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 11 
Abstract 12 

Rainfall is one of the most important variables for water and flood management. We investigate the capacity of 13 

the Weather Research and Forecasting model (WRF) to dynamically downscale the ECMWF Re-Analysis data for 14 

Northern Tunisia. This study aims to examine the sensitivity of WRF rainfall estimates to different Planetary 15 

Boundary Layer (PBL) and Cumulus Physics (Cu) schemes. The verification scheme consists of three statistical 16 

criteria (Root Mean Square Error (RMSE), Pearson correlation, and the ratio bias coefficient). Moreover, the FSS 17 

coefficient (fraction skill score)  and the quality coefficient SAL (structure amplitude latitude) are calculated. The 18 

database is composed of four heavy events covering an average of 318 rainfall stations. We mean by heavy event, 19 

each event occurred a rainfall of more than 50 mm per observed day at least in one rainfall station. The sensitivity 20 

study showed that there is not a best common combination scheme (PBL and Cu) for all the events. The average 21 

of the best 10 combinations for each event is adopted to get the ensemble map. We conclude that some schemes 22 

are sensitive and others less sensitive. The best three performing schemes for PBL and Cu parametrizations are 23 

selected for future rainfall estimation by WRF over Northern Tunisia. 24 

Keywords: WRF-QPF, Extreme-rainfall, Sensitivity, Northern-Tunisia, Validation 25 

 26 

1 Introduction 27 

The occurrence of heavy rainfall makes the economy of the Tunisian country weaker. In September 2011, 28 

Zaghouan region and the lower valley of the Medjerda experienced floods. Three people dead. Huge losses 29 

occurred in the agricultural sector estimated at about 30 million Tunisian dinars and road infrastructure about (40%  30 

of the actual PIB) was subject to severe damages (Fehri, 2014). Rainfall forecasting and alert may help to surmount 31 

a part of floods impacts. The MSG MPE (Meteosat Second Generation Multi-sensor Precipitation Estimate) was 32 

used to evaluate rainfall estimation in comparison to interpolated in-situ data.  Weak performance was found in 33 

detecting rainfall amounts during extreme events with daily rainfall more than 50 mm per day, in Northern Tunisia  34 

(Dhib et al., 2017). Even with two proposed corrections based on in-situ data the results were found still 35 

insufficient. Here, we seek to base on other sources of rainfall estimation. An alternative source of global rainfall 36 

information is short-range forecasts from numerical weather prediction (NWP) models. NWP models use satellite 37 

and in situ observations of atmospheric temperature and moisture as input to define the initial conditions to run 38 

models of atmospheric motion using appropriate physical parameterizations to predict rainfall (Berrisford et al., 39 
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2009). WRF is one such model that has been used, among other things, to downscale ECMWF 40-year reanalysis 40 

data (Uppala et al., 2005). WRF is selected here because it is performing and widely used by the national 41 

meteorological institute (INM) (Nmiri, 2014).   42 

However, regional climate models are sensitive to the different model physics parameterizations options. 43 

Additionally, the behavior of physics may vary depending on the location of the domain due to different climatic 44 

regimes. That is why we should study the sensitivity of WRF over our study area which is a very crucial step. 45 

Crétat et al. (2011) ran the WRF model, literally forced by ERA40 reanalysis. Twenty-seven experiments 46 

configured with three schemes of cumulus (Cu), a planetary boundary layer (PBL) and microphysics (MP) were 47 

tested at 35 km horizontal resolution to quantify the seasonal biases of rainfall. It was found that rain rates were 48 

predominantly sensitive to Cu schemes and much less to PBL and MP schemes. They found that WRF simulates 49 

accurately seasonal gradients of rainfall also the seasonal large-scale rainfall patterns. However, they noticed 50 

strong seasonal biases fluctuation from an experiment to another. We conclude from this study of (Crétat et al., 51 

2011) that without testing numerous physical parameterizations one couldn't find satisfactory rainfall estimations. 52 

Another sensitivity study was achieved by Evans et al. (2011), over the south of Australia, to evaluate the ability 53 

of a 36 member multi-physics WRF ensembles to reproduce four East Coast Low events. Two PBL schemes, two 54 

Cu schemes, three microphysics (Mp) schemes, and three radiation (Ra) scheme combinations of shortwave and 55 

longwave schemes respectively  were used to create these 36 members. A weak sensitivity appears for weak 56 

weather systems in comparison with extreme events.  In agreement with previous WRF parameterizations studies 57 

(Jankov et al., 2005;  Flaounas et al, 2011), not a single preferred member is the best for all cases and all metrics.  58 

To study WRF sensitivity over Tunisia, this paper contains four other sections organized as follows: Section 2 59 

describes the in situ data and used WRF parametrizations, Section 3 provides the sensitivity study methodology, 60 

