the approximate procedure used to estimate VI
276 in 1993 was effective to predict dynamic behaviour during that earthquake.

277
278 In addition to comparing extrapolated VI with damages for the downtown district, we may ask another question. How
279 did each one of the 84 buildings, whose VI was evaluated, fare during the 1999 earthquake? This question has no
280 simple answer due to different georeferencing systems for the two surveys (vulnerability and damage) and incomplete
281 data. Only 28 out of the 84 could be confidently identified. The unidentified buildings could be absent from the
282 damaged buildings database because they suffered no damage or because their recorded location was inaccurate. Figure
283 7 shows a whisker plot of the observed VI values against observed damage for the 28 buildings that could be identified
284 in both databases. VI values are well correlated with observed damage. Figure 7 shows that severe damage may be
285 associated with an average VI of 44, moderate damage with an average VI of 32, while light damage corresponds to an
286 average VI of 16.

287
288 Consider finally the vulnerability study made in 2004 (Cano-Saldaña et al., 2005). The procedure used was very
289 different and followed that of Velásquez and Jaramillo (1993). Cano-Saldaña et al. (2005) computed expected losses for
290 three different events, considered to pose the largest seismic hazard for Armenia. A required input for them was an
291 estimate of the vulnerability for the building stock, and this is the data we recuperated from that study. Cano-Saldaña et
292 al. (2005) selected a sector of the downtown district that overlaps only partially with the district sampled in 1993. It is
293 shown with dashed line in Figure 2. They tallied every building in that sector, a total of 2,525 land plots. For each one
294 of them, a template simpler than that of 1993 was completed including data on structuring type, number of storeys,
295 roofing type, and construction quality. The simplified nature of the template made it possible to complete it for the
296 2,525 land plots, in contrast to the more detailed template used in 1993. We recuperated the 2004 building database and
297 estimated vulnerability using the same procedure used in 1993; i.e., assigning numerical values to each factor and
298 combining them with arbitrary weights based on expert opinions to compute a vulnerability index for each building in
299 the sample. The weights used to estimate a vulnerability index had to be modified from those used in 1993 given that
300 less information on each structure was available. The VI results for the 2004 study may thus have a constant bias. We
301 could assign a vulnerability index to 1,217 buildings, out of the 2,525 counted in 2004. The building categories that
302 could be identify between the two studies were bahareque, unreinforced masonry and frame structures. VI values were
303 grouped in three categories: low (VI between 0 and 20), medium (VI between 20 and 40), and high (VI larger than 40).
304 The results in Figure 8 show that the relative proportions are maintained between 1993 and 2004: most buildings in that

305 sector have still high vulnerability in 2004 and less than 20% have low VI. Our results suggest that significant
306 improvements in the relative vulnerability occurred in the 11-year period between 1993 and 2004. High vulnerabilities
307 are still predominant in downtown Armenia, in spite of the destruction of weak buildings in the 1999 earthquake and the
308 reinforcement carried out during the reconstruction of the city. It may be hoped that this result will prompt local
309 authorities to take decisive actions to mitigate seismic risk in Armenia. A starting point could be to replicate the use of
310 simplified procedures to estimate vulnerability to evaluate possible changes in the 17-year period since 2004.
311

312 5 Conclusions

313 Colombia, and in particular the coffee growing region, has been historically affected by large earthquakes, with the
314 1999 event being the most recent destructive event. The consequences of that earthquake significantly changed society
315 in Armenia and forced important improvements in engineering practice. The large economic consequences led the
316 government to add a new tax to pay for reconstruction: a levy of 2% was imposed on every bank transaction in the
317 country. Earthquake disasters occur rarely and therefore seismic risk is seldom a priority. In Armenia region, the first
318 two accelerographs were installed in 1994: in the campus of Universidad del Quindío, and in Calarcá (a neighbouring
319 town, 10 km to the SE of Armenia). To date, they continue to be the only accelerographs in operation. As mentioned
320 above, the mandatory microzonation study of Armenia is still due.
321

322 We have presented an analysis of observed damage and vulnerability in Armenia during the 1999 earthquake. Our
323 results are based on databases that had remained as unpublished reports. The severity of damage is uncorrelated either
324 with geology or with the zones identified in the microzonation map. Damage distribution is uncorrelated with structure
325 height but we do observe a decrease in the severity of damage for younger structures. The data on observed damages
326 were contrasted against two vulnerability evaluations, one in 1993 and one in 2004. In the 1993 study, 84 buildings
327 were visited and their vulnerability was evaluated using a detailed template. The comparison of the results with
328 observed damage in the city six year later strongly supports this method.
329

330 Our results indicate that building vulnerability was the main factor behind the large damage caused by the 1999
331 earthquake. The comparison between the vulnerability studies of 1993 and 2004 shows no significant improvements in
332 the relative vulnerability in that 11-year period. Unfortunately, it is possible that the money allocated to house owners
333 for repairs may not have been used to that purpose. Seismic risk mitigation in Armenia, and in similar midsize cities in
334 Latin America, requires more decisive support to increase the number of permanent seismic stations. This is especially
335 important given that current practice fosters tall concrete structures for which there is little experience regarding their
336 seismic behavior. This paper strives to ring an alarm bell to the current risk in Armenia through a better understanding
337 of a significant past destructive event.
338

339
340 **Author Contributions:** H MJ recovered the original data. F JCG, H MJ and J JVO analyzed the data. J JVO prepared the
341 maps and processed the statistics of the data. F JCG wrote the first draft and prepared the figures. All three authors
342 revised the manuscript and made final corrections.
343

344 **Competing interests.** The authors declare that they have no conflict of interest.
345

