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Abstract. Climate models ’outputs are affected by biases that need to be detected and adjusted to model climate impacts. Many 

climate hazards and climate-related impacts are associated with the interaction between multiple drivers, i.e. by compound 
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events. So far climate model biases are typically assessed based on the hazard of interest, and it is unclear how much a potential 

bias in the dependence of the hazard drivers contributes to the overall bias and how the biases in the drivers interact. Here, 25 

based on copula theory, we develop a multivariate bias assessment framework, which allows for disentangling the biases in 

hazard indicators in terms of the underlying univariate drivers and their statistical dependence. Based on this framework, we 

dissect biases in fire and heat stress hazards in a suite of global climate models by considering two simplified hazard indicators, 

the wet-bulb globe temperature (WBGT) and the Chandler Burning Index (CBI). Both indices solely rely on temperature and 

relative humidity. The spatial pattern of the hazards indicators is well represented by climate models. However, substantial 30 

biases exist in the representation of extreme conditions, especially in the CBI (spatial average of absolute bias: 21°C) due to 

the biases driven by relative humidity (20°C). Biases in WBGT (1.1°C) are small compared to the biases driven by temperature 

(1.9°C) and relative humidity (1.4°C), as the two biases compensate each other. In many regions, also biases related to the 

statistical dependence (0.85°C) are important for WBGT, which indicates that well-designed physically-based multivariate bias 

adjustment procedures should be considered for hazards and impacts that depend on multiple drivers. The proposed compound 35 

event-oriented evaluation of climate model biases is easily applicable to other hazard types. Furthermore, it can contribute to 

improved present and future risk assessments through increasing our understanding of the biases ’sources in the simulation of 

climate impacts. 

1 Introduction 

Understanding and assessing the risk of high-impact events induced by the combination of multiple climate drivers and/or 40 

hazards, referred to as compound events, is challenging (e.g., Bevacqua et al., 2017; Manning et al., 2018; Zscheischler et al., 

2020). One of the reasons is that many high-impact events are caused by multiple variables that may not be extreme themselves, 

but their combination leads to an extreme impact (Zscheischler et al., 2018). For example, the risks associated with combined 

high temperature and high/low relative humidity such as heat stress and fires, can manifest in heat-related human fatalities 

(Raymond et al., 2020) and fire-induced tree mortality (Brando et al., 2014) even if the two contributing variables are not 45 

necessarily extreme in a statistical sense. In the future, combinations of climate variables leading to disproportionate impacts 

will be affected by global warming, and reliable risk assessments are required (Fischer and Knutti, 2013; Russo et al., 2017; 

Schär, 2016; Raymond et al., 2020; Jézéquel et al., 2020; Zscheischler et al., 2020). Therefore, a better understanding of how 

climate models represent the joint behaviour of variables behind compound events, such as temperature and relative humidity, 

is crucial to correctly quantify their associated hazards today and in the future (Zscheischler et al., 2018).  50 

Typically, the raw climate model data contains biases, which lead to biased estimates of climate risks (Maraun et al., 2017). 

Evaluating, i.e. assessing and understanding such biases is a crucial step towards impact modelling and thus assessment of 

future climate risks. Climate model evaluation is very often univariate, i.e. does not take into account the multivariate nature 

of many hazards that are driven by the interplay of multiple contributing variables (Vezzoli et al., 2017; Zscheischler et al., 

2018, 2019; Francois et al., 2020). However, evaluating the model representation of the individual contributing variables 55 
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individually, and hence disregarding both the biases in the dependence between the contributing variables and how the biases 

in the drivers interact and influence the hazard, cannot provide direct information regarding the biases in the resulting hazard 

indicator. Furthermore, evaluating the hazard indicator only, e.g. heat stress regardless of the contributing variables 

temperature and relative humidity, may hide compensating biases in the contributing variables, even if the hazard indicator 

appears to be well represented. An evaluation of climate models that considers the underlying multivariate nature of the hazards 60 

can provide a better physical understanding of the relevant model skills. In turn, a better understanding of model skills can 

serve as a basis for better adjustment of the biases and/or selection of best performing models, which are crucial for hazard 

assessment both in the present and future climate. However, studies evaluating the climate model multivariate representation 

of hazard indicator are still rare (Bevacqua et al., 2019; Zscheischler et al., 2021) and little is known on the effects of those 

biases on multivariate hazards (Fischer and Knutti, 2013; Zscheischler et al., 2018).  65 

In this study we propose a copula-based multivariate bias-assessment framework, which allows for decomposing the sources 

of bias in hazard indicators. We employ global climate model outputs from the fifth phase of the Coupled Model 

Intercomparison Project (CMIP5) and consider two simplified hazard indices, the Chandler burning index (CBI) for fire hazard 

and the wet bulb globe temperature (WBGT) index for heat stress, both driven solely by temperature and relative humidity. 

Figure 1 illustrates the main rationale of the multivariate bias-assessment framework. Both hazard indices, CBI and WBGT, 70 

are influenced by the bivariate distribution of temperature and relative humidity (Figure 1c). Based on copula-theory, such a 

bivariate distribution can be decomposed in terms of the marginal distributions of temperature and relative humidity (Figure 

1a, d), and their statistical dependence (Figure 1b). Hence, such a copula-based decomposition allows for understanding the 

biases in the hazard estimates in terms of both the contribution from the marginal distributions individually (Figure 1a,d; see 

difference between grey and black lines), and from their statistical dependence (Figure 1b) (Vezzoli et al. 2017; Bevacqua et 75 

al., 2019). We present a methodology to quantify the role played by the biases in temperature, relative humidity, and their 

dependence, to the final bias in the fire and heat stress indices as simulated by climate models.  

