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Manuscript number: NHESS-2020-379 

 

My co-authors and I would like to express our gratitude to the reviewers for their 

constructive feedback and suggestions for strengthening our research. The changes we 

have made to the attached file in response to such feedback and suggestions have been 

highlighted in blue to facilitate their identification. I would also like to offer my 

apologies for the length of time it took us to prepare this response. 

 

Referee #2 

I read with interest your manuscript titled: "Identifying the non-exceedance probability 

of extreme storm surges as a component of natural-disaster management using tidal-

gauge data from Typhoon Maemi in South Korea". The manuscript introduces a novel 

methodology for deriving non-exceedance probability diagrams of extreme surge 

storms. Clustered separated peaks-over-threshold simulation was developed, and 

various probability density function models were fitted to the empirical data for 

investigating the risk of storm surge height. Weibull probability density distribution was 

found to fit the empirical data. This manuscript introduces a novel simulation method 

for derivation of exceedance diagrams of storm surges that can contribute to many other 

natural hazards phenomena such as floods, forest fires, etc. The paper deserves minor 

revisions as follows: 

 

1. The title of the manuscript is too long consider shorter title such as: "Nonexceedance 

probability of extreme storm surges using tidal-gauge".  

- We appreciate this insightful comment, and as recommended, have modified the 

title of the manuscript to better reflect its content. 

Estimation of the non-exceedance probability of extreme storm surges in South Korea 

using tidal-gauge data 

 

2. The abstract does not reflect the novelty of the methodology. Consider revision.  

- We are very grateful to the reviewer for providing this important advice. Our 

revisions in response to the above comments can be found in the revised Abstract. It 

can also be seen below. 

Global warming, one of the most serious aspects of climate change, can be expected to 

cause rising sea levels. These, in turn, have been linked to unprecedentedly large 

typhoons that can cause flooding of low-lying land, coastal invasion, seawater flows 

into rivers and groundwater, rising river levels, and aberrant tides. To prevent typhoon-

related loss of life and property damage, it is crucial to accurately estimate storm-surge 

risk. This study therefore develops a statistical model for estimating such surges’ 

probability, based on surge data pertaining to Typhoon Maemi, which struck South 

Korea in 2003. Specifically, estimation of non-exceedance probability models of the 



2 
 

typhoon-related storm surge was achieved via clustered separated peaks-over-threshold 

simulation, while various distribution models were fitted to the empirical data for 

investigating the risk of storm surges reaching particular heights. To explore the non-

exceedance probability of extreme storm surges caused by typhoons, a threshold 

algorithm with clustering methodology was applied. To enhance the accuracy of such 

non-exceedance probability, the surge data was separated into three different 

components: predicted water level, observed water level, and surge. Sea-level data from 

when Typhoon Maemi struck was collected from a tidal gauge station in the City of 

Busan, which is vulnerable to typhoon-related disasters due to its geographical 

characteristics. Fréchet, Gamma, log-normal, Generalised Pareto, and Weibull 

distributions were fitted to the empirical surge data, and the researchers compared each 

one’s performance at explaining the non-exceedance probability. This established that 

Weibull distribution was better than any of the other distributions for modeling Typhoon 

Maemi’s peak total water level. Although this research was limited to one city in the 

Korean Peninsula and one extreme weather event, its approach could be used to reliably 

estimate non-exceedance probabilities in other regions where tidal gauge data are 

available. In practical terms, the findings of this study, and future ones adopting its 

methodology, will provide a useful reference for designers of coastal infrastructure. 

 

3. Please add a research framework diagram, emphasize the core phases of the 

methodology, particularly: the Threshold selection iterative process and the 

clustering of storm surge data. 