346 **Acknowledgements**

347 We thank Sociedad de Ingenieros del Quindío and Servicio Geológico Colombiano (ancient Ingeominas) for
348 authorization to use the data included in the unpublished reports on damage distribution and microzonation projects
349 carried out in Armenia after the 1999 earthquake. Part of this research was made during a sabbatical visit of F JCG to
350 Facultad de Ingeniería, Universidad del Quindío. This visit was possible thanks to the support of Dirección General de
351 Asuntos del Personal Académico of UNAM through program PASPA. Additional support was received from project
352 934 supported by Vicerrectoría de Investigaciones of Universidad del Quindío, and from the Rectory of Universidad del
353 Quindío. The comments of Dr Francesco Panzera and an anonymous reviewer were helpful to improve the manuscript.
354

355 **References**

356
357 AIS (Asociación Colombiana de Ingeniería Sísmica): Estudio de microzonificación sísmica para orientar la
358 reconstrucción de Armenia-Quindío, 1999 (in Spanish).
359
360 Alam MS, Haque FMM, Sajjad MR, and Yasir Z: A statistical study on structural characteristics of RC building stock
361 of Dhaka City for seismic loss assessment application, Appl Mech Mater, 330:884–888, 2013.
362
363 Cano-Saldaña L, Agudelo-Calvo JA, Jaramillo-Fernández JD, Monsalve-Jaramillo H and Upegui-Botero FM:
364 Metodología para la evaluación del riesgo sísmico de pequeñas y medianas ciudades. Estudio de caso: zona centro de la
365
366

367 ciudad de Armenia – Colombia, Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, 5:3-
368 20, 2005 (in Spanish).

369

370 Cardona, OD: Terremoto de Armenia, Colombia, enero 25 de 1999, Revista de Ingeniería Sísmica, 60:21-42, 1999 (in
371 Spanish).

372

373 Chávez-García FJ, Pedotti G, Hatzfeld D, and Bard PY: An experimental study of site effects near Thessaloniki
374 (Northern Greece), B Seismol Soc Am, 80(4):784-806, 1990.

375

376 CCCSR-84: Código colombiano de construcciones sismorresistentes 1984, Colombian Association of Earthquake
377 Engineering (AIS), Ministry of Public Works and Transportation, and National Bureau for Disaster Attention and
378 Prevention, 1984 (in Spanish).

379

380 Chávez-García FJ, Monsalve-Jaramillo H, Gómez-Cano M, and Vila-Ortega JJ: Vulnerability and site effects in
381 earthquake disasters in Armenia (Colombia). I—Site effects, Geosciences, 8:254, 2018.

382

383 Dolce M, Kappos A, Masi A, Penelis G, and Vona M: Vulnerability assessment and earthquake damage scenarios of the
384 building stock of Potenza (Southern Italy) using Italian and Greek methodologies, Eng Struct, 28:357-371, 2006.

385

386 Espinosa A: Historia sísmica de Colombia 1550-1830, Academia Colombiana de Ciencias Exactas, Físicas y Naturales,
387 Universidad del Quindío, 2003 (in Spanish).

388

389 Espinosa A: Enciclopedia de desastres naturales históricos de Colombia, Academia Colombiana de Ciencias Exactas,
390 Físicas y Naturales, Universidad del Quindío, 2011 (in Spanish).

391

392 Fernández J, Pastén C, Ruiz S, and Leyton F: Damage assessment of the 2015 Mw 8.3 Illapel earthquake in the North-
393 Central Chile, Nat Hazards, 96:269-283, 2019.

394

395 Fikri R, Dizhur D, and Ingham J: Typological study and statistical assessment of parameters influencing earthquake
396 vulnerability of commercial RCFMI buildings in New Zealand, B Earthq Eng, 17:2011-2036, 2019.

397

398 Geiß C, Taubenböck H, Tyagunov S, Tisch A, Post J, and Lakes T: Assessment of seismic building vulnerability from
399 space, Earthq Spectra, 30:1553-1583, 2014.

400

401 Geotechnical Extreme Events Reconnaissance: <http://www.geerassociation.org>, last access: 29 October 2020.

402

403 Inel M, Senel SM, Toprak S, and Manav Y: Seismic risk assessment of buildings in urban areas: a case study for
404 Denizli, Turkey, Nat Hazards, 46:265-285, 2008.

405

406 Ingeominas: El sismo de Popayán del 31 de marzo de 1983, 1986 (in Spanish).

407

408 Ingeominas: Terremoto del Quindío (enero 25 de 1999), 1999 (in Spanish).

409

410 López CA, Merchan JM, and Tejada JL: Evaluación del escenario de pérdidas en caso de terremoto para la ciudad de
411 Armenia, sector III centro, BE thesis, School of Engineering, Quindío University, 1993 (in Spanish).

412

413 Marotta A, Sorrentino L, Liberatore D, and Ingham JM: Vulnerability assessment of unreinforced masonry churches
414 following the 2010–2011 Canterbury earthquake sequence, J Earthq Eng, 21(6):912-934, 2017.

415

416 Meli R, Faccioli E, Muria-Vila D, Quaas R, and Paolucci R: A study of site effects and seismic response of an
417 instrumented building in Mexico City, J Earthq Eng, 2(1):89-111, 1998.

418

419 Midorikawa, S: Importance of damage data from destructive earthquakes for seismic microzoning. Damage distribution
420 during the 1923 Kanto, Japan, earthquake, Ann Geophys, 45(6):769-778, 2002.

421

422 Montalva GA, Chávez-García FJ, Tassara A, and Jara Weisser DM: Site Effects and Building Damage Characterization
423 in Concepción after the Mw 8.8 Maule Earthquake, Earthq Spectra, 32:1469-1488, 2016.