2 Data 

2.1 Pre-processing 

We employ 6-hourly data of 2-meter air Temperature (T) and Relative Humidity (RH) during the period 1979-2005 from 80 

ERA-Interim reanalysis (Berrisford et al., 2011; Dee et al. 2011) and twelve models from the CMIP5 multi-model ensemble 

(Taylor et al., 2012): ACCESS1-0, ACCESS1-3, bcc-csm1-1-m, BNU-ESM, CNRM-CM5, GFDL-ESM2G, GFDL-ESM2M, 

inmcm4, IPSL-CM5A-LR, NorESM1-M, GFDL-CM3 and IPSL-CM5A-MR; leap days were removed. To allow for an 

intermodel comparison, data were bilinearly interpolated to a 2.5° by 2.5° regular latitude-longitude grid. All oceanic grid cells 

as well as those beneath 60°S were removed from all analyses, given that arguably no heat stress and fire risk exists in these 85 

areas.  
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Following Zscheischler et al. (2019), we restrict our analysis to the hottest calendar month of the year, which is selected based 

on the climatology of ERA-Interim data at each grid point. This choice was made because arguably heat stress and fire hazards 

tend to be more frequent during the warmest period of the year, and it avoids dealing with seasonality, however we note that 

this assumes that CMIP5 models correctly reproduce the seasonality observed in ERA-Interim. Finally, for each model and 90 

location, we consider the T and RH values at the daily 6-hourly time steps corresponding to the daily maximum temperature 

within the hottest month. The above results in a time series for each location and model, with daily values of the pair (T, RH). 

The resulting time series data are autocorrelated, which can compromise the interpretation of the statistical tests that we apply 

in the analysis (Yue et al., 2002; Dale and Fortin, 2009). Therefore, we carry out the analysis on the de-correlated time series, 

which are obtained from the original through subsampling every N=9 days, where N is the lag required to remove the 95 

autocorrelation in T and RH time series data everywhere (at 95% confidence level). The value of N was determined as follows: 

for all grid points and years in ERA-Interim and the CMIP5 models, the autocorrelation function was calculated; then, the 

minimum lag for which the autocorrelation was non-significant at the 95% confidence level was determined. Finally, the 

maximum of all the minimum lags was selected, resulting in N=9 days. The time series for all models and locations are sampled 

with the frequency of N. This is done N-times using different start epochs, where the first sampled time series starts with time 100 

epoch one, the second sampled time series with time epoch two and so on up to nine. The de-correlated time series of T and 

RH will henceforth be simply referred to as samples in the following sections. 

In the Appendix, Figure A1 illustrates, for a representative location in Brazil, one of the nine resulting samples of T and RH 

for ERA-Interim and for a selection of CMIP5 models. The figure also shows how the bivariate interaction of these variables 

drive the fire and heat stress indices (coloured isolines) introduced in the next section.  105 

2.2 Fire hazard and heat stress indices 

We quantify fire and heat stress hazards based on two indices, i.e. CBI and WBGT, respectively. While more advanced and 

sophisticated indices exist for both of these hazards (e.g. Van Wagner, 1987; Fiala et al., 2011), here we employ these two 

simplified indices. Our aim is to provide a methodological framework for a compound event-oriented evaluation of hazard 

indicators. Hence, employing simplified indices allows for the development of a test case of the methodological framework. 110 

We do not aim at providing an accurate assessment of the hazard; nevertheless, our results will provide indications that can 

serve as a basis for follow-up studies of more complex fire and heat stress hazards.  

The CBI index was employed, for example, for studying fire risk in the United States (McCutchan and Main, 1989) and 

globally (Roads et al., 2008). The index is based on air T (°C) and RH (%): 

𝐶𝐵𝐼 =
((110−1.73∗𝑅𝐻)−0.54∗(10.20−𝑇))∗1.24∗10−0.0142∗𝑅𝐻

60
       (1) 115 

The ‘simplified WBGT ’(from now on WBGT for sake of brevity) index was developed by the American College of Sports 

Medicine (ACSM, 1984) as an indicator of heat stress for average daytime conditions outdoors. The index is defined as: 

𝑊𝐵𝐺𝑇 = 0.56𝑇 + 0.393𝑒 + 3.94          (2) 
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where 𝑒 = (𝑅𝐻/100) ∗ 6.105𝑒(17.27𝑇
237.7+𝑇ൗ )is water vapour pressure (expressed in hPa), which depends on air 

temperature and relative humidity. More details on the definitions of the CBI and WBGT are available at McCutchan and Main 120 

(1989) and ACSM (1984). 

3 Methods 

This section presents the conceptual framework and a bias decomposition methodology used to analyse the multivariate indices 

described above. We then present an overview of the data processing before detailing the conventional statistical tests we have 

incorporated into our test suite. 125 

3.1 Copula-based conceptual framework 

As both CBI and WBGT are functions of T and RH, it follows that their distributions are determined by the joint distribution 

of T and RH. Copula theory provides us with a natural way to decompose the joint distribution of T and RH in terms of the 

marginal distributions of T and RH (the distributions of the individual variables considered in isolation) and a term, known as 

the copula, that describes the dependence between T and RH (Figure 1). This allows us to understand how bias in each of these 130 

components contributes to the bias in CBI and WBGT. 

A copula is a function that completely characterizes the dependence structure between random variables, in our case T and 

RH.  Sklar’s theorem (Sklar, 1959) is a fundamental result in copula theory, which states that the joint distribution of the 

random variables is determined by the marginal distributions and their copula. Mathematically, in our bivariate case, given the 

two variables T and RH, with marginal cumulative distribution functions (CDFs) FT and FRH, and marginal probability density 135 

functions (pdfs) fT and fRH, following Sklar’s theorem, the joint pdf fT, RH can be decomposed as: 