- We are grateful for this insightful suggestion. Our general approach, workflow, 

threshold selection interactive process, and clustering regarding estimating non-

exceedance probability of extreme surges using tidal gauge data. These can be seen 

below. 
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Figure 4. General approach and workflow 

 

 

Figure 11. Clustering flowchart 
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Figure 6. Threshold-selection flowchart 

 

4. The statistics analysis presentation: it is suggested to add Analysis of Variance output 

data for all regression and probabilistic distribution goodness of fit as follows: 

1) Please provide Coefficient of determination and correlation coefficient, 

regression variance and Standard Error (SE) of the sea level fluctuations in 

Figure 4. Perhaps add a Table 

2) Please provide detailed statistical data of the different probabilistic 

distributions I Figures 17-19.  

3) Please present the parameters of the selected distribution (Weibull) and discuss 

this with reference to the literature.  

4) Please discuss the statistical significance of the model (P=Value, R2, C.I. P.I.). 

- Thank you for your comment. Pursuant to this reviewer comment, the deeper 

description of statistical analysis was discussed. These can be seen below. 
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the annual means presented in this paper have been calculated from that hourly data. 

As can be seen in Figure 3, plotting MSL for each year confirms that short-term water-

level variation merely masks the long-term trend of sea-level increase. Therefore, on 

the assumption that MSL variation was a function of time, a linear regression was 

performed, with the resulting coefficient of slope indicating the rate of increase (Yoon 

and Kim, 2012). The data utilised to estimate MSL for the tidal gauge station in Busan 

was provided by KHOA, which performed quality control on it before releasing it to us. 

Additionally, however, a normality test was performed, and the results (as shown in 

Table 7) indicated that the hourly sea-level data followed a normal distribution, at a 

significance >0.05. The Kolmogorov-Smirnov normality test was adopted as being 

well-suited to datasets containing more than 30 items. 

 

Table 7. Kolmogorov-Smirnov normality test of sea-level fluctuation data from Busan 

tidal-gauge station 

 Statistic df Significance Pearson 

correlation 

Sea level 

fluctuation 

0.084 473352 0.200 0.96 

As can be seen in Figure 3, the average rate of increase in MSL at Busan’s tidal-gauge 

station from 1962 to 2019 was 2.4mm per year, yielding a difference of 16.31cm 

between the end of that period and the beginning. This finding is broadly in line with 

Yoon and Kim’s (2012), that the rate of MSL increase around the Korean Peninsula as 

a whole between 1960 and 2010 was about 2.9mm/year. Also, linear regression analysis 

of the sea-level fluctuation data for 1965-2019 was utilised to discern the MSL trend. 

The significance level of 0.000 (<0.05) obtained via analysis of variance (ANOVA; 

Table 8) indicates that the regression model of sea-level fluctuations was significant. 

Also, its correlation coefficient (0.96) indicated a strong positive relationship between 

sea-level rise and recentness. The coefficient of determination (R2) was utilised to 

describe how well the model explained the collected data. The closer R2 is to 1, the 

better the model can predict the linear trend; and here, it was 0.74, as shown in Table 9. 

This means that the linear-regression model explained 74% of the sea-level variation. 

While this result suggests that the linear-regression analysis for sea-level fluctuation at 

the tidal gauge station in Busan is reliable, however, such results may not be 

generalisable because variation in the data could have been due to several factors, 

including geological variation and modification of gauge points. 

 

 

 

Table 8. Linear-regression coefficients, sea-level fluctuations at Busan tidal-gauge 
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station 

 Non-standardised 

Coefficients 

Standardised 

Coefficients 

 

t 

Significance 

Probability 

(P-value) 
 B Standard 

Error 

Beta 

(Constant) -422.23 35.022 0.887 -12.06 0.00 

Sea level 

fluctuations 

0.246 0.018 13.97 0.00 

 

Table 9. Summary of analysis of variance results, sea-level fluctuations at Busan tidal-

gauge station 

Model Sum of 

Squares 

df Mean 

squares 

F Sig. Adjuste

d R2 

Regressio

n 
830446354.04 41 

20254789.1

2 

32109.3

8 

.000

b 

0.74 

Residual 
298566787.86 

47331

0 
630.81 

   

Total 1129013141.9

0 

47335

1 

    

 

 

Based on our simulations, exceedances water height above the designated threshold 

were computed using MLE estimates. Table 11 presents the distribution parameters of 

the storm-surge parameters that were computed, each using a different probability 

model. These distribution parameters were based on the exceedance above the 

algorithmically designated threshold of 29.15cm, mentioned above. 

