Palermo Italy

00143 Roma Italy

The mud volcanoes at Santa Barbara and Aragona (Sicily, Italy): Their potential hazards for a correct risk assessment

Alessandro Gattuso ^{1*}, Francesco Italiano¹, Giorgio Capasso¹, Antonino D'Alessandro², Fausto
Grassa¹, Antonino Fabio Pisciotta¹, Davide Romano^{1,3}.

Università di Messina, Viale Stagno D'Alcontres, 98166 Messina, Italy

Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, via Ugo La Malfa 153, 90146,

Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT),

Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Nazionale Terremoti, Via Vigna Murata 605,

14 *Correspondence to: Alessandro Gattuso (alessandro.gattuso@ingv.it)

16 Abstract

The Santa Barbara and Aragona areas are affected by mud volcanism (MV) phenomena, consisting of continuous or intermittent emission of mud, water and gases. This activity could be interrupted by paroxysmal events, with an eruptive column composed mainly by clay material, water and gases. They are the most hazardous phenomena and, nowadays, it is impossible to define the potential parameters for modelling the phenomenon. In 2017, two DSM were performed by drone in both areas, thus allowing the mapping of the emission zones and the covered areas by the previous events. Detailed information about past paroxysms was obtained from historical sources and, with the analysis of the 2017 DSMs, a preliminary hazard assessment were carried out, for the first time at two sites. Two potentially hazardous paroxysm surfaces of 0.12 km² and 0.20 km² for Santa Barbara and Aragona respectively, were defined. On May 2020, at Aragona a new paroxysm covered a surface of 8,721 m². After this, a new detailed DSM was collected with the aim to make a comparison with the 2017 one. Since 2017, a seismic station was installed at Santa Barbara. From preliminary results, both seismic events and ambient noise showed a frequency of 5-10 Hz.

45 Keywords: Mud Volcanism; Maccalube; Paroxysm; Hazard assessment; Risk assessment; monitoring.

49 1.0 Introduction

50 The mud volcanoes (MV) activity is a typical expression of the sedimentary volcanism mainly occurring in compressive

51 tectonic regimes, consisting in a continuous or intermittent shallow fluid-gas-mud emission at the Earth's surface. The uprising of mud, composed of a mixture of saline cold water, clay and gases (essentially methane), from depth to the

- 52 uprising of intid, composed of a mixture of same cold water, cray and gases (essentially methane), from deput to the 53 Earth's surface, generally occurs along tectonic discontinuities as a results of the presence of under pressure gases or by
- 54 diapirism phenomena.

According to a detailed study performed by (Mellors et al., 2007), for the mud volcanoes in Azerbaijan, the temporal correlation between earthquakes and eruptions is most pronounced for nearby earthquakes (within 100 km) and with intensities of Mercalli 6 or greater. According to (Bonini et al., 2009), mud volcanoes of the Pede–Apennine margin in Italy, are intimately connected with rising fluids trapped in the core of anticlines associated with the seismogenic Pede–

59 Apennine thrusts.

60 Monitoring the activity of the mud volcanoes, in terms of gas outflow, could be helpful to predict paroxysmal events. 61 Monitoring is generally carried out by capturing gaseous emissions at the emitting conduits (Kopf et al., 2010). However, 62 this approach is not always effective and applicable, due to logistic difficulties, which make this kind of measurements 63 infeasible and expensive in many contexts. For this reason, several indirect approaches, based on vibration monitoring, 64 have been proposed (Albarello et al., 2012). In areas characterized by sedimentary volcanism it is known that gas 65 "bubbling" phenomena can be effectively recorded by a local seismic network. Bubbling plays an important role in mud 66 volcanism. Low permeability of clays in mud-volcano areas (Kopf, 2002) suggests that, in the lack of large mud outflow 67 (typical of quiescent phases), gas propagation from the reservoir mainly occur by the uprising of gas bubbles (Etiope and 68 Martinelli, 2002; Albarello, 2005). Recent researches (Albarello et al., 2012) showed that seismic monitoring could 69 provide useful signals to characterize the activity of mud volcanoes. The seismic signals recorded on the Dashgil mud 70 volcano allowed to model several transients as a surface effect of resonant gas bubbles in a shallow basin just below the 71 volcano (Albarello et al., 2012). The interpretation of transient events in seismic tremor in terms of bubble resonance 72 suggests a new approach to stimulate gas emissions in the mud volcano.

73 In Italy, the mud volcanoes are clustered in three main geographical zones: in northern Apennines (mainly in the Emilia 74 Romagna Region); in central Apennines (Marche and Abruzzo Regions); in southern Apennines (in Basilicata, Calabria 75 and Campania Regions) and in Sicily where 13 mud volcanoes areas are present both in central and western sectors. Sizes 76 and shapes of the Italian mud volcanoes vary considerably. According to (Martinelli et al., 2004), only a small proportion 77 (20%) can be described as 'large' with a surface area >500 m², while only 5% exceed 2 m in height.

78 In Sicily, mud volcanoes are mostly located within Caltanissetta and Agrigento Provinces (S. Barbara and Aragona 79 locations respectively). The name of these phenomena is known as "maccalube" (or macalube), that derives from Arabic 80 and it means, "overturning". In some cases, a violent and instantaneous explosion called "paroxysm" could occurr and, 81 the erupted material, consisting in mud breccias composed of a mud matrix with chaotically distributed angular to rounded 82 rock clasts from a few millimeters to meters diameter, could reach a long distance from the emission point. The volume 83 of the erupted materials is generally in the order of tens cubic meters and cover a big portion of the surface. On 26 84 September 2014 at Maccalube of Aragona two kids died covered by a thick erupted mud deposits, during a violent 85 paroxysm. At Santa Barbara village, the last paroxysmal episode occurred in August 2008, provoking important damages 86 to houses, roads, electric and water pipelines.