Section 4 represents the results, and the last section summarizes the conclusions and perspectives. 61 

2 Data and methods  62 

2.1 In situ data 63 

Northern Tunisia represents the study area (Fig.1). It’s hydrological division is into three parts: the Medjerda river 64 

watershed (W 5), the Meliane watershed (W 4) and the watershed composed by north coastal basins watershed (W 65 

3). The Northern Tunisia covers an area of about 36000 km ² and a population of about 6 million inhabitants. It is 66 

limited north and east by the Mediterranean Sea, south by the mountains of the Atlas and west by Algeria. The 67 

rain gauges are presented in Fig. 1 with WRF grid and the  Radar Topography Mission (SRTM) map as 68 

Background.  69 

[Figure 1] 70 
 71 

The spatial interpolation of the in situ precipitation data was achieved using an inverse distance weighted (moving 72 

average) method (Dhib et al., 2017).  The database is composed by an average of 318 rain gauges. Heavy events 73 

are defined as those daily events exceeding 50 mm/day for at least one station. A total of  77 heavy rainfall events 74 

period  (Fig.2a) is result from this selection criterion during the study period which is from January 2007 to August 75 
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2009. 35 events were recorded during the dry period (6 months from May to October) and 42 events during the 76 

wet season (from November to April). 77 

To undertake the present study, four days were selected among 11 important events (at least 2 stations with 50 78 

mm/day) those that were not detected by MSGMPE (Heinemann et al.,2002).   79 

2.2 Case studies 80 

Figure 2a shows the spatial average of the 76 heavy events (all the colors) in comparison with the standard 81 

deviation. The important undetected events (at least 2 heavy stations in in situ data registered more than 50 82 

mm/day) using MSG-MPE rainfall estimation are colored in Black and red. The selected events for the WRF 83 

sensitivity are represented in red color (Fig.2a). The gauges rain variability of the four case studies are presented 84 

in Fig.2b. We chose from the 76 heavy events two remarkable events 12/01/2009 with the highest spatial average 85 

rain (43.8 mm/day) and 13/09/2007 which registered the highest standard deviation (79.2). In the other hand, we 86 

chose two ordinary events. The first one is the 13/10/2007 where both the spatial average (19.3 mm/day) and the 87 

standard deviation (24.2) are near the average of all the events. The fourth event has the second highest spatial 88 

average  (28.2 mm/day). The four case studies have different rainfall localization. For example we see in (Fig.2c) 89 

that the rainfall cover almost all the study area on 12/01/2009. Contrary, the three other events we could see 90 

different localization of the heaviest rain.  91 

 [Figure 2] 92 
 93 

2.3 Interpolation: The spatial interpolation of the in situ precipitation data was done using an inverse distance 94 

weighted (moving average) method. To optimize the weight (W) of the inverse distance (IDW) interpolation 95 

method, we did a cross validation for the studied events.  Fig.3(a) illustrates the correlation coefficients and the 96 

RMSE versus the Power (P) of the four events Fig.3(b).  97 

Figure 3 highlights the importance of the cross-validation. We notice that not in all the cases the best correlation 98 

coefficient corresponds to the lowest RMSE. For example, we see the high variation of the correlation coefficient 99 

and the RMSE of the 08/03/2007 event. For a P value of 0.1 and 0.7, we find the correspondent correlation 100 

coefficient fluctuates from 0.3 to 0.48 respectively while the RMSE varies from 23 to 22 mm/day without attending 101 

the lowest value (21 mm/day). In such a case, we take into consideration the P value corresponding to the best 102 

RMSE which is 1.2. 103 

[Figure 3] 104 
 105 

2.3. The WRF model and the used parametrizations  106 
 107 

WRF is a numerical weather prediction (NWP) and atmospheric simulation model. It is a mesoscale forecast and 108 

data assimilation system (Skamarock et al., 2008). WRF’s boundary and initial conditions covering the study 109 

area during the studied period 2007-2009 is the latest ERA-Interim global atmospheric reanalysis product of the 110 

ECMWF (European Centre for Medium-Range Weather Forecasts) from 1 January 1989 (Berrisford et al., 111 

2009).  The variables are precipitable vapor, brightness temperatures, atmospheric motion vectors, atmospheric 112 
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refraction, scatterometer wind data, and ozone retrievals. The majority of these variables  are originated from 113 

satellite-borne sensors. Some are improved by in situ measurements such as wind (u/v), upper air temperatures 114 

(T), and specific humidity (q). The ERA-Interim has a horizontal resolution about 79 km spacing on a reduced 115 