424

425 Monsalve-Jaramillo H, Vargas-Jiménez CA: El sismo de Armenia, Colombia (Mw = 6.2) del 25 de enero de 1999. Un
426 análisis telesísmico de ondas de cuerpo, observaciones de campo y aspectos sismotectónicos, Revista Geofísica IPGH,
427 57:21-57, 2002 (In Spanish).

428

429 Noh HY, Kiremidjian A, Ceferino L, and So E: Bayesian updating of earthquake vulnerability functions with
430 application to mortality rates, *Earthq Spectra*, 33:1173-1189, 2017.

431

432 Panzera F, Lombardo G, Imposa S, Grassi S, Gresta S, Catalano S, Romagnoli G, Tortorici G, Patti F, and Di Maio E:
433 Correlation between earthquake damage and seismic site effects: the study case of Lentini and Carlentini, Italy, *Eng
434 Geol*, 240:149:162, 2018.

435

436 Sbarra P, De Rubeis V, Di Luzio E, Mancini M, Moscatelli M, Stigliano F, Tosi P, Vallone R: Macroseismic effects
437 highlight site response in Rome and its geological signature, *Nat Hazards*, 62:425-443, 2012.

438

439 Silva V, Akkar S, Baker J, Bazzurro P, Castro JM, Crowley H, Dolsek M, Galasso C, Lagomarsino S, Monteiro R,
440 Perrone D, Pitilakis K, and Vamvatsikos D: Current challenges and future trends in analytical fragility and vulnerability
441 modeling, *Earthq Spectra*, 35:1927-1952, 2019.

442

443 Sociedad de Ingenieros del Quindío (SIQ): Procesamiento y Análisis de los Formularios de Evaluación de Daños del
444 Sismo del 25 de Enero de 1999 en Armenia (Quindío), 2002 (in Spanish).

445

446 Tang C, Liu X, Cai Y, Van Westen C, Yang Y, Tang H, Yang C, and Tang C: Monitoring of the reconstruction process
447 in a high mountainous area affected by a major earthquake and subsequent hazards, *Nat Hazard Earth Sys*, 20(4):1163-
448 1186, 2020.

449

450 Tassios T: Evaluation of the relative seismic risk of existing buildings by means of simplified vulnerability techniques.
451 National Technical University of Athens, 1989.

452

453 Velásquez E and Jaramillo JD: Estudio de la amenaza sísmica de Medellín, in *Estudio de la amenaza, zonificación,
454 análisis y vulnerabilidad sísmica para Medellín*, Report from EAFIT University to Town Hall of Medellín, UNDP, 1-48,
455 1993 (in Spanish).

456

457 Vicente R, Ferreira T, and Maio R: Seismic risk at the urban scale: assessment, mapping and planning, *Proc Econ
458 Financ*, 18:71-80, 2014.

459

460 Xin D, Daniell JE, and Wenzel F: Review article: Review of fragility analyses for major building types in china with
461 new implications for intensity-PGA relation development, *Nat Hazard Earth Sys*, 20(2):643-672, 2020.

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492 Table 1. Data of the seven damaging earthquakes that have occurred in Colombian coffeee growing region during the
 493 second half of the 20th century.

Earthquake	Date	Mw	Depth [km]	Latitude N	Longitude W
Pueblo Rico	23.11.1979	7.2	110	4.81	76.20
Popayán	31.03.1983	5.5	22	2.46	76.69
Paez	06.06.1994	6.8	10	2.47	75.68
Murindó	18.10.1992	7.5	10	7.07	76.80
Calima	08.02.1995	6.6	80	4.02	76.74
El Palmar	19.08.1995	6.5	127	5.08	75.63
Armenia	25.01.1999	6.2	19	4.47	75.67

496

497

498

499

500

501

502

503 Table 2. Shear wave velocity (Vs) soil profile at two representative sites in Armenia. The sites are indicated by stars in
 504 Figure 2.

UNI		EST	
Thickness [m]	Vs [m/s]	Thickness [m]	Vs [m/s]
5.2	120	4.5	115
11.6	200	3.0	80
16.7	370	-	185
-	540	-	-