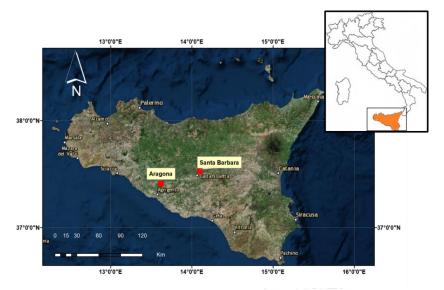
87 The majority of the mud eruptions occurred in the absence of any earthquake, suggesting that mud volcanoes may erupt 88 in response to a seismic input only if the internal fluid pressure approaches the lithostatic one. A repose time is needed 89 for triggering an eruption, related to the production rate of the driving gas to overcome the permeability of the system at

90 depth (Bonini et al., 2009).

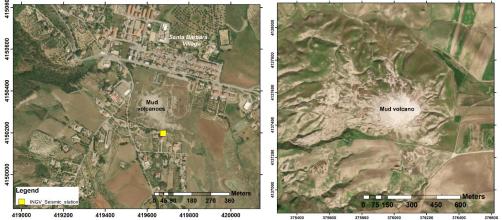
In this paper, we have gathered some historical information about the pre and post paroxysmal events occurred in the past
 at both study areas as starting point for a correct hazard assessment.

93 In October 2017, a seismic monitoring station was installed at Santa Barbara, in order to collect some seismic information 94 of the site. Moreover, a number ofdrone surveys were performed both at Santa Barbara and Aragona. Finally, at Aragona 95 a drone survey has been carried out a few days after the last paroxysm event occurred on 19th may 2020, with the aim of

96 mapping the surface of the erupted material and estimating volume and thickness.


Moreover, a Digital Surface Model (DSM) has been elaborated and the emission points at the Earth's surface were
 mapped. Based on the DSM analysis and our historical information, two main hazardous paroxysm areas at Santa Barbara
 and Aragona have been elaborated, in this paper, for the first time.

102 2.0 The study areas


- 103 Santa Barbara and Aragona MVs areas are located in the central and south-west side of Sicily Region (locations in Fig.
- 104 1), inside the Caltanissetta Basin, an accretionary prism formed during the convergence and collision between the African
- and the Eurasian plates during the Neogene-Quaternary, reaching a deposit thickness of the order of some km. It consists
- 106 of the Late Miocene to Pleistocene sediments formed simultaneously with the Tyrrhenian Sea opening (Catalano et al.,
- 107 2000b).

- 108
 109 Fig. 1. Location of the two investigated mud volcanoes areas: Santa Barbara (Caltanissetta Province) and Aragona
 110 (Agrigento Province) (image from ESRI).
- 111

At Santa Barbara, the mud volcanism is located eastward of the Caltanissetta town, near the "Santa Barbara village". The composition of its deposits, consists essentially in clay, clayey- marly and sandy composed. Around the main mud emission, in the northern sector, different residential buildings are present which were built mainly in the 60's while, in the southern sector, twenty mono-familiar houses (Fig.2). Several public facilities are present at the western side of the mud volcano and, electric pipelines, roads and services for about 4,000 resident people should be considered for a correct

117 risk assessment of the entire area.

 118
 419000
 419200
 419400
 419800
 420000
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600
 37600

120

121 The Aragona MVs area is located about 3.5 km from the town, in the SW direction. The *Maccalube of Aragona* MV area 122 is a beautiful natural touristic attraction over time and in 1995 has been established Integral Natural Reserve, nowadays 123 managed by Legambiente. The geology of the entire area is mainly characterized by clay deposits, clayey-sands and 124 marls, alternating with sandstone that favour a low-relief geomorphology (Fig.2). No residential buildings and public 125 facilities are present around the main mud emission area but, the site represents a naturalistic attraction for tourists. After 126 the 2014 paroxysm, where two kids died, the entire area was closed.

127 128 129

3. The historical background: a tool for the hazard assessment

130 The Maccalube of Aragona and Santa Barbara have been affected in the past by different paroxysmal events, characterized 131 by violent explosions of gas and mud, which periodically cause the interruption of the normal degassing activity, with a 132 rapid emission of considerable quantities of clayey material and ballistics, accompanied by strong rambles. The 133 paroxysmal activity, reaching a maximum column height of about 20-30 meters is generally, determined by the 134 accumulation and the sudden release of pressurized gases (mainly CH₄ with 95-97% vol.) at depth. The volumes of the 135 expelled mud during these events, have reached tens of thousands of cubic meter and consequently after a paroxysmal 136 event a drastic variation in the morphology occurs. Sometimes, during historical paroxysmal manifestations, the emitted 137 gas giving rise to suggestive manifestations like burning fountains (Grassa et al., 2012). However, MVs do not represent 138 only a relevant geological phenomenon as they also act as element of hazard. Therefore, the understanding of occurrence 139 of historic events, together with the intensities of the pre- and post-evidences associated with this phenomenon, could be 140 a useful tool for the Civil Protection authorities in order to define the most probable hazard scenarios for a correct risk 141 assessment in both study areas.

142 143

144

3.1 The Santa Barbara historical paroxysms

145 The old naturalists and geologists, have described the activity of the mud volcano at Santa Barbara, since 1800, reporting 146 some of their major paroxysmal events (Carnemolla, 2017). The first scientific document was produced in 1823 with a 147 manuscript entitled "Descrizione geologico-mineralogica nei dintorni di Caltanissetta" by Gregorio Barnabà La Via, who 148 documented one of the paroxysmal eruption reporting: "[....] on March 5th, 1823 at 5:25 PM, the wind from the north 149 with strong and broken turbines, the sky being clear, a few dense clouds with long stripes appeared. Five earthquakes occurred in 9 seconds without damages at factories. Going to mud volcano with the Villarosa duke, Luigi Barrile and 150 151 Livolsi abbot, that observed since 1818 the phenomenon, increasing up to 50 cm the width of the cracks at the maccalube 152 (that were 27 cm) and observing an increasing of the height of the mud volcano with a continuous emission of mud, water 153 and hydrogen sulphide at 2.30 m height [...] ".