Table 11. Probability-distribution parameters of the storm-surge parameters 

 GPD Beta 

Season 𝜉 𝜎 𝛼 𝛽 

Cold 0.02 0.34 3.12 3.45 
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We also fit our empirical data to five different probability-distribution models – i.e., 

Fréchet, Gamma, GPD, Lognormal, and Weibull – as seen in Figures 19 and 20, using 

the case of storm-surge data. Calculation of mean squared error between the probability 

models and the empirical data revealed that the Gamma and Weibull distributions had 

the best fit to the data for both cold and warm seasons when MLE was used for 

estimating parameters of the probability model. These findings support previous ones 

by Bardsley (2019) regarding the Weibull distribution’s appropriateness to extreme-

value estimation. According to Bardsley, such a distribution could explain enough to 

enable extrapolation of the degree beyond the utilised data history, provided that the 

scale and shape parameter of the distribution are positive (meaning that the probability 

model has a good fit to the data). In the case of our own research, the shape and scale 

parameters were 1.87 and 5.21, respectively, indicating that the Weibull distribution 

model will likely have a good fit to large amounts of data beyond the dataset we used. 

 

5. Please elaborate the literature review with reference to up-to-date publications, 

please refer to; 

1) with regards to exceedance diagrams 

[1] Bermúdez, M., Cea, L., and Sopelana, J. (2019). "Quantifying the role of individual 

flood drivers and their correlations in flooding of coastal river reaches." Stoch Envi-

ron Res Risk Assess, 33(10), 1851-1861, https://doi.org/10.1007/s00477-019-01733-

8/. 

[2] Buchana, P., and McSharry, P. E. (2019). "Windstorm risk assessment for offshore 

wind farms in the North Sea." Wind Energy (Chichester, England), 22(9), 1219-

1229, https://doi.org/10.1002/we.2351/.  

[3] Catalano, A. J., Broccoli, A. J., Kapnick, S. B., and Janoski, T. P. (2019). "High-

Impact Extratropical Cyclones along the Northeast Coast of the United States in a 

Long Coupled Climate Model Simulation." Journal of Climate, 32(7), 2131-2143, 

https://doi.org/10.1175/JCLI-D-18-0376.1/.  

[4] Chen, Y., Li, J., Pan, S., Gan, M., Pan, Y., Xie, D., and Clee, S. (2019). "Joint 

probability analysis of extreme wave heights and surges along China’s coasts." 

Ocean Engineering, 177 97-107, https://doi.org/10.1016/j.oceaneng.2018.12.010/.  

[5] Davies, G., Callaghan, D. P., Gravois, U., Jiang, W., Hanslow, D., Nichol, S., and 

Baldock, T. (2017). "Improved treatment of non-stationary conditions and 

uncertainties in probabilistic models of storm wave climate." Coastal Engineering 

(Amsterdam), 127 1-19, https://doi.org/10.1016/j.coastaleng.2017.06.005/.  

[6] Fawcett, L. and Walshaw, D. (2016). "Sea-surge and wind speed extremes: optimal 

estimation strategies for planners and engineers." Stoch Environ Res Risk Assess, 

30(2), 463-480, https://doi.org/10.1007/s00477-015-1132-3/. 

[7] Hisamatsu, R., Tabeta, S., Kim, S., and Mizuno, K. (2020). "Storm surge risk 

assessment for the insurance system: A case study in Tokyo Bay, Japan." Ocean & 

Warm 0.51 0.33 2.87 1.89 

https://doi.org/10.1002/we.2351/
https://doi.org/10.1175/JCLI-D-18-0376.1/
https://doi.org/10.1016/j.oceaneng.2018.12.010/
https://doi.org/10.1016/j.coastaleng.2017.06.005/
https://doi.org/10.1007/s00477-015-1132-3/


8 
 

Coastal Management, 189, https://doi.org/10.1016/j.ocecoaman.2020.105147/.  