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

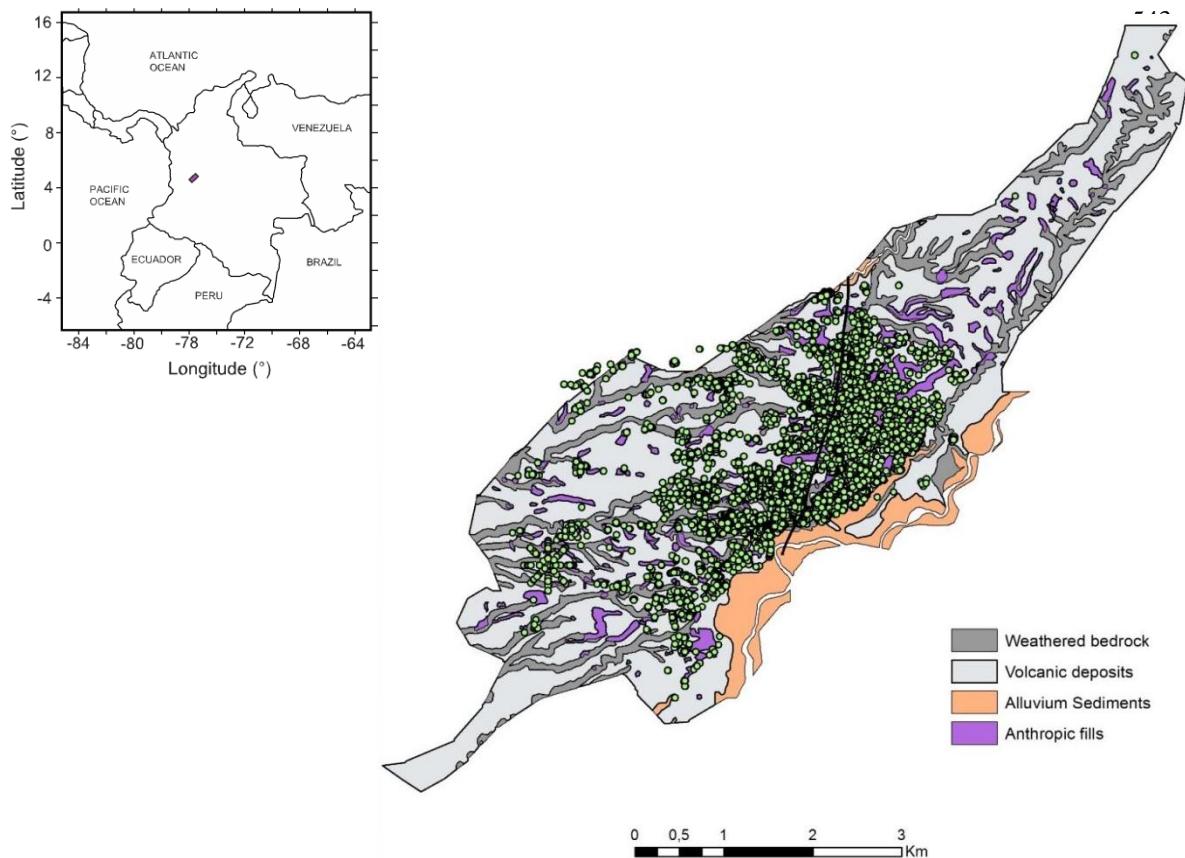
533

534

535

536

537


538

539

540

541

542

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

Figure 1 Upper left: The small rectangle shows the location of Armenia in Colombia, South America. The main figure shows the geological map of the city from a map at the scale 1:15,000. The small circles indicate the location of 6,467 structures that were severely damaged during the January 25, 1999, earthquake. The thick solid line crossing the city from north to south shows the trace of Armenia fault. [Modified from Ingeominas, 1999.]