Gaussian grid. In ERA-Interim the vertical resolution is represented by 60 model layers with 0.1 hPa at the top of 116 

the atmosphere. 117 

There are several WRF versions. This study employs WRF with the version 3.4 of the Advanced Research WRF 118 

core. Figure 4 shows coverages of WRF’s domain employed in this study. The one-way nesting strategy is used. 119 

The outer domain has grid points with 30 km resolution. The inner domain has 10 km resolution and covers 120 

latitudes of 30°N–42°N and longitudes of 02°E–21°E. The ERA-Interim global atmospheric reanalysis dataset 121 

(ERA) is dynamically downscaled using WRF to obtain downscaled reanalysis at 10 km resolution. These 122 

outputs from the inner domain at 10 km resolution are employed in this study. 123 

 [Figure 4] 124 

2.4. Parameters schemes characteristics 125 

-Cumulus parameterization schemes:  126 

There are two main types of convection: deep convection and shallow convection, which refer to convective 127 

elements development. Associated with strong ascents and precipitated quantities, deep convection warms (by the 128 

release of latent heat) and dries out (by condensation and precipitation of water vapor) the atmosphere, which is 129 

not the case for shallow convection (Dorrestijn, 2013). Convection patterns determine the vertical fluxes associated 130 

with sub-surface ancillaries and subside, compensatory motions outside the clouds, and provide vertical profiles 131 

of heat and moisture. The used cumulus (Cu) schemes in this work are briefly described in Table 1 (Skamarock et 132 

al., 2008) 133 

-PBL parameterization schemes  134 

PBL schemes are 1D schemes assuming a clear difference between subgrid vortices and large-scale vortices. 135 

When PBL scheme triggered, explicit vertical scattering is disabled with the assumption that the PBL scheme 136 

will handle this process. Controlling the vertical flow profiles, PBL schemes provide atmospheric tendencies of 137 

moisture, temperature, clouds, and horizontal momentum in the entire atmospheric column (Skamarock et al., 138 

2005). Table 1 described the PBL and Cu schemes adopted here. 139 

[Table 1] 140 
 141 

3. Methodology 142 

For the rest of the work we will use the four selected days out of the eleven undetected events by MSGMPE. 143 

Furthermore, based on quantile quantile comparison of the three  different parameters (PBL, Cu, Mp) schemes, 144 

we will choose which parameters will be used for the sensitivity study. 145 

3.1 Sensitivity parameters selection 146 

https://doi.org/10.5194/nhess-2020-376
Preprint. Discussion started: 5 January 2021
c© Author(s) 2021. CC BY 4.0 License.



5 

 

Firstly, default parameters are used in the evaluation of the 11 chosen events (PBL (2), Cu (5)). The first run of 147 

WRF precipitation estimate was achieved using the default parameters (PBL scheme 2, Cu scheme 5, Mp scheme 148 

6). The 11 tested events were detected rainy by WRF. Further, the sensitivity study is limited to a subsample of 149 

four events out of 11 as a first test. These four events are selected because they present different types of events 150 

where we find very high rainfall amounts covering the whole study area (12/01/2009), a high rainfall in vast areas 151 

(13/09/2008), weak rainfall in a considered area (26/03/2008), and weak rainfall in a very limited surface 152 

(23/09/2007). 153 

We assume the three most commonly adopted parameters (PBL, Cumulus (Cu) and microphysics (Mp)) to analyze 154 

the sensitivity of WRF over the study area. Figure 5 illustrate the quantile-quantile comparison for different 155 

schemes of the three selected parameters for the extreme event of 12/01/2009.  156 

 [Figure 5] 157 
 158 

For the PBL schemes simulation, the Cu scheme was fixed to 2 and Mp scheme to 6 (Fig.5a). 159 

We notice that for the PBL parameter (Fig.5a), the rainfall estimation differs from one scheme to another. It  is 160 

concluded that there is some WRF sensitivity for this parameter over the study area. To illustrate the sensitivity of 161 

the Cu schemes the PBL scheme was fixed to 9 and Mp scheme was fixed to 6 (Fig.5b). The quantile quantile 162 

comparison of the different Cu schemes between the WRF and the ground data shows  the high difference in the 163 

estimation foremost of high rainfall (more than 70 mm/day). For the Mp schemes, the PBL parameter was fixed 164 

to 9 and Cu parameter to 2. 165 

Based on the quantile-quantile comparison, the PBL and Cu parameters look more sensitive than MP parameter 166 

(Fig.5c) which shows a sensitivity only for high values (more than 70 mm/day). Then, in this work, MP is 167 

considered not sensitive and maybe in future work we include it in the sensitivity study.   168 

The four evaluated events for the sensitivity study are 08/03/2007, 13/10/2007, 13/09/2008, and the 12/01/2009. 169 