𝑓
𝑇,𝑅𝐻

(𝑇, 𝑅𝐻) = 𝑓
𝑇

(𝑇) ∙ 𝑓
𝑅𝐻

(𝑅𝐻) ∙ 𝑐(𝑈𝑇, 𝑈𝑅𝐻)         (3) 

where 𝑈𝑅𝐻 = 𝐹𝑅𝐻(𝑅𝐻), 𝑈𝑇 = 𝐹𝑇(𝑇), (note that U indicates that both URH and UT are uniformly distributed by construction 

on the domain [0,1]), and c is the copula density, which describes the dependence of the joint distribution fT, RH independently 

from the marginal distributions fT and fRH. Note that eq. (3) naturally extends to the case of an arbitrary number of random 140 

variables (Bevacqua et al., 2017), however here we focus on the bivariate case. Copulas allow for great flexibility in modelling 

complex dependence structures between several variables and there are a huge variety of parametric copula families available 

for statistical modelling purposes (Nelson, 2006; Salvadori and De Michele, 2007; Salvadori et al., 2007; Durante and Sempi, 

2015; Bevacqua et al., 2020a). However, note that following the methodologies developed by Rémillard and Scaillet (2009) 

and Vezzoli et al. (2017), here we will consider a non-parametric framework, i.e. we will consider empirical, rather than 145 

parametric, distributions within our testing procedures. This choice avoids unnecessary parametric-based assumptions on the 

distributions that could bias the results about both univariate and multivariate features.  
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A characteristic of copulas is the invariance property (Salvadori et al. 2007, proposition 3.2), i.e. if g1 and g2 are monotonic 

(increasing) functions, then the transformed variables g1(T) and g2(RH) have the same copula as T and RH. This property is 

crucial to the methodology described in the following section, where the monotonic functions are the marginal CDFs of T and 150 

RH (or their inverses).  

3.2 Contribution of the bias in the drivers to the bias of CBI and WBGT 

We assess how biases in each of the marginal distributions of Tmod and RHmod, and Cmod (the copula of Tmod and RHmod) 

contribute to the bias in the representation of the extreme values of CBI and WBGT using their 95th percentile (Q95). This is 

achieved based on a methodology originally introduced by Bevacqua et al. (2019) to attribute changes in compound flooding 155 

to its underlying drivers (and employed by e.g., Manning et al. (2019) and Bevacqua et al. (2020b)).   

We carried out three experiments. In experiment i, we obtained, via a data transformation, a bivariate pair (Ti, RHi) with copula 

Ci where one component of the three underlying distributions (Ti, RHi, Ci) is the same as that of a given CMIP5 model, and 

the other two components are the same as ERA-Interim. We then perform the quantile tests described in 3.3.3 for CBI (or 

WBGT) using values based on (Ti, RHi) and (Terai, RHerai). The specific experiments carried out are described below. 160 

Experiment a), assessing the bias contribution of Tmod: From the variable Terai we calculated the uniformly distributed 

transformed random variable UT,erai = FT, erai(Terai). From the variable Tmod we calculated the empirical CDF FT,mod, through 

which we defined Ta=F⁻¹T,mod(UT,erai). The variable Ta has the same distribution as Tmod while the pair (Ta, RHerai) has the copula 

of ERA-Interim.   

Experiment b), assessing the bias contribution of RHmod: This experiment follows the same structure as experiment (a) but with 165 

the roles of Terai and RHerai reversed, from which we get the pairs (Terai, RHb) 

Experiment c), assessing the bias contribution of Cmod: From the variables (Tmod, RHmod) we calculated the associated marginal 

empirical cumulative distributions (UT,mod, URH,mod). From the variables Terai and RHerai, we defined the empirical CDFs FT,erai 

and FRH,erai, through which we defined  Tc=F⁻¹T,erai(UT,mod) and RHc=F⁻¹RH,erai(URH,mod).  The pair of variables (Tc, RHc) have 

the same marginal distributions as the pair (Terai, RHerai) but the copula of the model, i.e., Cmod, since (Tc, RHc) was obtained 170 

from (Tmod, RHmod) by monotonic transformations of the margins.  

3.3 Description of the testing procedure 

The full data processing procedure is shown in Figure A2. We began with the ERA-Interim and CMIP5 data and obtained T 

and RH samples (see section 2.1). The CMIP5 samples were then subject to the transformation procedure described in section 

3.2.4. This results in five sets of T and RH data corresponding to: the ERA-Interim reference, the original model sample, and 175 

the three experiments (a, b, and c) used to assess the bias contributions of biases in CMIP5 model T, RH and their copula. At 

this stage, the CBI and WBGT indices are calculated on all five sets. 



 

7 

We execute univariate and multivariate non-parametric statistical tests to evaluate the properties of CBI, WBGT and their driver 

variables (i.e., T, RH, and their dependence) prior to proceeding with our bias decomposition approach. Details for each of the 

tests are provided below but, in general, we follow a non-parametric approach similar to Vezzoli et al. (2017). Each of the nine 180 

de-correlated ERA-Interim samples was independently tested on a cell-by-cell basis against a different CMIP5 model sample, 

therefore each statistical test is repeated nine times per model. To adjust for multiple testing, we use the conservative 

Bonferroni correction method, which penalises the significance level ɑ using the number of repeated tests m=9, so that the 

individual hypothesis tests are evaluated at an ɑ/m significance level (Jafari and Ansari-Pour, 2019). A 5% significance level 

is used, which after Bonferroni correction was adjusted to 0.0056 for use in each individual hypothesis test. All of our analysis 185 

was carried out in R (R Core Team, 2019), and the functions used for each test are detailed in their corresponding section 

below.  

Graphically, the statistical test results are presented as a percentage of all 108 CMIP5 model samples (9 samples times 12 

models) where the null hypothesis is rejected. The percentage we consider is calculated at each grid cell, and stippling is added 

where the null hypothesis is rejected in at least 75% (81/108) of all CMIP5 model samples.  190 

 

3.3.1 Univariate evaluation of T, RH, CBI, and WBGT 

In order to understand how faithfully the marginal distributions of T, RH, CBI and WBGT from the ERA-Interim data are 

represented in a given CMIP5 model, we perform the two-sample Anderson-Darling (AD) test via the ad.test function of the 

kSamples R-package (v1.2-9; Sholz and Zhu, 2019). This is a non-parametric procedure that considers the null hypothesis: 195 

“the two samples are from the same distribution”.  