[8] Ke, Q., Jonkman, S. N., van Gelder, P. H. A. J. M, and Bricker, J. D. (2018). 

"Frequency Analysis of Storm-Surge-Induced Flooding for the Huangpu River in 

Shanghai, China." Journal of Marine Science and Engineering, 6(2), 

https://doi.org/10.3390/jmse6020070/.  

[9] McInnes, K., Hoeke, R., Walsh, K., O’Grady, J., and Hubbert, G. (2016). 

"Application of a synthetic cyclone method for assessment of tropical cyclone storm 

tides in Samoa." Nat Hazards, 80(1), 425-444, https://doi.org/10.1007/s11069-015-

1975-4/.  

[10] Silva-González, F., Heredia-Zavoni, E., and Inda-Sarmiento, G. (2017). "Square 

Error Method for threshold estimation in extreme value analysis of wave heights." 

Ocean Engineering, 137 138-150, https://doi.org/10.1016/j.oceaneng.2017.03.028/.  

[11] Wahl, T., Mudersbach, C., and Jensen, J. (2015). "Statistical Assessment of Storm 

Surge Scenarios Within Integrated Risk Analyses." Coastal Engineering Journal, 

57(1), https://doi.org/10.1142/s0578563415400033/.  

2) with regards to storm surge risk assessment; 

[1] Zhu, Y., Xie, K., Ozbay, K., Zuo, F., and Yang, H. (2017). "Data-driven spatial 

modeling for quantifying networkwide resilience in the aftermath of hurricanes Irene 

and Sandy." Transp.Res.Rec., 2604(1), 9-18. 

[2] Yum, S., Kim, J. H., and Wei, H. (2020). "Development of vulnerability curves of 

buildings to windstorms using." Journal of Building Engineering, Article in Press.  

[3] Ke, Q., Jonkman, S. N., van Gelder, P. H. A. J. M, and Bricker, J. D. (2018). 

"Frequency Analysis of Storm-Surge-Induced Flooding for the Huangpu River in 

Shanghai, China." Journal of Marine Science and Engineering, 6(2), 

https://doi.org/10.3390/jmse6020070/. 

- We are very grateful to the reviewer for providing these valuable references. As 

requested, we have added reviews of the studies recommended above by the reviewer. 

These can also be seen below. 

Ke et al. (2018) studied these new frequencies of storm-induced flooding, with the aim 

of formulating new safety guidelines for flood-defence systems in Shanghai, China. 

They proposed a methodology for estimating new flooding frequencies, which involved 

analysing annual water-level data obtained from water-gauge stations along a river near 

Shanghai. The authors reported that a generalised extreme value (GEV) probability-

distribution model was the best fit to the empirical data, and this led them to advocate 

changes in the recommended height of the city’s flood wall. However, Ke at al. only 

considered annual maximum water levels when analysing flooding frequencies, which 

could have led to inaccurate estimation of the exceedance probability of extreme natural 

hazards such as mega-typhoons, which may bring unexpectedly or even 

unprecedentedly high water levels. In such circumstances, the protection of human 

society calls for highly accurate forecasting systems, especially as inaccurate estimation 

of the risk probability of these hazards can lead to the construction of facilities in 

inappropriate locations, thus wasting time and money as well as endangering life. 