The choice of these events is based on the incapability of MSGMPE to detect them. Also, we chose them because 170 

of the difference in the type of rain (scattered or very localized in space, in topographic area) and for the location 171 

difference of the extreme values in the ground.  172 

A threshold of 0.1 mm is used in SAL and FSS verification to distinguish between rainy and no rainy pixels. In 173 

case of undetected events, they will be deleted in the SAL diagram. The number of these non-represented cases in 174 

SAL will indicate the poor forecasts. This will appear foremost for the high thresholds (30  and 50 mm/day). 175 

3.2 Evaluation metrics of the sensitivity study 176 

For each studied day, 99 combinations of Cu (11 schemes) and PBL (9 schemes) are simulated. The observed 177 

and forecast precipitation fields are compared. R represents the precipitation field. Observed rain and simulated 178 

precipitation are symbolized Robs and Rmod respectively. We consider N grid in both the in situ data and WRF 179 

data. The sensitivity study verification is performed to compare the rainfall estimation by the different 180 

combinations and the in-situ data using classical scores (Zacharov et al., 2013) such as Pearson correlation 181 

coefficient , ratio bias coefficient, RMSE, SAL criterion and FSS. The ratio bias coefficient is the division of the 182 
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spatial Averages of WRF and  on the ground. Pearson correlation coefficient is used to find how strong a 183 

relationship is between data. The formula return a value between -1 and 1, where: 1 indicates a strong positive 184 

relationship, 1 indicates a strong negative relationship, a result of zero indicates no relationship at all. RMSE is 185 

the standard deviation of the residuals which show how concentrated the data is around the line of best fit.  186 

The use of the SAL verification method (Wernli et al., 2008) requires first the identification of individual objects. 187 

An object is contiguous rain area respecting a specific rain threshold. For here we use the simple approach 188 

introduced by Davis et al. (2006), where a threshold 𝑅∗ is selected Eq.(1) to detect a coherent objects encircled by 189 

the threshold contour. 190 

𝑅∗ = 𝑓 𝑅𝑚𝑎𝑥                                                                                                                                                               (1) 191 

Rmax designates the maximum rainfall amount in the study area and f is a factor equal to 1/15 was selected by the 192 

fact that for most considered cases, this contour distinguishes rainfall features that correspond to easily identifiable 193 

objects. 194 

Three components of SAL are considered going from the most complex from A to L and finally, S. The amplitude 195 

component A relates the normalized variance of the spatial average of Rmod and Robs Eq.(2).  196 

A=
𝐷(𝑅𝑚𝑜𝑑)−𝐷(𝑅𝑜𝑏𝑠)

0.5(𝐷(𝑅𝑚𝑜𝑑)+𝐷(𝑅𝑜𝑏𝑠))
                                                                                                                                         (2) 197 

where D(R) represents the domain average of the precipitation R. 198 

A component varies from −2 to +2, and the impeccable forecast is indicated by A = 0 (Fig.6). A =1 designates that 199 

the model overestimates the rainfall spatial average by 3; A=-1 indicates an underestimation by a factor of 3;  A = 200 

0.4 and 0.67 means an overestimation by 1.5 and 2 respectively. 201 

 202 

The SAL location component L is the sum of two terms 𝐿1 Eq. (3) and 𝐿2 Eq. (4)  ,  𝐿1 and 𝐿2vary from 0 to 1. L1 203 

measures the normalized distance among the mass centers of the observed and the forecast precipitation fields 204 

Eq. (3): 205 

𝐿1=
|𝑋(𝑅𝑚𝑜𝑑)−𝑋(𝑅𝑜𝑏𝑠)|

𝑑
                                                                                                                                              (3) 206 

The variable d is the largest distance among two points in the specified domain.  207 

While X(Rmod) and X(Robs) is the mass center of the observed and modeled precipitation fields respectively.  208 

L1 = 0 (Eq.3) designates that the mass centers of the observed X(Robs) and the modeled precipitation X(Rmod)  are 209 

the same. The component 𝐿2 Eq. (4) indicates the mean distance between the rainy area mass center and the 210 

singular rainfall objects (Wernli et al., 2008).  211 

𝐿2=2 [
𝑟(𝑅𝑚𝑜𝑑)−𝑟(𝑅𝑜𝑏𝑠)

𝑑
]                                                                                                                                           (4) 212 

When the number of objects surpasses 1 in the observed or in the predicted rainfall (or both), 𝐿1 and 𝐿2 differs 213 

from zero.  214 

 215 

𝑆 component allows for a comparison between the volumes of the normalized precipitation objects. It  is mainly 216 

informative about the size and shape of rainy objects. For each object Rn, a Vn volume Eq. (5)  is calculated based 217 

on the sum of all grid-point R(i, j): 218 

𝑉𝑛 =  ∑
𝑅(𝑖,𝑗)