3.3.2 Dependence between T and RH 

A simple way to test how well the dependence between the variables T and RH in ERA-Interim is represented in a given 

CMIP5 model, is to compare the calculated values of some statistical measure of association. Here we use Kendall's τ rank 

correlation. The cor.test function of the core stats R-package was used to perform all τ calculations (R Core Team, 2019). 200 

To test whether the values of τ obtained from a given model sample differ in a statistically significant way from the 

corresponding ERA-Interim values. We begin by considering the approximate 100(1 − 𝛼)% confidence interval (𝜏𝐿 , 𝜏𝑈) 

for τ associated with the point estimator 𝜏
^

 given by:  

𝜏𝐿 = 𝜏
^

− 𝑧𝛼 2Τ 𝜎,
^

 𝜏𝑈 = 𝜏
^

+ 𝑧𝛼 2Τ 𝜎
^

         (4) 

where 𝜎
^ 2

 is an estimator of var(𝜏)
^

 and 𝑧𝛼 2Τ  is the quantile of the standard normal distribution for 𝛼 2 Τ  (Hollander et al., 205 

2014). For our testing we calculate 𝜎
^ 2

, 𝜏
^

 and the confidence interval (𝜏𝐿 , 𝜏𝑈) for each grid cell in all ERA-Interim samples, 
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using a customised version of the kendall.ci function included in the NSM3 R-package (v1.15, Schneider et al., 2020). The 

CMIP5 model samples are then evaluated in two ways. Firstly, if the model sample value of τ lies within the confidence 

interval calculated for its corresponding ERA-Interim sample, the model sample is judged to not significantly differ from 

ERA-Interim in terms of the rank correlation between T and RH. Secondly, we calculated the 𝑧𝛼 2Τ  and hence the 𝛼 or p-value 210 

for each sample, these were tested for significance using the same Bonferroni-adjusted value of 0.0056 used in the univariate 

testing. The results from both testing methodologies are consistent with each other, we present the ad-hoc p-value test results 

in the main text and the confidence interval tests are included in the appendix.  

Note that different copulas may give rise to the same value of τ, therefore we cannot conclude that a model that faithfully 

reproduces the ERA-Interim values of τ is accurately representing the full dependence structure between T and RH.  Therefore, 215 

we account for differences in the dependence structure by also carrying out hypothesis tests which are based on the full copula 

function.  We perform the non-parametric test of copula equality based on the Cramer-von-Mises test statistic proposed by 

Remillard and Scaillet (2009), used in Vezzoli et al. (2017) for testing the capability of a climate-hydrology model to reproduce 

the dependence between temperature, precipitation and discharge for the Po river basin in Italy, and recently employed by 

Zscheischler and Fischer (2020) for evaluating the ability of climate models to represent the dependence between temperature 220 

and precipitation in Germany. The copula equality test has a null hypothesis of H0: Cerai = Cmod where Cerai and Cmod are the 

copulas of T and RH represented in ERA-Interim and a given model respectively, with the alternative hypothesis being that 

these copulas differ. Unlike the AD test, which can evaluate CMIP5 model performance in reproducing a single marginal 

distribution, the copula equality test was specifically developed to test whether two empirical copulas are equal and thus 

evaluates the capacity of models to reproduce the full dependency structure between T and RH. We used the TwoCop function 225 

of the TwoCop R-package (v1.0, Remillard and Plante, 2012) to run the test. 

 

3.3.3 Bias in the representation of extreme events of CBI and WBGT 

To evaluate how well CMIP5 models simulate extreme values of CBI and WBGT, we compare high quantiles (i.e. the 95th 

percentile Q95) of these indices from each model with those of ERA-Interim. To assess whether the observed differences in 230 

the quantiles are statistically significant, we calculate the 95% confidence intervals for the Q95 of CBI and WBGT at each 

location for ERA-Interim based on 1000 bootstrap samples. Like our evaluation of Kendall’s τ, if the model index lies outside 

the confidence interval we consider the model has a significantly different representation of extreme values of CBI and WBGT 

from ERA-Interim.  
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4 Results 235 

4.1 Univariate evaluation of T, RH, CBI, and WBGT 

4.1.1 CBI and WBGT 

We began our analysis by visualising the multimodel mean of the mean values of CBI and WBGT during the hottest months. 

According to reanalysis, the mean CBI is highest in regions with dry and warm weather during the hottest month, such as the 

Sahara, most of Australia, and the western USA and Mexico (Figure 2a). In contrast, CBI tends to be low in humid and warm 240 

regions such as the Amazon and Congo basins. We move to evaluating the CMIP5 model biases in mean CBI, which appear 

large in magnitude (compare Figure 2b and 2a); most landmass covered in dark red or blue colours, indicating CMIP5 

multimodel mean bias of over 10°C from the ERA-Interim. In addition, AD test results show that 59% of global land mass has 

significant differences between ERA-Interim and CMIP5 distributions of CBI in at least 75% of model samples. Despite such 

biases in the representation of the mean CBI magnitude, the overall spatial patterns in mean CBI are well reproduced by the 245 

models. In fact, the area weighted pattern correlation (Pfahl et al., 2017), from now on pattern correlation, between models  

and reanalysis of mean CBI is high for all CMIP5 models, with a minimum value of 0.77 for the BCC CSM1.1.M model  

(Figure A3a shows the multimodel mean of mean CBI).  

In the reanalysis data, mean WBGT values over 30°C are reached over most tropical land masses during each location’s hottest 

month, with lower values in higher latitudes and the highest values near the Equator (Figure 2c). For WBGT, the pattern 250 

correlation between models and ERA-Interim is higher than for CBI, with a minimum value of 0.89 for the BCC CSM1.1.M 

model (Figure A3b shows the multimodel mean of mean WBGT). Mean multimodel bias in WBGT shows large parts of the 

continents are within the +/- 0.5°C range relative to ERA-Interim. The AD test results indicate that the WBGT distributions in 

CMIP models are typically better than those of CBI; only 35% of grid cells fail our performance criterion (Figure 2d).  