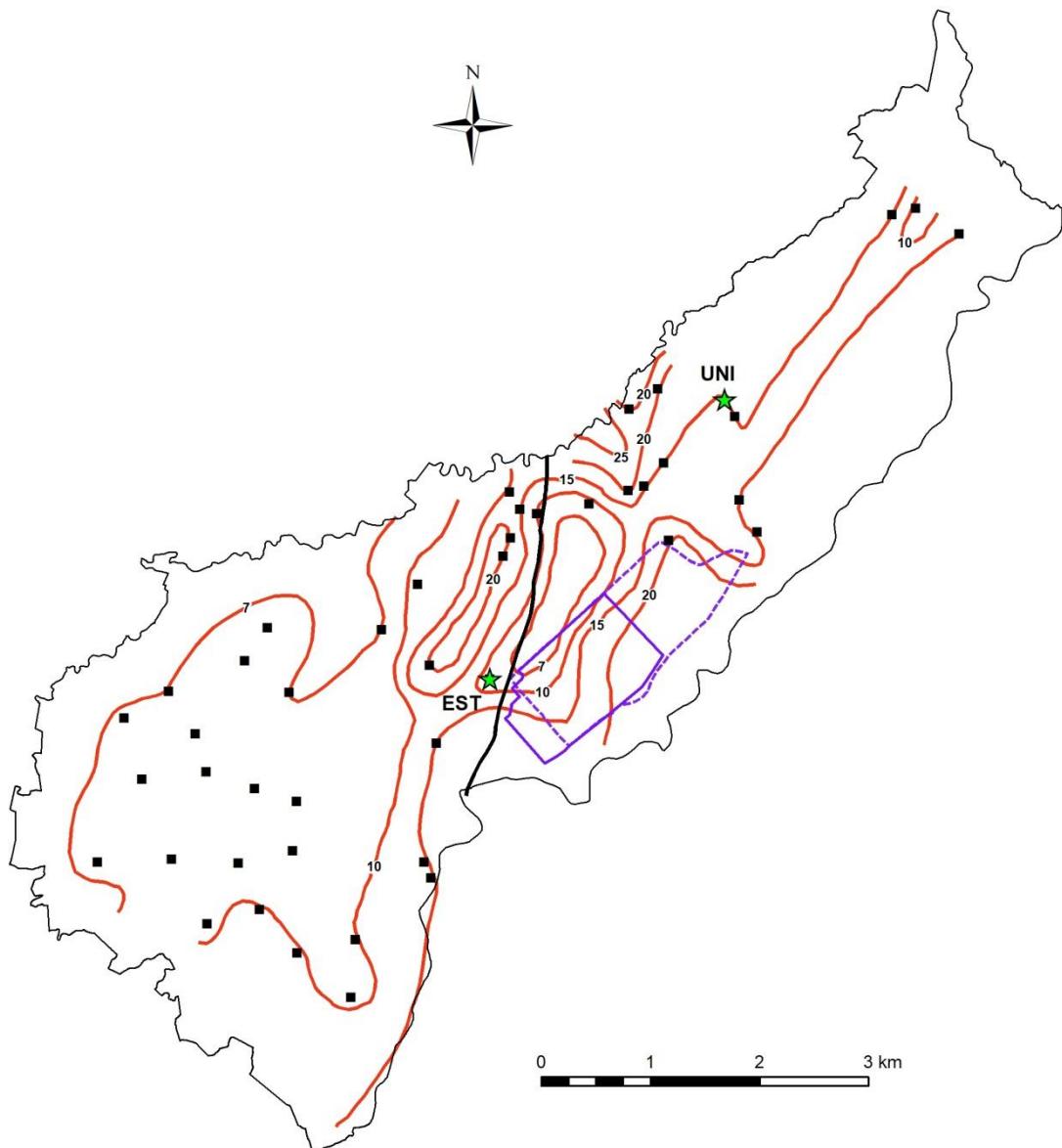
577

578

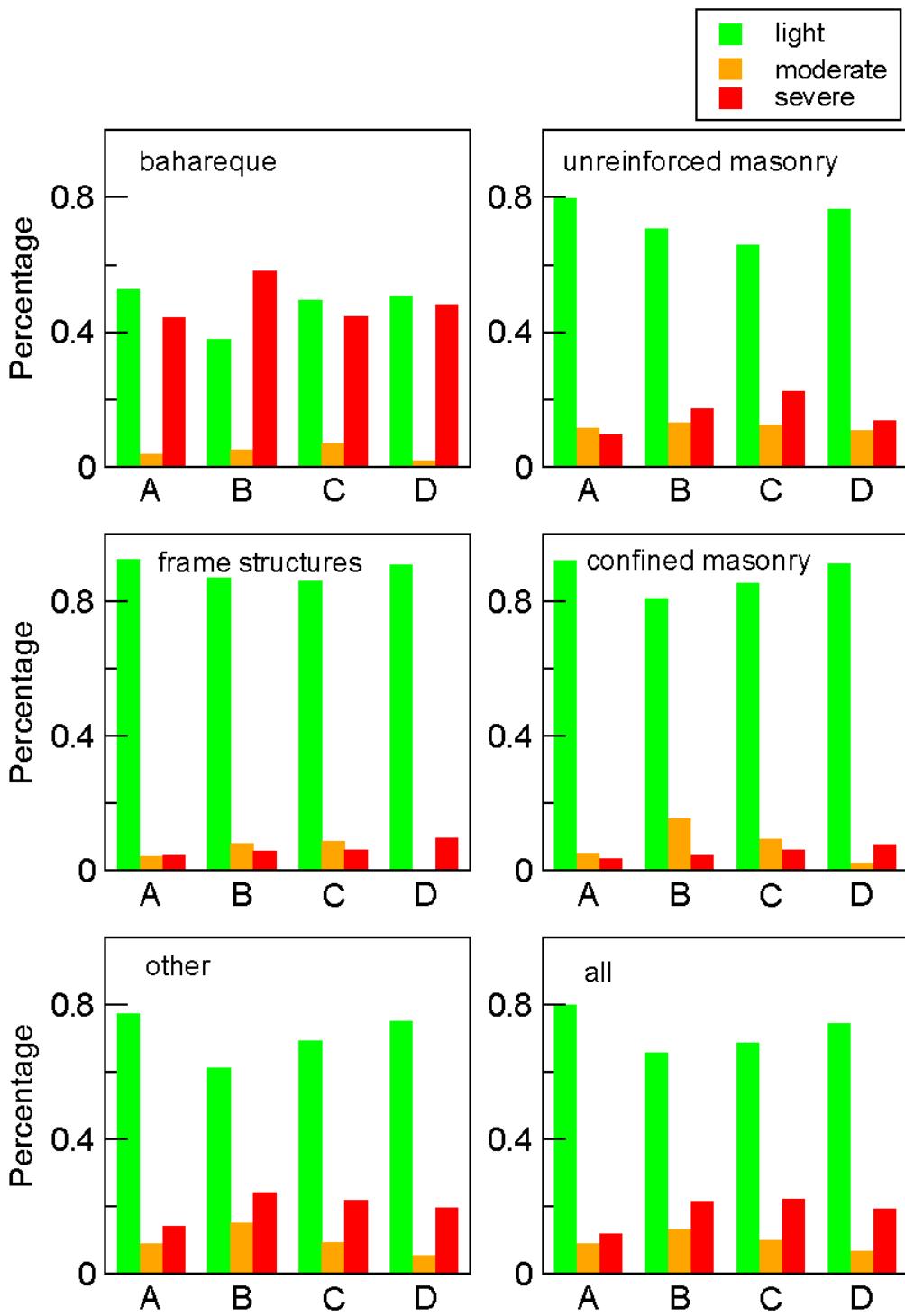
579

580

581

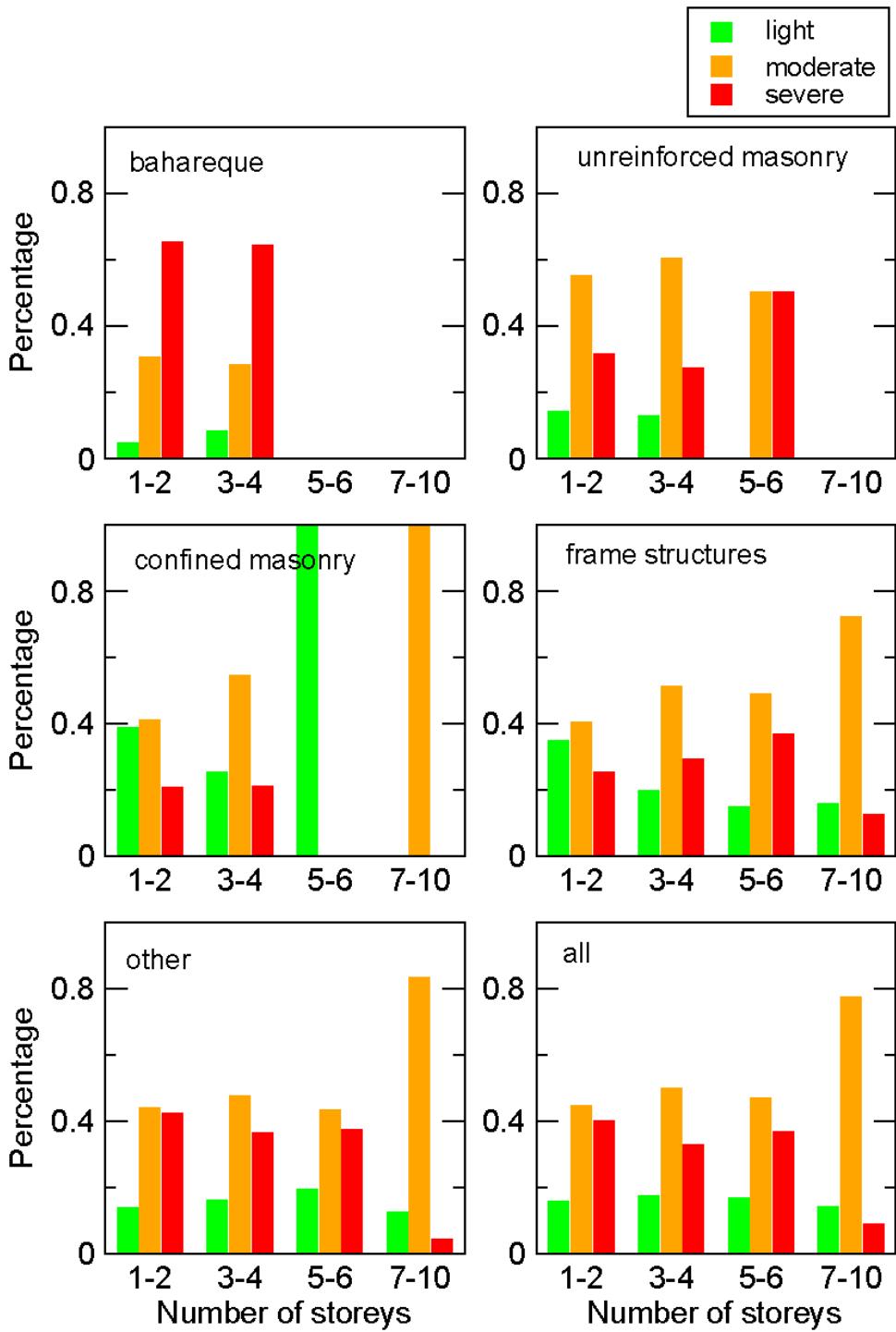

582

583

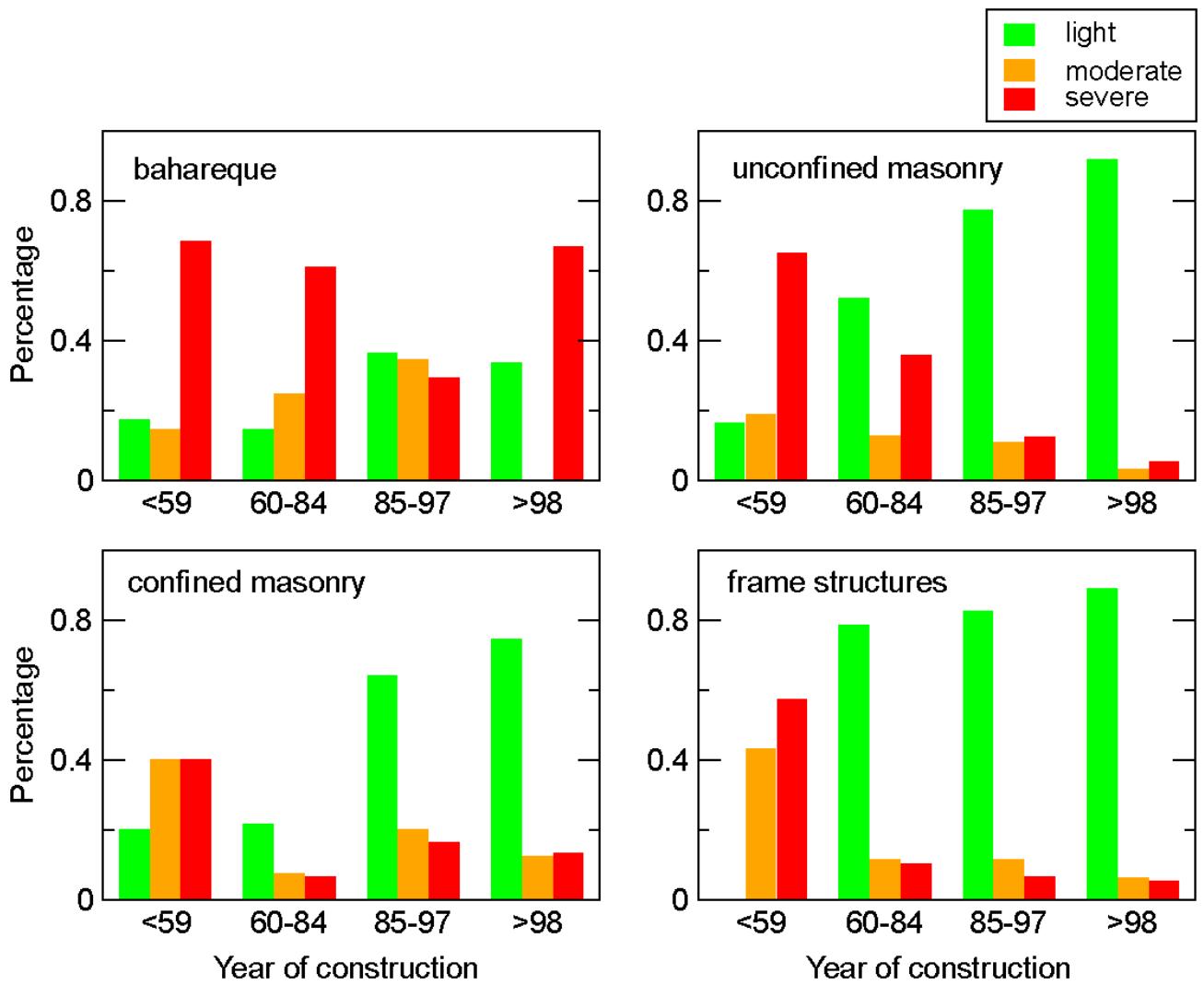

584

585

586



587
 588
 589
 590
 591 Figure 2 Contours of the depth of the interface (in m) at the base of the ash deposits that cover the city of Armenia. The
 592 solid squares show the location of the 36 electrical vertical soundings where the depth of that interface was measured.
 593 The thick solid line crossing the city from north to south indicates the trace of Armenia fault. The solid line polygon
 594 inside the city shows the extent of the downtown district covered in the 1993 vulnerability study. The dashed line
 595 outline shows the area covered by the vulnerability study carried out in 2004. [Modified from Ingeominas, 1999.]
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610



611