𝑅𝑛
𝑚𝑎𝑥(𝑖𝑗)                                                                                                                                                       (5) 219 
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where 𝑅𝑛
𝑚𝑎𝑥  designates the maximum rainfall inside the object field. Vn designates the volume for each object in 220 

the observed and forecasted datasets. Then, for each dataset, the V value is calculated as the weighted average of 221 

the Vn over all objects. In an analogue way to A component, the S represents the normalized difference indicated 222 

in Eq. (6). 223 

  S=
𝑉(𝑅𝑚𝑜𝑑)−𝑉(𝑅𝑜𝑏𝑠)

0.5(𝑉(𝑅𝑚𝑜𝑑)+𝑉(𝑅𝑜𝑏𝑠))
                                                                                                                                           (6) 224 

The values of S are within [-2, +2]. When S is more than 0 that means the predicted rainfall objects are too outsized 225 

and/or too smooth (Fig.6), while when it is less than 0 that means that the predicted objects of rainfall are too small 226 

and/or too peaky. 227 

 228 
[Figure 6] 229 

 230 
 231 
The FSS (Roberts and Lean, 2008) is a neighborhood verification method. It compares the occurrence of 232 

precipitation exceeding a specified threshold in the in situ and forecasts datasets. The FSS varies from 0 to 1.  For 233 

a perfect forecast, FSS gets 1. While for a total mismatch by the forecast or some surpassing values are forecasted 234 

but does not recorded the FSS gets 0. The term elementary area (EA) is used to identify a specific spatial window.  235 

Moreover, as the EA size rises, the score will progressively approach 1 and the forecast bias decreases. The FSS 236 

is defined by the Eq. (7) (Roberts and Lean, 2008): 237 

FSS=1 −
1

𝑁
∑ (𝑜𝑗−𝑓𝑗)2𝑁

𝑗=1
1

𝑁
[∑ 𝑜𝑗

2𝑁
𝑗=1 +∑ 𝑓𝑗

2]𝑁
𝑗=1

                                                                                                                                   (7) 238 

where oj and fj is the fractional area of an EA centered in the grid j by a precipitation higher than a specific threshold 239 

value respectively for observation and forecast, and N is the total of grids in the verification area. FSS score was 240 

used with a threshold of 0.1 mm. 241 

3.3. The methodology of the sensitivity study 242 

Some treatment of the metrics was necessary prior to rank the ensemble members:  243 

(i) the R (Pearson), the ratio bias and FSS scores were inverted so that smaller values (closer to zero) 244 

represent better simulations,  245 

(ii)  centered RMSE is standardized by its maxima.  246 

Thus, all metrics are within a scale of 0–1 and are averaged. The ensemble member with the smallest metric sum 247 

corresponds to the best performing simulation.  248 

After ranking the 99 combinations, the 20 best combinations are selected.  249 

Then, we perform a new ranking of these 20 combinations based on the analysis of FSS, SAL, and the metrics sum 250 

to identify the finest 10 combinations. Finally, we calculate an ensemble map which is the average of the finest 10 251 

combinations.  Figure 7 depicts all the processing and sensitivity steps. 252 

[Figure 7] 253 
 254 

4 Results and discussion 255 
 256 
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a/ The evaluation of the 08/03/2007: 257 

Figure 8 (a) shows the SAL diagram which highlights the skills of the different combination schemes in different 258 

thresholds. S component is the abscissa and A component is the ordinates. The color of the dots represents the L 259 

component (see the scale on the right). 260 

Excellent forecasts (the three components are near zero) are found in red color in the center of the diagram. S and 261 

A components were good enough for the thresholds 0.1, 5, 10, 20 mm except for 7 overestimated combinations. L 262 

component tends to be a bit higher for thresholds 5, 10, and 20 mm in comparison with 0.1 mm threshold. The 263 

WRF model aims to estimate for some combinations larger objects for the rain exceeding 50 mm (S near 2) and 264 

sometimes peaked objects (S near -1). 265 

Fig.8 (b) represents the FSS components of the different combinations for different thresholds (0.1, 20, 30, and 50 266 

mm) best 20 combinations obtained by the metrics sum.  267 

[Figure 8] 268 
 269 

The FSS coefficient in Fig.8 (b) helped us to identify the best 10 combinations (Table 2). 270 

[Table 2] 271 
 272 

b/ The evaluation of the 13/10/2007 event: 273 

Figure 9 illustrates the verification of all the assumed schemes for the 13/10/2007 event for different thresholds. 274 

The crossed lines represent the medians of S and A (Fig.9a).  275 

The colored box symbolizes the percentiles 25th and 75th of the components S and A. The box's color indicates the 276 

median of L. The first quadrant illustrates the forecasts which overestimate both the amplitude and the structural 277 

components of SAL. The third quadrant represent the underestimation of both components.  278 