154 The Livolsi abbot, in his study entitled "Sul vulcano aereo di Terrapilata in Caltanissetta" reported the description of 155 the entire area of the mud volcano: "[...] Its surface is conical in shape, and at first glance offers the appearance of an 156 extinct volcano [...]". According to this manuscript, different paroxysms occurred in 1783, 1817, 1819 and 1823 (Madonia 157 et al., 2011).

The intense phenomena have occurred continuously over time, and there is evidence of a significant event occurredbetween the years 1930 -40.

160 On August 11th 2008, near the village of Santa Barbara, a sudden emission of natural gas occurred, accompanied by the 161 expulsion of large quantities of clayey material, gas and water, reaching a maximum height of about 30 meters. From the 162 morning, the village was affected by intense phenomena of soil cracking causing diffuse damages to civil and industrial 163 buildings. A general uplift of the area around the mud volcano, together with the presence of variable fractures with 164 horizontal and vertical rejections were observed (DRPC report, 2008). A general uplift of the entire Santa Barbara area 165 occurred during the period just before the paroxysmal event, from December 2007 to August 2008. With the aim of the 166 persistent scattering time series from the Satellite-based synthetic aperture radar interferometry, Cigna et al., (2012) 167 recorded up to 3–5 cm of progressive movements accumulating just before the event in the direction towards the satellite. 168 As a consequence of these phenomena heavy damages to factories, roads, residential buildings and public facilities (water, 169 gas, electricity pipelines) occurred. The Regional Department of Civil Protection forced evacuation of several buildings 170 both in the southern sector of the mud volcano area at a short distance (hundreds of meters) from the MVs area, as well 171 as at a distance 2.5 km far from the main area, where, a large scale of soil deformations and fracturing occurred (DRPC, 172 2008).

173 At 16.52 of the same day (11th August) a paroxysm occurred next to the Santa Barbara village, accompanied by strong 174 rumble and by an about 30 meters column height composed mainly by clayey material, gas and water that covered in 175 seven minutes about 12,000 m² of the area with an estimate volume of about 9,550 m³ (INGV, Report 2008). The 176 maximum width of deposit was 3.5 meters next to the emission points up to 30 cm in the SE direction reaching a total 177 distance of about 136 m from the main vents. The paroxysmal event lasted several minutes and was anticipated by a 178 telluric event occurred a few hours before in the whole Terrapelata area and, contemporaneously, in the neighbouring 179 area of St. Anna. The latter caused opening of fractures on the ground and severe damages to local buildings and hydraulic 180 facilities (Cigna et al., 2012). After the end of the paroxysm, an increase of the length of the pre-existing fractures 181 occurred. The main pre and post historical observations of these events are showed in table 1.

182

184

183 *Table 1. Pre and post observation of the historical paroxysm events at Santa Barbara.*

Pre-event observations	Paroxysm Event	Post-event observations
✓ Large scale soil fractures	1783, 1817,1819	✓ Paroxysm related to large scale fracturing
 ✓ five earthquakes felt by population in 9 seconds ✓ Increasing of soil fractures from 27 cm to 50 cm 	5th March 1823	 ✓ Erupted clayey material up to 2,30 meters height; ✓ Increasing of the mud volcano surface; ✓ Water and gas bubbles with the H₂S presence;
 ^{11th}AUGUST 2008 - MORNING: ✓ Soil displacement, decimetric to metric fracturing with damages to civil and industrial buildings, roads and electrical networks ✓ Uplift of the entire area; ✓ Deformations up to 2.5 km far from the mud volcano. ✓ Seismic event 	11th August 2008 hours: 16:52	 Audible roar up to a few hundred meters; Maximum height of the column of clay material mixed with water, gas and ballistic = 30 meters; Cover of 12000 m² with a newly formed clay deposits; Volume of erupted material of about 9500 m³; Presence of lithics with a particle size from decimeters to centimeters; Extent of fractures about 1 km from the eruptive center; Maximum thickness of the new erupted deposit = 3.5 meters near the mud volcanoes; Diffuse methane flux up to 85 gm² / day with a NNW-SSE direction; Maximum distance reached by the erupted material towards SE direction = 136 meters.

- 185
- 186 187 188

3.2 The Aragona historical paroxysms

189 The activity of the Maccalube of Aragona, according to the historical evidences of greek, roman and arab testaments, 190 have occurred at least for 2,500 years. The cosmetic and therapeutic use of the mud, emitted from these geological 191 manifestations, has been reported by Platone, Aristotle, Diodoro Siculo and Plinio. In 1777, the first big mud eruption 192 (today called paroxysm) has been documented by Abruzzese (1952), reporting: "[...] In the early hours of September 193 29th, the inhabitants of the neighbouring felt a strong shaking of the ground and observed a copious mud flow from the

194 craters up to different heights".