Moreover, the combined effect of sea-level rises and tropical storms is potentially even 

more catastrophic than either of these hazards by itself. 

https://doi.org/10.1016/j.ocecoaman.2020.105147/
https://doi.org/10.3390/jmse6020070/
https://doi.org/10.1016/j.oceaneng.2017.03.028/
https://doi.org/10.1142/s0578563415400033/
https://doi.org/10.3390/jmse6020070/
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Using insurance data from when Typhoon Maemi made landfall on the Korean 

Peninsula, Yum et al. (2021) presented vulnerability functions linked to typhoon-

induced high wind speeds. Specifically, the authors used insurance data to calculate 

separate damage ratios for residential, commercial, and industrial buildings, and four 

damage states adopted from an insurance company and a government agency to 

construct vulnerability curves. Mean squared error and maximum likelihood estimation 

(MLE) were used to ascertain which curves most reliably explained the exceedance 

probability of the damage linked to particular wind speeds. Making novel use of a 

binomial method based on MLE, which is usually used to determine the extent of 

earthquake damage, the same study found that such an approach explained the extent 

of the damage caused by high winds in the Korean Peninsula more reliably than other 

existing methods such as theoretical probability method. 

Zhu et al. (2017) explored recovery plans pertaining to two New York City disasters, 

Hurricanes Irene and Sandy, using data-driven city-wide spatial modelling. They used 

resilience quantification and logistic modelling to delineate neighbourhood tabulation 

areas, which were smaller units than other researchers had previously used, and which 

thus enabled the collection of more highly detailed data. They also introduced the 

concept of loss of resilience to reveal patterns of recovery from these two hurricanes, 

again based on their smaller spatial units. Moran’s I was utilised to confirm that loss of 

resilience was strongly correlated not only with spatial characteristics, but also with 

socioeconomic ones, and factors like the location of transport systems. However, given 

the particularity of such factors, Zhu et al.’s results might not be generalisable beyond 

New York City; and they made no attempt to predict future extreme events’ severity or 

frequency. 

The sharp differences in the results of the past studies cited above are due to wide 

variations in both the data they used and their assumptions. The present study therefore 

applies all of the methods used in previous studies of Hurricane Sandy’s return period 

to estimate that of Typhoon Maemi, and in the process, establishes a new model. 

Bermúdez et al. (2019) studied flood drivers in coastal and riverine areas as part of their 

approach to quantifying flood hazards, using 2D shallow-water models to compute the 

correlation between extreme events and flood drivers. They also adopted ordinary least-

squares regression analysis to construct a 10,000-year time series, and computed water 

levels’ exceedance probabilities for comparison. However, the possibility of river 

discharges, sea-wave trends, and tidal fluctuations were not considered in their study. 

The wrecking of windfarms by extreme windstorms is of considerable concern in the 

North Sea region, which is home to 38 such farms belonging to five different countries. 

According to Buchana and McSharry’s (2019) Monte Carlo simulation-based risk-

management study, the total asset value of these windfarms is €35 billion. It used a log-

logistic damage function and Weibull probability distribution to assess the risks posed 

to windfarms in that region by extreme strong winds, and exceedance probability to 

predict the extent of financial loss from such damage, in terms of solvency capital 

requirement (SCR). The same study also simulated the results of various climate-

change scenarios, and the results confirmed that higher wind speed and higher storm 
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frequency were correlated with rises in SCR: a finding that could be expected to help 

emergency planners, investors, and insurers reduce their asset losses. 

According to Catalano et al.’s (2019) study of high-impact extratropical cyclones 

(ETCs) on the north-eastern coast of the Unites States, limited data caused by these 

storms’ rarity made it difficult to predict the damage they would cause, or analyse their 

frequency. To overcome this, they utilised 1,505 years’ worth of simulations derived 

from a long-coupled model, GFDL FLOR, to estimate these extreme events’ 

exceedance probabilities, and compared the results against those of short-term time-

series estimation. This revealed not only that the former was more useful for statistical 

analysis of ETCs’ key characteristics – which they defined as maximum wind speed, 

lowest pressure, and surge height – but also that the use of a short time-series risked 

biasing estimates of ETCs’ return levels upwards (i.e., underestimating their actual 

frequency). While these results regarding return levels and time-series were valuable, 

however, Catalano et al. did not distinguish between the cold season and the warm 

season of each year, which could also have led to biased results. 