We notice that for the threshold 0.1 mm the L component is more or less similar which is due to the presence of 279 

only one object. The threshold 5 increases the L component which is explained by the apparition of other objects. 280 

A and S components become larger showing respectively higher overestimation and larger estimated objects. For 281 

the thresholds 10 and 20 mm, SAL components are more or less similar to only larger estimated objects by the 20 282 

mm threshold. For the threshold of 30 mm, the underestimation accentuated.  Peaked objects appear clearly at the 283 

threshold of 50 mm with an important underestimation. 284 

[Figure 9] 285 
 286 

After achieving the ranging of the schemes based on the sum metrics methodology, we select the best 20 schemes 287 

to evaluate them using the FSS and the SAL verification method (Fig.9). 288 

FSS helps us to select the best 10 combinations (Fig.9b) that are mentioned in Table 3. The schemes combinations 289 

are ranked from the best to the worst based on the Metrics sum coefficient. 290 
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 [Table 3] 291 

c/ The evaluation of the 12/01/2009 event: 292 

From the threshold of 10 mm, S component becomes larger (median 0.7) showing large estimated objects (Fig.10).  293 

 [Figure 10] 294 
 295 

The various FSS thresholds clarify the skills of combinations (Fig.10b). After calculating the sum of metrics, we 296 

selected the 10 best combinations (Table 4). 297 

[Table 4] 298 

d/ The evaluation of the 13/09/2008 event: 299 

For all the thresholds (Fig.11) L component varies from 0 to 0.6 which indicates the presence of many objects. 300 

From the threshold 20 mm, S components become larger showing high (S near 2) and picked (S near -2) estimated 301 

objects. For the thresholds 50 mm, we notice that the number of combinations which detect this threshold decrease 302 

notably.  These SAL thresholds help us to eliminate some weak combinations. 303 

 [Figure 11] 304 
 305 

To find the best 10 combinations we represented the 20 best combinations selected previously by the metrics sum. 306 

Fig.9b helped us to identify only  9 best combinations. We select the 10th combination based on the metrics sum 307 

(Cu5Pb8) which was not so representative of FSS (Table 5). 308 

[Table 5] 309 
 310 
Figure 12 shows the ensembles maps of the four studied events. We notice that the rainfall gradient is similar 311 

between the ensembles and the interpolated in-situ maps. The correlation coefficient is also satisfying: 0.72, 0.58, 312 

0.48 and 0.57 for respectively 08/03/2007, 13/10/2007, 13/09/2008 and 12/01/2009.  313 

 [Figure 12] 314 
 315 

Figure 13 shows the sensitivity of the four events in term of PBL and Cu. We notice that there are some schemes 316 

which are sensitive and others which are less sensitive. The best performing schemes (less sensitive) are PBL 5, 317 

7, and 99. 318 

 [Figure 13] 319 
 320 

The best performing schemes (less sensitive) for Cumulus parametrization are Cu 1, 4, and 99. 321 

3. Conclusion: 322 

https://doi.org/10.5194/nhess-2020-376
Preprint. Discussion started: 5 January 2021
c© Author(s) 2021. CC BY 4.0 License.



10 

 

WRF is sensitive to the different model physics parameterizations options. Additionally, the behavior of physics 323 

may vary depending on the location of the domain due to different climatic regimes. The current study of the 324 

extreme events using climate model WRF underlines the importance of the evaluation of such estimation rainfall 325 

data before using it as a truth data mainly for daily scale for many reasons. One of the main reasons is the good 326 

performance of WRF model in the estimation of the monthly and yearly rainfall. For example in a previous 327 

evaluation of WRF over Tunisia (Fathalli et al., 2018), noticed a satisfying estimation of rainfall using this model 328 

for the monthly and yearly scale. For daily scale, we need always to improve the rainfall estimation for WRF.  329 

We used for the four selected extreme events 99 combinations between the different Cumulus parametrization 330 

schemes and Planetary Boundary layer schemes. The metrics sum is adopted to rank the 99 combinations and to 331 

select the 20 best combinations for each event. Then, based on the analysis of FSS, SAL we performed a new 332 

ranking of these 20 combinations to identify the finest 10 combinations. Finally, we calculate the average of these 333 

finest 10 combinations to obtain an ensemble map for each event.   334 

The results showed a good detection of all the studied events using the WRF model default parameters. Also, we 335 

notice that the use of a single verification technique could lead to a shortcoming of information about the forecast. 336 