612
613
614
615
616
617
618
619
620
621
622
623
624

Figure 3 Histograms of observed damage in Armenia for the January 25, 1999, earthquake. Each diagram corresponds to the given structuring type and shows the relative incidence of light, moderate, and severe damage as a function of the four soil types defined in the microzonation map of AIS (1999) (A, B, C, and D). The last diagram shows data for all structuring types together.

625
626
627
628 Figure 4 Histograms of observed damage in Armenia for the January 25, 1999, earthquake. Each diagram corresponds
629 to the given structuring type and shows the relative incidence of light, moderate, and severe damage for groups of
630 buildings of similar number of storeys. The last diagram shows data for all structuring types together.
631
632
633
634
635
636
637

638
639
640
641 Figure 5 Histograms of observed damage in Armenia for the January 25, 1999, earthquake. Each diagram corresponds
642 to the given structuring type and shows the relative incidence of light, moderate, and severe damage as a function of the
643 time period where the structure was built (before 1959, between 1960 and 1984, between 1985 and 1997, and later than
644 1998). The data shown corresponds to the downtown district whose outline is shown in Figure 2.

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

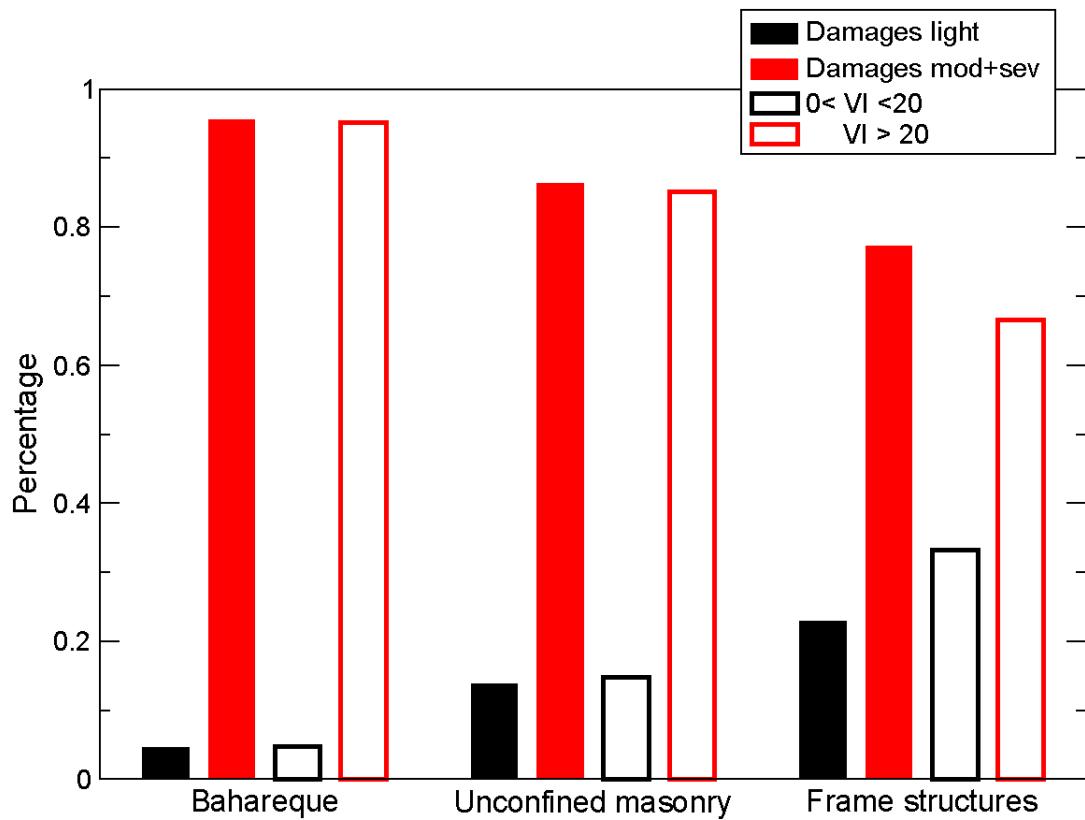


Figure 6 Comparison between vulnerability values estimated in 1993 and damages observed in 1999. This comparison was only possible for the three structuring types shown. Moderate and severe damages were counted together. Vulnerability indexes (VI) are separated in two groups, below and above a value of 20. Both damages and vulnerabilities correspond to the complete building population inside the polygon drawn with solid line in Figure 2.