195 Furthermore, the Ferrara abbot described the same paroxysm as one of the most violent eruption known: "[...] On the 196 September 29th they heard before a roaring noise in all the surroundings. The ground shaking around a great chasm 197 formed up a few miles [...] an enormous column of mud rose up to almost a hundred feet high, having been abandoned 198 by the force that pushed it upward [...] the terrible explosion lasted half an hour, then calmed down, but recovered after 199 a few minutes and intermittently continued all day but the smoke lasted all night. In all the time of the phenomenon the 200 very strong smell of hydrogen sulphide gas was felt at a great distance in all the surroundings. 201 An unknown author reports the same eruption on 30th describing: "[....] on September 30th 1777, after half an hour when 202 the sun had risen, a murmur was heard in the above mentioned place, which, momentarily advancing, surpassed the roar 203 of the strongest thunders. The earth begins to tremble, and shows the deep cracks, which widened more than usual to ten 204 palms, the main crater, from where the clay and the murky water emerged perpetually, like a cloud of smoke, although 205 somewhere it was flame-colored [....]this eruption lasted for half an hour, and, with a quarter-hour interval, replied three 206 more times. The next day, the clay material emitted, however, appeared at the natural consistency, in such a way that it 207 allowed the curious to approach the mud volcano. The clay material erupted still retained the smell of sulfur, which more 208 penetrating was felt during the eruption." 209 On October 19th, 1936, at 5, some of Aragona and Giancaxio neighbor villages heard two rumbles, like thunders, which 210 had followed one another in a short period of time. A violent explosion destroyed the central part of the Maccalube from 211 where an imposing fountain of mud raised, which in its ascent dragged blocks of marl mixed with sandstones and gypsum. 212 This fountain reached ten to fifteen meters in height. Only at the sunrise the people noticed that a large black mass had covered the place where the mud volcanoes are located 213 214 for about 2 hectares. From the surveys data detected by Prof. Ponte and Prof. Abruzzese, [...]since February 1935 there 215 were the presence of a soil fracture extending for about 400 m to E direction, then distancing 600 m towards the W. In 216 March 1935, at the proximity of the fracture, several mud volcanoes arose, some of which reached a height of one meter.

- 217 The main pre and post observations of these historical paroxysms at Aragona are showed in table 2.
- 218
- 219
- 220

Table 2. Pre and post observation of the historical paroxysm events at Aragona.

Pre-event observations	Paroxysm Event	Post-event observations
 ✓ Seismic events felt by population ✓ Large scale soil fractures ✓ Rumbles 	✓ September 29 th 1777	 Mud, ballistics, water and gases column up to 30 m height; Half an hour duration with intermittent activity for all day; Presence of Hydrogen Sulphide smell at considerable distance from the mud volcano; Presence of lithics of various sizes aligned on the both sides of the mud volcano.
FEBRUARY 1935: ✓ Presence of a soil fracture extending for about 400 m to E direction, then distancing 600 m towards the W MARCH 1935: ✓ Appearance of some mud volcanoes set on the previously fracture, with heights of 1 meter	✓ October 19 th 1936	 ✓ Emission of mud mixed with water, gas and lithics with a column height <= 15 meters; ✓ Cover with newly formed clayey material of 2 hectares of the surface.
AUGUST 2014: ✓ Large scale soil fractures	✓ September 27 th 2014	 Emission of mud mixed with water and gas with a column height <= 15 meters;

221

222 Since 1995, year of establishment of the Natural Reserve, eight paroxysmal events took place in 1998, 2002, 2005, 2008,

223 2010, 2012 (Fig.3) 2014 and the last one occurred on 19 May 2020. Grassa et al., (2012) reported the volumes and the

224 covered areas for each of the first six events. The largest event was in 2005, with an estimated volume of about 19,600 225 m³ (Fig.3B) covering an area of about 16,350 m² (Fig.3A). It is interesting to note that a strong correlation exists between 226 the erupted material and the covered surface areas for the paroxysms occurred from 1998 to 2012 (no volume data are 227 available for the 2014 paroxysm) as is demonstrated by the high correlation coefficient ($R^{2}=1$) and showed in figure 3C. 228 From the same plot, the 2020 paroxysm event falls far from the general trend previously highlighted covering a smaller 229 surface (approximately a half) rather than the expected one. In our opinion, this could be linked to a different location of 230 the main emissive vent, being the 2020 the only one eccentric event, and/or to different nature of the emitted material. 231

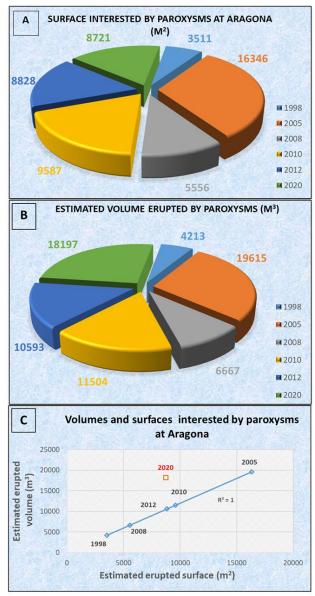


Fig.3. A) Estimated volume and B) interested surfaces at Aragona mud volcanoes during paroxysmal events. C) 234 Correlation coefficient for erupted volume and interested surface for the 1998-2012 events (Grassa et al., 2012, 235 modified). In blue the linear correlation with $R^2=1$. The red square represents the 2020 paroxysm.

236 4. Associated hazards at Santa Barbara and Aragona mud volcanoes

From the historical information, obtained by the past documentary sources, it is clear and evident that the most hazardousphenomena existing in both areas are the paroxysms.

They are quite common, especially at Aragona, and therefore, it is likely to hypothesize that others hazardous events, with

the same magnitude or higher, could repeat in the future.

241 In all of the paroxysmal events occurred in the past, both at Santa Barbara and Aragona (Tables 1-2), diffuse soil fractures

and deformations, even at a considerable distances from the mud volcanism area, occurred during a pre-paroxysm period.

243 In particular, at Santa Barbara the population has felt several seismic events before the 2008 paroxysm.

Another important element that emerges from historical descriptions is that, following the paroxysms, people approaching
 the mud volcano areas, usually detected a strong acrid smell of gas, reasonably being H₂S.