Overall, CMIP5 models underperform in key regions associated with high fire and heat stress hazards. CBI’s distribution is 255 

not well represented by most CMIP5 models in regions characterized by high fire hazard levels such as the western USA and 

the Mediterranean basin, while CMIP5 WBGT results are significantly different to reanalysis in regions of high heat stress 

such as the Indian subcontinent and equatorial Africa. 

4.1.2 T and RH 

Following the evaluation of CBI and WBGT, we move towards evaluating how CMIP5 models represent the driving variables 260 

of the hazard indicators, i.e. T, RH, and their statistical dependence. We first confirm that the expected latitudinal variation in 

T is present in ERA-Interim reanalysis (Figure 3a), and that RH is low over known desertic areas (Figure 3c).  

The spatial pattern of mean T is well represented by CMIP5 models (Figure A3c), with all models showing a pattern correlation 

over land with ERA-Interim above 0.93, consistent with an acceptable representation of the first-order global-scale 
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atmospheric circulation. However, significant differences in the representation of the distributions (based on the AD test) are 265 

found over the Amazon basin, where the multimodel mean bias in mean T is positive, and over Northern Africa and the Middle 

East, where the bias in mean T is negative (Figure 3b). Overall, we found that the area weighted multimodel mean of absolute 

value of the T bias is 1.6°C. The AD test results show that CMIP5 models fail to reproduce the observed ERA-Interim 

distribution of T over 40% of global land mass. 

We find worse model skills in representing the RH distribution; in fact, models failed the AD test over 59% of the global land 270 

mass (Figure 3d). The spatial pattern of RH is not as well represented as that of T, with minimum and maximum pattern 

correlations of 0.75 and 0.90 respectively (Figure A3d). The mean multimodel bias in RH is particularly large in the Amazon 

basin. Nevertheless, there are areas where the bias is relatively small, e.g., in Australia, Sahara, and eastern Asia. Notably, 

there is a clear resemblance between the bias patterns of mean RH (Figure 3d) and CBI (Figure 2b), with regions with high 

positive bias in RH corresponding to regions with strong negative bias in CBI, and an identical percentage of land mass showing 275 

significant differences. No similar behaviour is found for WBGT, i.e. the WBGT bias spatial pattern is similar neither to that 

of T nor RH bias. We will investigate this behaviour in CBI and WBGT in further detail in section 4.3. 

4.2 Dependence between T and RH 

The results for our tests on the dependency structure of T and RH in CMIP5 models are shown in Figure 4. Figures 4a and 4b 

show Kendall's τ correlation between T and RH based on ERA-Interim reanalysis and the mean multimodel bias of this 280 

correlation, respectively. T and RH are strongly negatively correlated (Figure 4a), with an area weighted mean value of -0.50 

(virtually all landmass has a significant correlation; not shown - results based on the indepTest function of the copula R-

package (v0.999-19.1; Hofert et al., 2018)). The presence of a negative correlation is illustrated in Figure 1 (and A1 for a 

representative location).  The area weighted absolute mean multimodel bias in τ is 0.095. The bias in τ is not significant for 

most of the global landmass for most of the models, i.e., the modelled correlations lie within the 95% confidence interval of τ 285 

of ERA-Interim (see infrequent stippling over 5.3% and 9.3% of land masses in Figures 4b and A4 respectively). Results are 

similar for the copula equality test (Figure 4c), with an over 80% agreement in copula structure between ERA-Interim and 

models for 52% of landmasses, and 60-80% agreement in 33% of landmasses. Overall, the regions where we detect the highest 

amount of statistically significant differences in the copula structure and τ include parts of the Horn of Africa, India, and 

Amazon basin (see also Figure A1c and Figure A1d where the model values have different distributions to ERA-Interim).  290 

4.3 Contribution of the bias in the drivers to the bias in CBI and WBGT extremes  

4.3.1 Drivers of the biases in CBI extremes 

We now assess the biases in the representation of extreme events (95th quantile, Q95) in the CBI index, and the associated 

drivers of the biases (Figure 5). The spatial pattern of the CMIP5 multimodel mean of Q95 (Figure 5b) is very similar to that 
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of ERA-Interim (Figure 5a). Figure 5c shows the biases in extreme CBI, whose highest values are in South America, central 295 

North America, and parts of central Asia; which is in line with the biases in mean CBI (Figure 2b). The area weighted mean 

of absolute bias in CMIP5 model CBI is 21°C, which is large compared to the area weighted mean CBI in ERA-Interim of 

84°C (i.e. corresponding to 25%). In fact, the stippling over 75% of land masses in Figure 5c indicates that the models differ 

significantly from ERA-Interim.  

The bias in RH is the main contributor to total mean bias in extreme CBI values (Figs. 6d-f). The relevance of RH for the bias 300 

in CBI is visible from the similarities in magnitude and spatial distribution of bias between Figure 5c and 5e. Furthermore, 

while the area weighted mean of absolute bias in CBI is 21°C, the corresponding mean biases due to T, RH, and the dependency 

between them are 3°C, 20°C and 3°C respectively. The relevant contribution of RH to the CBI index bias is in consistent with 

the definition of the index, which is mainly influenced by RH and to a lesser extent by T (see nearly horizontal CBI isolines in 

Figure 1); hence, also the dependency between T and RH plays a negligible role. As a result, while RH bias contributions drive 305 

significant biases in CBI about everywhere but in the Sahara and Australia (see stippling over 73% of land masses in Figure 

5c), T and dependence do not drive significant biases in CBI (see near-complete absence of stippling in Figure 5d and 5f). 