A joint-probability methodology was used to analyse extreme water heights and surges 

on China’s coast by Chen et al. (2019). They obtained the sea-level data from nine 

gauge stations, and utilised 35 years’ worth of simulation data with Gumbell 

distribution and Gumbell-Hougaard copula. The three major sampling methods 

proposed in the study were structural-response, wave-dominated, and surge-dominated 

sampling. The first was utilised to assess structures’ performance in response to waves 

and surges. Joint-probability analysis revealed that such performance was correlated 

with extreme weather events in the target region, and that such correlation became 

closer when wave motion was stronger. Also, based on their finding that joint 

exceedance probability tended to overestimate return periods for certain water levels, 

Chen et al. recommended that offshore defence-facility designers use joint-probability 

density to estimate return levels of extreme wave heights. Yet, while their study 

provided a useful methodology, particularly with regard to sampling methods and 

probability modelling of return periods and structural performance, they only looked at 

China’s coast, and therefore their findings are unlikely to be generalizable to the Korean 

Peninsula. 

Davies et al. (2017) proposed a framework for probability modelling of coastal storm 

surges, especially during non-stationary extreme storms, and tested it using the El Niño-

Southern Oscillation (ENSO) on the east coast of Australia. Importantly, they applied 

their framework to ENSO and seasonality separately. This is because, while ENSO 

affects storm-wave direction, mean sea level, and storm frequency, seasonality is mostly 

related to storm-surge height, storm-surge duration, and total water height. This 

separation has the advantage of allowing all storm variables of non-stationary events to 

be modelled, regardless of their marginal distribution. Specifically, Davies et al. applied 

non-parametric distribution to storm-wave direction and steepness, and parametric 

distribution to duration and surge using mixture-generalised extreme value probability 

modelling, which they argued was more useful than standard ones such as Generalized 

Pareto Distribution (GPD). This, they said, was because the statistical threshold in an 
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extreme mixture model can be integrated into the analysis, whereas a GPD model 

should be given an unbiased threshold: if it is low, too many normal data may be 

included. Accordingly, they utilised bootstrapping for the confidence interval to show 

the uncertainty of the non-stationary aspects of the extreme events. Also, they added a 

Bayesian method to provide wider confidence intervals with less bias. Their findings 

are mainly beneficial to overcoming the challenges of GPD threshold selection; 

however, robust testing of their approach will require that it be applied to a wider range 

of abnormal climate phenomena. 

Similar research was conducted by Fawcett and Walshaw (2016), who developed a 

methodology for estimating the return levels of extreme events such as sea surges and 

high winds of particular speeds, with the wider aim of informing practical applications 

such as design codes for coastal structures. They reported that two of the most popular 

existing methods for doing so, block maxima (BM) and POT, both have shortcomings, 

and concluded that a Bayesian approach would be more accurate. Specifically, they 

argued that BM and POT methods tend to waste valuable data, and that considering all 

exceedance via accurate estimation of the extremal index (reflecting uncertainty’s 

natural behaviour) could compensate for this disadvantage. They further proposed the 

seasonal variations should be taken into consideration with the all exceedance data, 

where possible. 

In response to Japanese government interest in unexpected flooding caused by extreme 

storm surges during typhoons and other high-wind events, Hisamatsu et al. (2020) 

simulated typhoons as a means of predicting the cost of the damage they would cause 

in Tokyo Bay, which is very vulnerable to such events due to its geographic and socio-

economic characteristics. Using stochastic approaches, they modelled future typhoons 

over a 10,000-year period, and calculated flooding using a numerical surge model based 

on the probability of historical typhoons. These flooding calculations, in turn, were 

utilised to create a storm-surge inundation map, representing exceedance probabilities 

derived from stochastic hazard calculations pertaining to 1,000 typhoons. Next, the 

completed map was overlaid on government-provided values of Tokyo Bay’s buildings 

and other infrastructural elements, to assess the spatial extent and distribution of the 

likely damage. The results showed that Chiba and Kanagawa would be the most 

damaged areas, and suffer financial losses of ¥158.4 billion and ¥91.5 billion, 

respectively, with an exceedance probability of 0.005 (as commonly used to estimate 

damage in the insurance industry). However, the real-estate values they used were two 

decades out of date at the time their study was conducted, meaning that further 

validation of their approach will be needed. 