246

247 **5.** Methods

248 249

5.1 Digital Surface Model (DSM)

High-resolution DSM maps of both study areas have been performed in 2017 while, in 2020 only at Aragona MV, with
a range of 0.1-0.15 m. For these surveys, we used a DJI Phantom III Professional drone (quadcopter) with a mounted 12
Mega Pixel digital camera (Lens FOV 94° - 20 mm, Sony Sensor EXMOR 1/2.3", effective pixels resolution of 12.4 M).
Before conducting drone mapping, we planned the flight paths and areas for each flight mission. The drone was set to
take aerial photographs using "autopilot mode" with a camera facing directly downwards for a hilly terrain. The surveys
were conducted with the camera mounted 90° sideways. We selected 75% forward and sideways overlap of images.

The acquisition of field data requires the determination of several control points on the ground, known as GCPs (Ground
 Control Points). Therefore, 11 points distributed within the defined area, were recorded using a GPS NAVCOM SF-3040

259 with angular accuracy of 1 cm.

260 The images were processed with a Structure-from-Motion (SfM) and multi-view stereo approach, in order to produce a 261 high resolution DSM (Digital Surface Model) and to identify the morphological structures linked to the sedimentary 262 volcanic activity. These approaches allow the geometric constraints of camera position, orientation and GCPs from many 263 overlapping images to be solved simultaneously through an automatic workflow. The image datasets were processed with 264 the software Agisoft Photoscan (Agisoft, 2016). The post-processing of the acquired data merged in GIS software 265 (ArcGIS 10.5), allowed to extrapolate the thickness and the volume of the erupted material, with its reached distance.

265

5.2 Hazard assessment

267 268

In order to define the potential paroxysm hazardous scenarios for both areas, in this paper, we consider the maximum real
 distances reached by the erupted material over time through the analysis of the high-resolution (12x12 cm) DSM acquired
 by the drone during the 2017 surveys at Aragona and Santa Barbara areas.

At Santa Barbara mud volcano, the erupted material, has reached a total distance along its major axis in the main event of 2008, of about of 136 meters while at Aragona, it has reached a total distance of 150 meters. In the 2014 paroxysm

event at Aragona, the distance reached by the erupted material was 111 m (Fig.4).

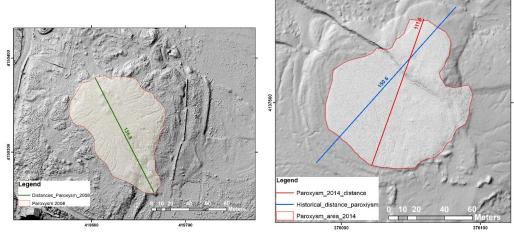


Fig.4. Historical distances reached by the erupted paroxysm material: at left Santa Barbara; at right Aragona. (Source: 2017 DSM's in ArcGIS 10.5)
 280

In both areas, according to the historical sources, the maximum estimated erupted column height, is in the range of about
 20-30 meters. During the 2008 paroxysm, the erupted clay material fallout at Santa Barbara covered an area of about
 9,000 m² with a maximum thickness of about 3.5 meters next to the emission points (INGV, 2008 report) while at
 Aragona, during the 2014 ones, the affected surface was 7,525 m².

In this preliminary phase, in order to model the potential hazard scenarios, we assumed that both areas, in a next future,
will be affected by a similar erupted fallout deposits that reaches a maximum distances of 136 m and 150 m for Santa
Barbara and Aragona area respectively.

For these reasons, at first, from our 2017 DSM, we identified the mud volcanoes and bubbling pools in both areas (Fig.5) as the potential emission points for generating a future paroxysmal event. With the aim of the kernel density tool in ArcGIS 10.5, we defined different clusters maps (Fig.4), with two main directions, appeared mostly highlighting a NW-

290 Arcols 10.5, we defined different clusters maps (Fig.4), with two main directions, appeared mostly ngninghing a Nw 291 SE and NE-SW directions at Aragona while, at Santa Barbara, the distribution at the surface seems to be inhomogeneous.

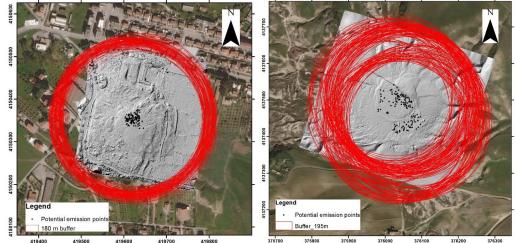

eggend Potential emission points

Fig.5. Density maps of the potential emission points investigated. Red: high density values; Yellow: low density values.
 At left the Santa Barbara area and at right the Maccalube of Aragona. (Source: 2017 DSM's in ArcGIS 10.5)

- Secondly, we calculated on each emission points checked, the greatest distance reached by the erupted material at Santa
 Barbara and Aragona respectively, through the elaboration in ArcGis 10.5 Software, of an omni-directional potential
- hazardous area, considering a + 30% surplus rounded up, due to the creation of a safety limits for both areas.
 The final potential paroxysmal hazardous areas, in both areas, are considered as the envelope among the entire buffer
- 300 The final potential paroxysmal hazardous areas, in both areas, are considered as the envelope among the entire buffer 301 circumferences elaborated. For the hazard assessment, we elaborated 117 and 165 buffer circumferences with a radius of
- 302 180 m and 195 m at Santa Barbara and at Aragona respectively (Fig.6).

419400 419500 419600 419700 419600 375700 375800 375900 376000 37600 3

304 305 306

303

307

5.3 Uncertainties

308 The application of the methodology for the hazard assessement in both study areas, inevitably, is based on assumptions 309 which could give us some uncertainties. At the same time, the absence of a modelling approach for the paroxysm events 310 at both study areas and, the poor availability of data from all the past events, follow us a semi-quantitative approach for 311 the hazard definition. The Digital Surface Model elaborated on 2017 was used to calculate, with some uncertainties, in 312 ArcGis 10.5 the maximum distance reached by the erupted fallout materials. The emission points checked in 2017 at 313 S.Barbara and Aragona may change the location over time due to their constantly evolving, also depending on the 314 seasonality, on the weather conditions or to a new deposition of the erupted clay materials.