A closer examination of the bias decomposition results shows, for a site with large positive bias in Brazil, that the results 

shown in the multimodal mean bias plots (Figure 5c, e) reflect intermodel model behaviour at the local level. That is, CMIP5 

models with high RH bias contributions also show high overall CBI bias (Figure 6a). At this location, there is a positive 310 

intermodel correlation between the biases driven by T and RH (τ = 0.82; Figure 6b). Such behaviour is due to the combination 

of the following two reasons: (1) a negative intermodel correlation between the biases in T and RH, i.e. CMIP5 models 

simulating too high temperatures also tend to simulate too low relative humidity (as discussed by Fischer and Knutti (2013)); 

and (2) the fact that CBI is high for low RH and high T. This feature is discussed in more detail in section 5. Similar results to 

those discussed above for the site in Brazil are also observed for another representative location in South Africa with large 315 

negative bias in CBI ( Figure A5a). These locations are indicated throughout map plots with X markers.  

4.3.2 Drivers of the biases in WBGT extremes 

The spatial pattern of Q95 in ERA-Interim (Figure 7a) and in the CMIP5 multimodel mean (Figure 7b) is similar with low 

values concentrated along mountain ranges such as the Andes and Himalayas and in high latitudes, and the highest values 

located in South America and the Indian subcontinent. In several regions worldwide, CMIP5 models tend to underestimate 320 

Q95 values of WBGT (global area weighted mean bias of -0.35°C) and show significant biases relative to ERA-Interim along 

the tropics and subtropics (Figure 7c). However, in terms of values of the bias, the CMIP5 representation of the WBGT appears 

better than that of CBI. The area weighted mean of absolute bias in the index is 1.1°C (Figure 7c), which is small compared to 

the area weighted mean WBGT in ERA-Interim, i.e. 29°C (Figure 7a). 

The decomposition of the bias shows that unlike CBI there is no single dominating source of bias in extreme values of WBGT 325 

(Figure 7d-f); all three possible sources contribute to the overall bias. Importantly, a degree of compensating biases is evident 
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when comparing the multimodel mean biases driven by T (Figure 7d) and RH (Figure 7e). Large biases of opposite signs are 

evident over South America, central Asia, and other landmasses; hence, in these areas, the resulting biases in WBGT tend to 

be small (Figure 7c). Significant but opposite biases in T and RH (see stippling in Figures 7d and 7e) result in nonsignificant 

biases in WBGT (Figure 7c) over regions such as North America’s Mississippi basin and around Zaire in central Africa. 330 

Globally, this compensating behaviour can be observed in the percentages of land mass where each bias component is 

significant. T and RH driven biases are significant over 69% and 48% of global land mass respectively, while copula biases 

are significant over 12%; however, the total bias in WBGT is only significant over 39% of land masses. Further evidence for 

these compensating biases can be found by observing that the area weighted average of absolute bias in Q95 WBGT, i.e. 1.1°C, 

is smaller than the contributions from T and RH, i.e. 1.9°C and 1.4°C, respectively. In addition, we observe a tendency towards 335 

a lower bias, on average, driven by the copula component (global area weighted average of absolute bias equal to 0.85°C); 

note that, however, some relevant positive bias contributions exist over eastern Brazil and central Africa where the copula test 

shows higher frequencies of rejection (Figure 4c), and a negative contributions over northern Russia, Central United States, 

and eastern Europe (Figure 7f).  

The compensating bias in T and RH found above is in line with the findings of Fischer and Knutti (2013). Their results indicate 340 

that, at the local scale and for individual models, the biases in WBGT driven by T and RH tend to cancel each other out, 

resulting in small biases in the heat stress index. We find that this behaviour in individual models is reflected in the multimodel 

mean result (Figure 7c) in regions where most models have similar behaviours, e.g. where most models show a positive WBGT 

bias contribution from  T (Figure 7d) and a negative one from RH (Figure 7e). We confirm the behaviour in individual models 

for two representative locations. In Brazil, the small mean bias in WBGT Q95 for all CMIP5 models results from mostly 345 

positive and negative biases driven by T and RH, respectively, across models (Figure 8a; the figure also indicates that the bias 

driven by the dependence is small and positive). In particular, models affected by a positive T bias contribution in WBGT 

because of too high T tend also to be affected by a negative RH bias contribution because of too low RH (Figure 8b). The 

compensation of the biases in individual models arises from (1) opposite biases in T and RH (models simulating too high 

temperatures also tend to simulate too low relative humidity; Fischer and Knutti (2013)), and (2) the WBGT tendency to be 350 

high (low) for humid and warm (dry and cold) conditions. Figure A6 illustrates such a cancellation of the bias in WBGT for a 

location in South Africa, where the negative dependency between T and RH leads to a small bias in WBGT. In this location, 

the model biases driven by T are negative, therefore those driven by RH are positive. 

5 Discussion 

Our results underline the importance of understanding the sources of the biases in hazard indicators through multivariate 355 

procedures. In fact, hazard indicators can have biases resulting from a complex combination of biases in the driving variables 

of the indicator and in biases in the dependence between the variables. We find that that biases in CBI extremes are mainly 
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driven by biases in relative humidity, while biases in WBGT extremes are often driven by biases in temperature, relative 

humidity, and their statistical dependence. 

Biases in WBGT are smaller than the bias contributions from T and RH, i.e. the biases in the two variables compensate. In 360 

particular, in line with Fischer and Knutti (2013), models which tend to simulate too high T also tend to simulate too low RH 

(and vice versa), which results in relatively smaller absolute biases in the WBGT of individual models. A negative intermodel 

correlation between the contributions of T and RH to WBGT biases reduces the biases in WBGT in the CMIP5 average. For 

the fire hazard, despite that fact that a positive intermodel correlation between the bias driven by T and RH exists, no 

enhancement of the CBI bias occurs because the index is mainly controlled by RH (see isolines in Figure 1c), which also 365 

controls the bias of the index. The WBGT index shows additional complexity due to the contribution of the biases in the copula 

between T and RH in areas such as eastern Brazil, Africa, and parts of central North America and India. 