Another effort to estimate return periods was made by McInnes et al. (2016), who 

created a stochastic dataset on all cyclones that occurred near Samoa from 1969 to 2009. 

That dataset was utilized to model storm tides using an analytic cyclone model and a 

hydrodynamic model, which also took account of prevailing climate phenomena such 

as La Niña and El Niño when estimating return periods. The authors found that tropical 

cyclones’ tracks could be affected by La Niña and El Niño, and more specifically, that 

the frequency of cyclones and storm tides during El Niño was consistent across all 
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seasons, whereas La Niña conditions make their frequency considerably lower in La 

Niña season. Additionally, McInnes et al. proposed that sea-level rises had a more 

significant influence on storm tides than on future tropical cyclones did, based on their 

finding that future cyclones’ frequency would be reduced as the intensity of future 

cyclones increased. Lastly, they found that the likelihood of a storm tide exceeding a 

1% annual exceedance probability (i.e., a one-in-a-hundred year tide) was 6% along the 

entire coastline of Samoa. However, other effects such as sea level fluctuations and 

meteorological factors were not included in their calculations. 

Silva-González et al. (2017) studied threshold estimation for analysis of extreme wave 

heights in the Gulf of Mexico, and argued that appropriate thresholds for this purpose 

should consider exceedances. They applied the Hill estimator method, an automated 

threshold-selection method, and the square-error method for threshold estimation in 

hydrological, coastal engineering, and financial scenarios with very limited data, and 

found that the square-error method had the most advantages, because it did not consider 

any prior parameters that could affect thresholds. The authors went on to propose 

improvements to that method, i.e., the addition of differences between quantiles of the 

observed samples and median quantiles from GPD-aided simulation. When GPD was 

utilised to estimate observed samples, it effectively prevented convergence problems 

with the maximum-likelihood method when only small amounts of data were available. 

The key advantage of Silva-González et al.’s approach is that the choice of a threshold 

can be made without reliance on any subjective criteria. Additionally, no particular 

choice of marginal probability distribution is required to estimate a threshold. However, 

to be of practical value, their method will need to incorporate more meteorological 

factors. 

Lastly, Wahl et al.’s (2015) study of the exceedance probabilities of a large number of 

synthetic and a small number of actual storm-surge scenarios utilized four steps: 

parameterising the observed data; fitting different distribution models to the time series; 

Monte Carlo simulation; and recreating synthetic storm-surge scenarios. Specifically, 

projected 40cm and 80cm sea-level rises were used as the basis for investigating the 

effects of climate change on flooding in northern Germany. Realistic joint-exceedance 

probabilities were used for all parameters with copula models; and the exceedance 

probabilities of storm surges were obtained from the bivariate exceedance probability 

method with two parameters, i.e., the highest total water level with the tidal fluctuations 

and intensity. Wahl et al.’s findings indicated that extremely high water levels would 

cause substantial damage over a short time period, whereas relatively small storm 

surges could inflict similar levels of damage but over a much longer period. However, 

like various other studies cited above, Wahl et al.’s did not take account of seasonal 

variation. 

 

6. Please see further comments and typo-edit in the attached.  

- We would again like to thank Reviewer #1 for the above insightful and constructive 

comments on our manuscript. We hope that all of them have now been addressed, but 

of course, are happy to make further changes if needed. 
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7. Some of the Figures need Legend and improved resolution. 

- We are grateful for these constructive comments. The original Figures 1 and 2 have 

been revised accordingly. 

 

Figure 1. Track and wind speed of Maemi, 2003 

 

 

Figure 2. Locations of the 15 tidal-gauge stations on the western and southern 

coasts of South Korea as of 2003 

 

8. Some references in the text are miss from the bibliographic list. 

- Thank you for your comment. The missing references have been added to the 

References list. 

-  

 

 