The use of several verification techniques (statistical coefficients, SAL and FSS) is extremely helpful to choose 337 

the best combination for each event. The sensitivity study helped us to identify the sensitive parameters of our 338 

study area which will facilitate the work with WRF in the future. The ensemble map method gave a very satisfying 339 

results. Then, we suggest for Tunisian WRF users as a first result to use this schemes Cu 1, 4, and 99 and PBL 5, 340 

7, and 99 as best performing schemes over Northern Tunisia. The operational service can use these findings in 341 

their estimation by WRF. At least this work highlighted the big difference in the estimation of rainfall by the 342 

different WRF parameters. This work will encourage them to use ensemble method to get better results. For floods 343 

estimation users, this work gave an idea about the reliability of WRF model. 344 
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 506 

 507 
 508 

Figure 1: The rainfall network of the Northern Tunisia. The x symbols represent the rainfall stations (in 509 
Black W-3, in Yellow W-4, in Red W-5). Medjerda river is represented by the  blue stream. 510 
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 527 

 528 

 529 
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 531 

 532 

 533 

Figure 2: a) Spatial average of In-situ heavy events against their standard deviation  b)The rainfall 534 

boxplot distribution for the studied cases, c) Gauges rainfall maps for the four case studies 535 
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 536 

 537 

 Figure 3: a) Correlation coefficients and (b) RMSE versus the Power of the IDW weight (exponent) 538 

 539 

 540 

Figure 4: WRF domain of the study area 541 
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 542 

 543 

 544 

Figure 5: PBL (a), Cumulus (b), and Microphysics (c) quantile presentation of different schemes rainfall 545 
estimation by WRF in comparison with ground data for the 12/01/2009. 546 
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 549 

 550 
Figure 6: An example of the qualitative application of SAL for various forecast (F) and observation (O) 551 

cases). 552 
 553 

 554 

Figure 7: Steps of Processing and sensitivity study 555 
 556 
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 563 

 564 

 565 

Figure 8: (a) The SAL evaluation components and (b) the FSS verification of the 08/03/2007 event 566 

(a) SAL 

(b) FSS 
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 569 

Figure 9: (a) The SAL evaluation components and (b) the FSS verification of the 13/10/2007 event 570 

(a) SAL 

(b) FSS 
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 578 

 579 

 580 

Figure 10: The SAL components of the best 20 combinations for the event 12/01/2009. 581 

(a) SAL 

(b) FSS 
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 584 

 585 
Figure 11: SAL components for different thresholds for all the combinations for the 13/09/2008 586 

(a) SAL 

(b) FSS 
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    587 
Figure 12: Studied events and the  WRF ensembles 588 
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602 

Figure 13 : The sensitivity study of the four events for (a) the different PBL schemes (The legend mentioned at 603 

PBL 0) and (b) the different Cu schemes (The legend mentioned at Cu 0)  604 
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Table 1: Cu_physics and PBL parameterization schemes used in our study 605 

Cu_physics 

nomenclature 

number 

Scheme Description 

PBL_physics 

nomenclature 

number 

Scheme 
Description and 

reference 

0   no cumulus 0   no PBL  

1 

Kain-

Fritsch 

(KF) 

Convection deep and 

shallow, mass flux with 

downdrafts and CAPE 

exclusion time scale 

(Kain 2004) 

1 
YSU (Yonsei 

University ) 

Parabolic profile in the 

mixed layer, Non-

local-K,  entrainment  

layer explicit (Hong et 

al. (2006),  

2 

Betts-

Miller-

Janjic 

(BMJ) 

Well-mixed profile, 

Operational Eta scheme. 

(Janjic (1994) 

2 

MYJ 

(Mellor-

Yamada-

Janjic ) 

One-dimensional 

prognostic turbulent 

kinetic energy. (Janjic 

(1994) 

3 

Grell-

Devenyi 

(GD) 

ensemble 

Ensemble using 144 

sub‐grid members, 

Multi parameter, multi-

closure,  

3 GFS 

Predicts TKE and 

other second-moment 

terms (Hong and Pan 

(1996). 

4 
Old SAS 

(OSAS) 

Scheme of  Simple 

mass-flux with quasi-

equilibrium ending with 

shallow mixing. (Hong 

and Pan 1998) 

4 

QNSE 

(Quasi-

Normal Scale 

Elimination) 

Option of TKE-

prediction using a new 

theory of stably 

stratified regions. 

(Sukoriansky, et al. 

2006) 

5 
Grell-3 -D 

(G3) 

 Improved version of the 

GD scheme (option 

cugd_avedx) is turned 

on Grell (1993).  

5 MYNN2 

Nakanishi and Niino 

with Level 2.5 

(Nakanishi and Niino 

(2006), 

Mellor-Yamada 

6 Tiedtke 

Mass-flux with the 

CAPE-removal, shallow 

component and 

momentum transport. 