These findings exemplify the need for multivariate bias adjustment methods, which can adjust climate model biases in the 

dependencies between multiple drivers of hazards (Francois et al., 2020; Vrac, 2018). Furthermore, relying on climate models 

that plausibly represent large-scale atmospheric circulation (Maraun et al., 2016; 2017) would improve our confidence in the 370 

simulation of multivariate hazards. The relevance of multivariate bias adjustment methods is also supported by the fact that 

adjusting biases variable by variable may even increase biases in impact-relevant indicators (Zscheischler et al., 2019). 

Nevertheless, in line with our findings, Zscheischler et al. (2019) found that univariate bias-adjustment is relatively efficient 

in the case of CBI, while multivariate methods lead to much stronger reductions in the case of WBGT. It should be noticed, 

however, that the considered fire indicator CBI is overly simplistic. In practice, weather conditions that promote fires are also 375 

related to wind speed and previous rainfall, which are for instance included in the Forest Fire Weather Index (FWI, Van 

Wagner, 1987), as well as fuel availability and aridity.  

The presented bias-decomposition method would potentially become even more relevant when considering more complex 

hazard indicators driven by more than two variables, such as the case of fire hazard as outlined above. This would require an 

extension of the bivariate copula framework, potentially using vine copula decompositions such as those employed in Hobæk 380 

Haff et al. (2015). For example, in the case of three variables X1, X2, and X3, we would have to investigate the behaviour of 

marginals, the dependence between X1 and X2 (with the 2-Copula C12), X2 and X3 (C23), and X1 and X3 (C13), and then the joint 

behaviour of the three variables with the 3-Copula (C123). Similar considerations apply for the consideration of temporal 

dependencies. The analysis can be done using both a parametric or non-parametric approach. For instance, in Vezzoli et al. 

(2017), a non-parametric approach has been used to analyse the behaviour of the three variables precipitation, temperature and 385 

runoff. 

Given the critical importance of addressing compound/multivariate events that are often associated with extreme impacts 

(Leonard et al., 2014; Zscheischler et al., 2018), we assessed the bias decomposition for high quantiles of CBI and WBGT. The 

extremes of the considered indicators are not necessarily caused by extreme values of the drivers. Hence, the characterization 

of the dependence structure between their climate drivers (i.e., T and RH) was performed in terms of their full joint distribution 390 

to capture all the events, i.e. we did not only consider the combination of simultaneous T and RH extremes. However, 
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depending on the type of hazard considered, investigating biases in the tail dependence between the drivers may be relevant 

to understanding the biases in the hazard. For example, the tail dependence between storm surge and precipitation, which is 

relevant for compound coastal flooding, may be slightly underestimated in CMIP5 models (Bevacqua et al., 2019). Similarly, 

there is evidence that the tail dependence between hot and dry conditions may be underestimated by climate models in some 395 

cases (Zscheischler & Fischer, 2020). 

The present methodology can be used for assessing the sources of bias in other types of compound events (Zscheischler et al., 

2020) caused by other sets of dependent drivers, such as compound drought and heat (Zscheischler and Seneviratne, 2017) 

and compound coastal flooding (Bevacqua et al., 2020b).  Other types of compound events, e.g., temporal clustering of storms 

(Bevacqua et al. 2020c; Priestley et al., 2017) and simultaneous extreme events in distant regions (Kornhuber et al., 2020), can 400 

also lead to large impacts and are therefore relevant for the impact community. A compound event-oriented evaluation of 

impacts similar to that proposed here, i.e. disentangling the biases in the individual physical drivers, could be adopted in future 

studies to aid present and future impact assessments.   

6 Conclusions 

Climate model data contains biases that need to be evaluated and ultimately adjusted to avoid misleading risk assessments. 405 

However, while many climate-related extreme impacts are caused by the combination of multiple variables, i.e. compound 

events, climate model evaluation methods typically do not consider the multivariate nature of the hazards. In this study, we 

took a compound event-perspective and, based on copula theory, introduced a multivariate bias-assessment framework, which 

allows for disentangling and better understanding the multiple sources of biases in hazard indicators. Through a non-parametric 

procedure, here we investigated how the biases in temperature, relative humidity, and their dependence, affect the overall 410 

biases in fire and heat stress indicators (CBI and WBGT, respectively). We found that biases in CBI are mainly driven by biases 

in relative humidity, in line with the fact that the index is only marginally affected by temperature. In contrast, the biases in 

WBGT are often driven by biases in temperature, relative humidity, and their statistical dependence (e.g., in areas including 

eastern Brazil, Africa, and parts of central North America and India). Opposing biases in temperature and relative humidity 

tend to compensate for each other, resulting in relatively small biases in WBGT. The results highlight areas where a careful 415 

interpretation of these indicators is required and where multivariate bias corrections of temperature and relative humidity 

should be considered future risk assessments.  

Given the relevance of compound weather and climate events for societal impacts, the presented framework could be useful 

in further studies aiming at disentangling and better understanding the drivers of the biases in the representations of other 

impacts. The framework could also be useful to assess biases among drivers of hazards when data for the hazard indicators are 420 

not available. A compound event oriented model evaluation of modelled impacts and associated drivers would be beneficial 

for disaster risk reduction and, ultimately, could feedback into climate model development processes and stimulate the design 

of new bias-adjustment methods. 
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Figure 1: Copula-based conceptual framework employed in this study to evaluate biases in CBI and WBGT indices. The framework 

is illustrated for a representative location in Brazil (Amazon, 5ºS and 56.5ºW; indicated via X markers in the next figures). Panel (c) 

shows the bivariate distribution of T and RH based on ERA-Interim (grey) and IPSL-CM5A-LR data (black) during 1979-2005. 