2017 DSM's in ArcGIS 10.5)

315 316

5.4 Seismic monitoring activity at Santa Barbara

Since October 2017, a seismic INGV station was installed at Santa Barbara (see Fig.2 for location). It was equipped with
a Lennartz 3D-LITE/1s short period velocimeter, with flat response in the bandwidth 1-80 Hz, and a 24-bit seismic data
logger RefTek 130 model. To take full advantage of the sensor frequency band, the sampling frequency was set at 200
Hz, while the signals were synchronized via GPS.

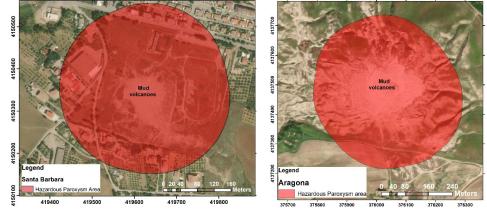
321

322

323 6.0 Results

324 325

6.1 Paroxysm hazard assessment


326

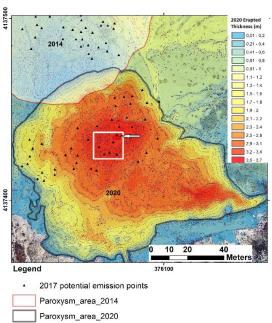
327 The hazardous paroxysm areas for both areas were created through the envelope of all buffer circumferences of Fig.6. An 328 area of 0.12 km² and 0.20 km², potentially exposed to possible paroxysmal events was calculated for the Santa Barbara 329 and Aragona site respectively (Fig.7). In these two hazardous paroxysm areas, different geophysical phenomena as well 330 as deformation, fracturing and seismic events together with geochemical ones could occur. For that reason, these two 331 exposed areas should be interdict to visitors, residential or public activities, due to their correlated hazardous phenomena 332 that could occur before, during and after a paroxysm event. In both areas, a dedicated safe path, outside the hazardous

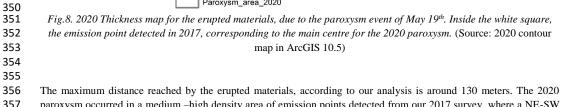
- 333 paroxysm areas of Fig.7 should be created in order to permit the safety observations of these geological phenomena to visitors.
- 334
- 335 The decreasing of the gas output in the central area of the Maccalube of Aragona before the paroxysmal events could be
- 336 an important parameter. It may occur, according to Grassa et al., (2012), due to the increasing of the tectonic stress field 337
- in the compression regime, generating an overpressure of the interstitial pores fluids at depth while, on the surface, it 338 reduces the permeability of the structural discontinuities along which the gases migrate, thus reducing the outgassing at
- the surface. The paroxysmal event would occur, according to these deductions, when the gas pressure at depth exceeds
- 339
- 340 the lithostatic pressure resistance opposed by the overlying rocks.

341 Fig.7. Hazardous Paroxysm areas in ArcGis 10.5 for Santa Barbara (left) and Aragona (right) mud volcanoes area. 342 343 (Source image from ArcGIS 10.5, ESRI)

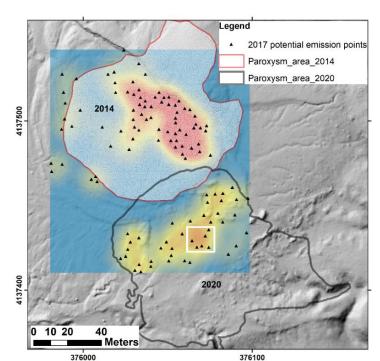
344

6.2 The 2020 paroxysm at Aragona


345 346


347 On 19 may 2020 at around 2 p.m. a new paroxysmal event occurred at Aragona MVs area. This violent paroxysm occurred in the south-eastern part of the main emission area, emitting a mud volume of 18,196 m³ and covering a surface of 8,721

348 349 m² with a maximum thickness of 3.7 m (Fig.8).



The maximum distance reached by the erupted materials, according to our analysis is around 130 meters. The 2020 paroxysm occurred in a medium –high density area of emission points detected from our 2017 survey, where a NE-SW structural lineament has been highlighted (Fig. 5and Fig. 9). In particular, the eruptive centre for the 2020 event is located, according to our thickness map of Fig 8, where the maximum is recorded (arrow in Fig.8) and where, in the 2017, the emission points were mapped. Nowadays, the 2017 emission points have been buried by the 2020 new erupted material.

361 376000 376100
 362 Fig.9. Density maps for the 2017 emission points (Red: High density; yellow: low density). The covered surface area for
 363 the 2014 and 2020 paroxysms is showed with red and grey line respectively. In the white square, the 2017 emission
 364 points, likely responsible for the new 2020 paroxysm event. (Source: 2017 DTM's in ArcGIS 10.5)
 365

366

368

```
367
```

6.3 The seismic monitoring at Santa Barbara

369 Preliminary analysis of the continuous recordings allowed to identify variations in the power of the ambient vibrations, 370 mainly in the frequency range 5-10 Hz, which could be due to changes in the emissions activity. Periods of intense activity 371 have also been observed as showed in Fig.10. These periods are characterized by numerous micro-events with high 372 frequency content (several tens of Hz). This micro-seismicity, of clear local origin, appears to have energy/temporal 373 characteristics similar to a swarm, that is comparable energy of events and stable temporal interdistance from seconds to 374 several minutes. Both ambient noise and seismic events show energy in the frequency range 5-10 Hz, with some possible 375 overtones, that could be generated from local resonance phenomena. This activity could be related to surface effect of 376 resonant gas bubbles, but we cannot rule out the possibly of a deep origin connected to gas flows at the root of the 377 "volcanic" system.