Tiedtke (1989) 

7 

Asymmetric 

Convective 

Model  

(ACM2) 

Downward mixing, 

and upward mixing  

for local and nonlocal 

(Pleim (2007).  

14 
New SAS 

(NSAS) 

 New  scheme of mass‐
flux using deep and 

shallow mechanisms 

and momentum 

transport (Han and Pan 

(2011)) 

8 

BouLac 

(Bougeault-

Lacarrère) 

Option of TKE-

prediction useful with 

urban model  (BEP) 

(Bougeault and 

Lacarrere (1989). 

99 

Old Kain-

Fritsch 

(old KF) 

Scheme deep 

convection based on 

mass flux theory with 

downdrafts and CAPE 

without time scale (Kain 

and Fritsch (1990)) 

9 

UW 

(Bretherton 

and Park) 

CESM climate model 

with option TKE 

scheme  (Bretherton 

and Park (2009). 

   

10 

TEMF (Total 

Energy - 

Mass Flux) 

Total energy 

Prognostic variable 

with mass-flux. 

Angevine, et al. (2010) 

   

99 MRF 

KF older version using 

an implicit approach of 

entrainment layer 

mixed layer  (Hong 

and Pan (1996) 
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Table 2: The metrics of the best 10 combinations 606 

Combinations RMSE Ratio bias R (Pearson) FSS Metrics sum 

cu99pb3 18.42 0.50 0.76 1.00 1.25 

cu5pb3 18.14 0.52 0.74 1.00 1.25 

cu0pb3 18.78 0.50 0.74 1.00 1.27 

cu1pb3 17.72 0.55 0.73 0.99 1.27 

cu6pb3 18.45 0.51 0.71 0.99 1.33 

cu3pb0 13.76 0.90 0.59 0.99 1.35 

cu2pb0 12.77 0.86 0.62 0.99 1.39 

cu0pb4 16.28 1.15 0.56 1.00 1.40 

cu5pb0 14.48 0.90 0.55 1.00 1.41 

cu0pb0 14.67 0.86 0.56 1.00 1.43 

 607 

Table 3: Comparison between the different combination schemes skills of the 13/10/2007 event. 608 

Combinations RMSE Ratio bias R (Pearson) FSS Metrics sum 

cu99pb1 13.09 0.90 0.53 0.92 1.0 

cu99pb4 13.09 0.90 0.53 0.92 1.0 

cu99pb9 13.22 0.83 0.54 0.92 1.1 

cu99pb5 13.42 0.86 0.50 0.92 1.1 

cu99pb99 14.14 0.65 0.56 0.92 1.3 

cu5pb7 16.09 0.98 0.29 0.92 1.5 

cu99pb2 14.66 0.86 0.33 0.92 1.6 

cu99pb8 14.76 0.74 0.37 0.92 1.6 

cu6pb7 20.58 1.41 0.37 0.92 2.1 

cu99pb3 18.30 0.28 0.33 0.93 2.2 

 609 

Table 4: The best 10 combinations metrics 610 
 

RMSE Ratio bias R FSS Metrics sum 

cu99pb9 20.61 0.74 0.54 0.98 1.70 

cu4pb7 22.46 0.67 0.55 1.00 1.81 

cu6pb8 22.36 1.00 0.35 0.97 1.81 

cu6pb5 21.37 0.90 0.39 0.97 1.81 

cu99pb8 24.59 0.88 0.42 0.98 1.87 

cu4pb9 23.70 0.62 0.49 1.00 1.91 

cu14pb8 30.31 1.05 0.43 0.98 1.94 

cu2pb7 24.64 0.81 0.50 0.93 1.96 

cu2pb8 24.64 0.81 0.50 0.93 1.96 

cu99pb1 21.68 0.75 0.39 1.00 2.02 

 611 

 612 

 613 

 614 
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Table 5: The best 10 combination metrics  615 

Combinations RMSE Ratio bias R (Pearson) FSS Metrics sum 

cu5pb1 13.78 0.96 0.52 0.95 1.63 

cu5pb2 16.81 1.12 0.39 0.92 1.80 

cu5pb8 14.39 0.96 0.42 0.67 1.97 

cu1pb8 14.48 0.96 0.13 0.83 2.31 

cu4pb4 16.19 0.81 0.05 0.96 2.39 

cu1pb7 14.59 0.88 0.10 0.84 2.45 

cu4pb5 22.74 1.05 -0.16 0.96 2.48 

cu4pb3 22.59 1.06 -0.15 0.96 2.49 

cu0pb1 23.31 1.24 -0.11 0.98 2.52 

cu1pb9 15.35 0.89 0.01 0.84 2.55 

 616 

 617 

 618 

 619 

 620 

 621 

 622 
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