Isolines indicate equal levels of CBI (orange) and WBGT (green). The decomposition of biases from the marginals (a, d) and the 565 
copula (b) are illustrated as the discrepancies between the black (IPSL-CM5A-LR model) and grey features (ERA-Interim). 
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Figure 2: Mean fire hazard index (CBI) value for ERA-Interim (a), mean multimodel bias in mean CBI (b). Note that the palette is 

nonlinear, as it follows typical defined ranges of fire hazard levels based on the CBI, i.e. Very Low, Low, Moderate, High, Very High, 570 

and Extreme. Mean heat stress index (WBGT) value for ERA-Interim (c), and mean multimodel bias in mean WBGT (d). Stippling 

indicates locations where at least 75% of CMIP5 models failed the AD two-sample test between the CMIP5 and ERA-Interim 

distributions of CBI and WBGT. Bias was calculated as (CMIP5 - ERA-Interim). 
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 575 

Figure 3: Mean temperature (T) of the hottest month in ERA-Interim reanalysis (a), mean CMIP5 multimodel bias in mean 

temperature (b), mean relative humidity (RH) of ERA-Interim reanalysis (c), and mean CMIP5 multimodel bias in mean relative 

humidity (d). Stippling indicates locations where at least 75% of models failed the AD two-sample test between the CMIP5 and ERA-

Interim marginal distributions of T and RH. Bias was calculated as (CMIP5 - ERA-Interim). 

  580 
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Figure 4. Mean ERA-Interim correlation (τ) between T and RH (a), mean CMIP5 multimodel bias in τ (b), the proportion of CMIP5 

samples where the Copula equality was rejected (c). Stippling indicates locations where the correlation of more than 75% of CMIP5 

model samples have significantly different values to ERA-Interim, as calculated using Bonferroni-corrected p-values. Bias was 

calculated as (CMIP5 - ERA-Interim). 585 
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Figure 5: ERA-Interim (a) and CMIP5 multimodel mean (b) 95th quantile CBI values. Note that the palette is non-linear, as it 

follows typical defined ranges of fire hazard levels based on the CBI, i.e. Very Low, Low, Moderate, High, Very High, and Extreme. 

Mean CMIP5 multimodel bias in Q95 CBI (c), and its decomposition into bias due to the T (d), RH (e) and Copula (f) components 

of the model. Stippling indicates locations where more than 75% of CMIP5 model sample values lie outside the 95% confidence 590 

interval for ERA-Interim estimated based on bootstrap. Bias was calculated as (CMIP5 or Transformation - ERA-Interim). 

  



 

25 

 

Figure 6: Spread of mean total bias in the 95th quantile (Q95) of CBI and its contribution from T, RH and their copula for individual 

CMIP5 models (a), and a scatter plot of the T and RH contributions to Q95 CBI bias, with their Kendall rank correlation coefficient 595 

(p-value<0.001) (b). Shown are the results for a grid-point in Brazil (Amazonia, 5ºS and 56.5ºW). Bias was calculated as (CMIP5 or 

Transformation - ERA-Interim). Equal axes are used in (b) to highlight the differences in spread between both bias components. 
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Figure 7: ERA-Interim (a) and CMIP multimodel mean (b) 95th quantile CBI values, mean CMIP5 multimodel bias in Q95 CBI (c), 

and its decomposition into bias due to the T (d), RH (e) and Copula (f) components of the model. Stippling indicates locations where 600 

more than 75% of CMIP5 model sample values lie outside the 95% confidence interval for ERA-Interim estimated based on 

bootstrap. Bias was calculated as (CMIP5 or Transformation - ERA-Interim). 
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Figure 8: Spread of mean total bias in the 95th quantile (Q95) of WBGT and its contribution from T, RH and their copula for 

individual CMIP5 models (a), and a scatter plot of the T and RH contributions to Q95 WBGT bias, with their respective Kendall 605 

rank correlation coefficient (p-value < 0.001). Shown are results for a grid-point in Brazil (Amazonia, 5ºS and 56.5ºW). Bias was 

calculated as (CMIP5 or Transformation - ERA-Interim). Equal axes are used in (b) to highlight the differences in spread between 

both bias components. 
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Appendix A Information 610 

 

Figure A1: Samples of hourly 2-meter air Temperature (ºC) versus Relative Humidity (%) during the period 1979-2005 for ERA-

Interim reanalysis (grey points) and 4 models (black points) from the CMIP5 multi-model ensemble (BNU-ESM (a), GFDL-CM3 

CNRM-CM5 (b), GFDL-CM3 (c) and IPSL-CM5A-LR (d)) for a grid-point in Brazil (Amazon, 5ºS and 56.5ºW) indicated 

throughout map plots in Results section with X markers. The isolines illustrate equal levels of the hazard indices of fire (orange) and 615 

heat stress (green), corresponding to CBI and WBGT indices, respectively, which are both functions of Temperature and Relative 

humidity.  
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Figure A2:  Block-diagram showing the data and methods used. Temperature (T) and relative humidity (RH) decorrelated samples 620 

from CMIP5 models’ biases are analysed using univariate and multivariate statistical tests using ERA-Interim as reference dataset. 

We also create transformed CMIP5 model samples, which allow for assessing the bias in the extreme values of the hazard indicator 

(CBI and WBGT) driven by biases in T, RH, as well as their statistical dependence. 
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 625 

Figure A3: CMIP5 multimodel mean fire hazard index (CBI) value (a), heat stress index (WBGT) value f (b), temperature (T) value 

(c), and mean relative humidity (RH) (d).  
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Figure A4: As Figure 4b but where stippling indicates locations where more than 75% of CMIP5 model sample values lie outside 630 

the 95% confidence interval for ERA-Interim. 

 

 

Figure A5: As Figure 6 for a grid-point in South Africa (32.5ºS and 23.5ºE), Kendall rank correlation p-value = 0.12. 
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 635 

Figure A6: As Figure 8 for a grid-point in South Africa (32.5ºS and 23.5ºE), Kendall rank correlation p-value = 0.063. 