Fig.10. Example of micro-seismicity record by the seismic station installed at Santa Barbara: (a) time signal relative of
some minutes of the vertical component (velocity) record and (b) zoom on single waveform with relative spectrogram
(c) and amplitude spectrum (d). The spectrogram allows to highlight the presence in ambient noise of a continuous
energy band in the frequency range 5-10 Hz and some possible overtones. The same frequencies can be identified in the
amplitude spectra of the micro events, suggesting a possible linked to local resonance phenomena.

385 386 387

388

7. Discussion and conclusions

389 In this paper, for the first time a preliminary hazard assessment of two main mud volcanoes area of Sicily was evaluated. 390 We calculated the hazard scenarios based on the most recent paroxysm events at Santa Barbara and Aragona, in order to 391 define a realistic dimension for a correct risk assessment. It is evident that the hazardous paroxysm areas that we have computed, should be implemented with a probabilistic modelling approach, deriving from the real measured parameters 392 393 on both areas. For these reasons, it should be important to implement in terms of acquistion frequency as well as number 394 of parameters, the actual discrete multidisciplinary surveys, with a new technological geochemical and geophysical 395 observatory, in order to minimize the knowledge gaps in these two areas. In light of this, therefore, it is appropriate to 396 realize and maintain an high frequency multidisciplinary data acquisition system to allow the construction of a forecast 397 model able to best represent the real conditions and, on the basis of which, a monitoring system should be implemented. 398 Nowadays, it is impossible to define "when" the next paroxysm will occur and how much will be its intensity. This is 399 because currently there are not enough information to recognize the parameters that could potentially change before a 400 paroxysm as well as a modelling approach of the phenomenon does not exist.

401 In this work, our hazard assessment for the Santa Barbara and Aragona areas, represent a picture of the 2017 survey. The 402 emission points, cheched in 2017, could change their location over time. It is therefore appropriate, in the light of this, to 403 monitor the new emission points and fractures in both sites, as potential sources of future paroxysmal events, as 404 demonstrated in 2020 at Aragona where the paroxysm occurred in a emissive point, mapped in our 2017 survey.

405 It is important to underline that we cannot exclude that these paroxysmal events, could occur out of the restricted area in 406 which most of the emission points are located at the surface. At the same time, an update of the actual hazard maps for 407 the two areas must be implemented.

From hystorical informations, we know that different phenomena could occur before a paroxysm in the mud volcanoes
areas, in particular deformations, soil fractures, increasing of seismicity and, from geochemical point of view only at
Aragona, also the decreasing of the gas output (Grassa et al., 2012).

411 After the paroxismal event, according to the hystorical descrisptions, a strong smell of acrid gas reasonably H_2S is

412 recorded. H₂S, if breathed in high concentrations, it could be lethal to human life. It is a toxic, corrosive, irritant and

413 colorless gas with the characteristic unpleasant smell of rotten eggs. It can cause chronic diseases of the respiratory organs 414 through prolonged exposure even at very low concentrations; at concentrations of 200-250 ppm it can cause pulmonary

edema and risk of death, while at 1,000 ppm it is immediately lethal (NIOSH, 1981).

416 Since October 2017, a short period seismic station was installed in Santa Barbara site. The continuous monitoring and the

417 preliminary analysis of the acquired signals allowed to highlight variations in the power of environmental vibrations.

418 Moreover, the presence of periodic micro-seismicity, likely due linked variation in emissions and bubbling activity, was

- 419 detected. However, the use of a single station does not allow a complete characterization of the seismic activity, for which
- 420 the creation of a micro-network would be desirable. Continuous monitoring of local microtremor and micro-seismicity,
- 421 in particular before and during a paroxysmal event, could allow us to understand the source mechanisms of these events
- 422 and propose useful predictive models for risk reduction.
- 423 Only with the installation of a multidisciplinary geochemical and geophysical observatory at the two study areas, we 424 could speculate to discriminate the "potential" phenomena that could occur before, during and after a paroxysm event.
- 424 could speculate to discriminate the "potential" phenomena that could occur before, during and after a paroxysm event.
 425 For these reasons, different geochemical and geophysical parameters will have to be analysed, verified and validated in a next future.
- 427 It could be an useful tool for Civil Protection Authorities in order to take the appropriate risk mitigation measurements 428 for the exposed people. A safety path outside our hazardous detected areas should be considered by the local 429 administrations, in order to reduce the risk. Our hazardous paroxysm areas, in both sites, finally should be forbidden to 430 visitors, expecially during the period where high deformation, fractures and seismicity occur.
- 431

432 Competing interests

- 433
- 434 The authors declare that they have no conflict of interest.
- 435

436 Acknowledgements

- The paper was supported by the INGV-DRPC (Dipartimento Regionale Protezione Civile Regione Sicilia) agreement
 N°1840/December2016
- 439
- 440