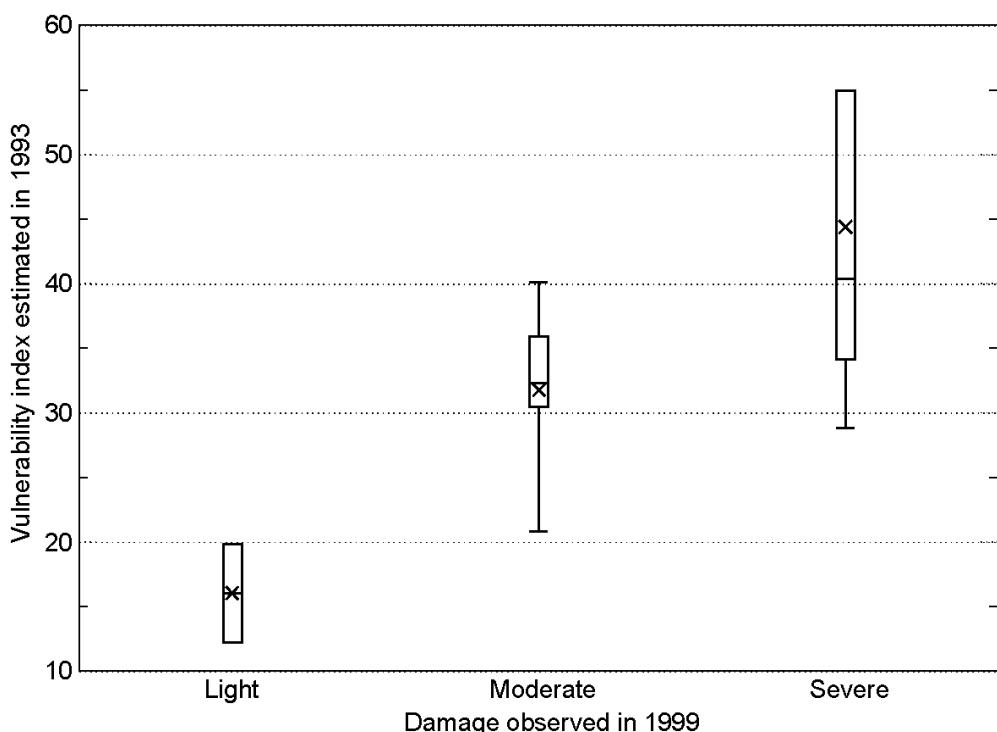
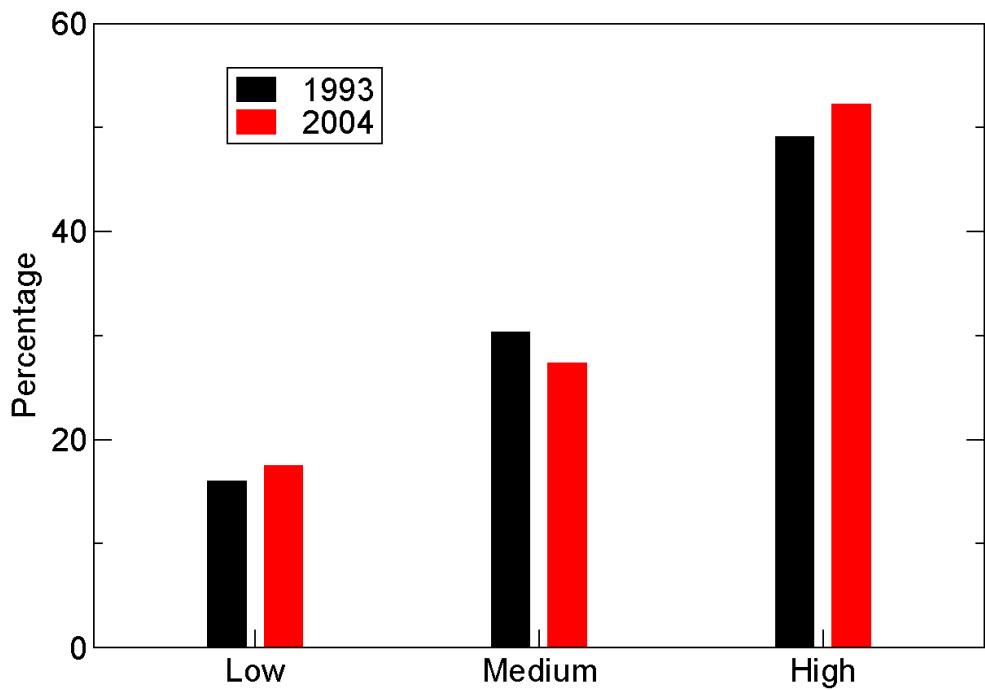



Figure 7 Whisker plot comparing the vulnerability index for 28 buildings evaluated in 1993 against their actual behavior observed during the 1999 earthquake. The cross inside each symbol indicates the location of average values.

677
 678
 679
 680 Figure 8 Comparison between percentages of buildings classified as low, medium and high vulnerability between the
 681 evaluation made in 1993 and that of 2004 in Armenia. The values for 2004 used ad-hoc weights in an effort to get a
 682 vulnerability estimate compatible with the scale used in 1993. Values for 2004 may thus have a constant bias.
 683
 684
 685
 686
 687
 688
 689