441 References

- 442
- 443 Abruzzese, D.: Le Maccalube di Aragona e le eruzioni di fango del 1936 e 1940. Relazione della commissione di revisione composta dai soci effettivi prof B. Foresti e G. Cumin, 1954.
- Albarello, D.: Mud volcanoes as natural strainmeters: a working hypothesis, Mud Volcanoes, geodynamics and seismicity, edited by: Martinelli, G and Panahi, B, NATO Science Series IV, v51, Kluwer, 239–249, 2005.
- 447 Albarello, D., Palo, M., Martinelli, G.:Monitoring methane emission of mud volcanoes by seismic tremor measurements: a pilot study, Nat Hazards Earth Syst Sci, 12, 3617–3629, 2012.
- Agisoft, LLC.: Agisoft PhotoScan User Manual 1.2 tech. rep, 2016.
- Bonini, M.: Mud volcano eruptions and earthquakes in the Northern Apennines and Sicily, Italy, Tectonophysics
 474 723–735, 2009.
- Bonini, M.: Mud volcanoes: Indicators of stress orientation and tectonic controls, Earth-Science Reviews, 2012
- Cangemi, M., Madonia, P.: Mud volcanoes in onshore Sicily: a short overview, Gottingen Contributions to Geosciences, 77: 123-127, 2014
- 455
 Carnemolla F.: Evidenze geologiche, sismologiche e geodetiche di deformazioni attive a thrust e pieghe nell'area di Caltanissetta. Attività tettonica e manifestazioni del vulcanismo sedimentario delle maccalube di Santa Barbara, Tesi di Laurea Magistrale in Scienze Geofisiche, Università degli studi di Catania, 2017.
- Catalano, R., Valenti, V., Albanese, C., Accaino, F., Sulli, A., Tinivella, U., Gasparo Morticelli, M., Zanolla, C., and Giustiniani, M: Sicily's fold-thrust belt and slab roll-back: the SIRIPRO seismic crustal transect Journal of the Geological Society, London, Vol 170, 2013, pp 451–464 doi: 101144/jgs2012-099, 2013.
- 461 Catalano, R., Franchino, A., Merlini, S., Sulli, A.: Central western Sicily structural setting interpreted from seismic reflection profiles, Memorie della Società Geologica Italiana 55: 5-16, 2000b.
- 463 Cigna, F., Tapete, D., Casagli, N.: Semi-automated extraction of Deviation Indexes (DI) from satellite Persistent
 464 Scatterers time series: tests on sedimentary volcanism and tectonically-induced motions, Nonlinear processes in
 465 geophysics, 19 (6). pp. 643-655, 2012.

466 467	•	Dipartimento Regionale della Protezione Civile (DRPC): Emergenza "Maccalube" dell'11 Agosto 2008 nel Comune di Caltanissetta; Descrizione dell'evento e dei danni Caltanissetta, 2008.
468	•	Etiope, G., Caracausi, A., Favara, R., Italiano, F., Baciu, C.: Methane emission from the mud volcanoes of Sicily
469		(Italy) Geophysical Research Letters 29, 56-1–564 http://dxdoiorg/101007/1-4020-3204-8_12, 2002.
470	•	Grassa, F., Capasso, G., Favara, R., Inguaggiato, S., Faber, E., Valenza, M.: Molecular and isotopic composition
471		of free hydrocarbon gases from Sicily, Italy doi: 101029/2003GL019362, 2004.
472	•	Grassa, F., Gucciardo, D., Interlandi, M., Noto, G.: Aspetti geologici e caratterizzazione geochimica delle
473		Maccalube di Aragona, Provincia di Agrigento, Bollettino dell'Ordine dei Geologi Siciliani, 2012.
474	٠	INGV Report - Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo:
475		Comunicato sull'eruzione di fango in C.da Terrapelata - Santa Barbara (CL) 11 Agosto 2008.
476		http://1932062139/intranet/gest_news/uploads/3929Comunicato_14_Agostopdf, 2008.
477	•	INGV Report - Capasso, G., Madonia, P.: Relazione sull'intervento effettuato in C da Terrapelata-Santa Barbara
478		(Cl) 12 Agosto 2009, 2009.
479	•	INGV Report,: Esito del sopralluogo effettuato in C da Terrapelata-Santa Barbara (Cl) il 6 agosto 2015.
480	•	Kopf, A., (2002) Significance of mud volcanism, Rev Geophys, 40, 1–52, 2002.
481	•	Kopf, A., Delisle, G., Faber, E., Panahi, B., Aliyev., C. S., Guliyev, I.: Long term in situ monitoring at Dashgil
482		mud volcano, Azerbaijan: a link between seismicity, pore-pressure transients and methane emission, Int J Earth
483		Sci (Geol Rundsch), 99 (suppl 1), S227–240, doi:01007/s00531-009-0487-4, 2010
484	٠	Lentini, F., Carbone, S.: Geologia della Sicilia Memoria descrittive della Carta Geologica d'Italia - Volume XCV
485	•	Li Volsi, S.: Memoria sul vulcano aereo (ossia gassoso) di Terrapilata in Caltanissetta dell'abate Salvatore Li
486		Volsi, dedicata a S.E sig March Delle Favere Ministro Segretario di Stato, Luogotenente Generale in Sicilia
487		Girornale di Scienze, Lettere ed Arti per la Sicilia, Tomo XIII, Anno IV, Febbraio e Marzo. 1826
488	•	Madonia, P., Grassa, F., Cangemi, M., Musumeci, C.: Geophormological and geochemical characterization of
489		the 11 August 2008 mud volcano eruption at S Barbara village (Sicily, Italy) and its possible relationship with
490		seismic activity Natural Hazard and Earth System Sciences, 1545-1557, 2011.
491	•	Martinelli, G.: Mud volcanoes of Italy: A review; Giornale di Geologia, 61,107-113, 1999.
492	•	Mellors, R., Kilb, D., Aliyev, A., Gasanov, A., Yetirmishli G.: Correlations between earthquakes and large mud
493		volcano eruptions Journal of Geophysical Research, Vol 112, B04304, Doi:101029/2006jb004489, 2007.
494	•	NIOSH—National Institute for Occupational Safety and Health: Occupational Health Guidelines for Chemical
495		Hazards, DHHS (NIOSH) Publication No. 81–123. http://www.cdc.gov/niosh/81-123.html. 1981
496		, , , , , , , , , , , , , , , , , , ,