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Abstract. Verification of forecasts and warnings of high-impact weather is needed by the Meteorological Centres, but how to 20 

perform it still presents many open questions, starting from which data are suitable as reference. This  paper reviews new 

observations which can be considered for the verification of high-impact weather, and provides advice for their usage in 

objective verification. Two high-impact weather phenomena are considered: thunderstorm and fog. First, a framework for the 

verification of high-impact weather is proposed, including the definition of forecast and observations in this context and 

creation of a verification set. Then, new observations showing a potential for the detection and quantification of high-impact 25 

weather are reviewed, including remote sensing datasets, products developed for nowcasting, datasets derived from 

telecommunication systems, data collected from citizens, reports of impacts and claim/damage reports from insurance 

companies. The observation characteristics which are relevant for their usage in forecast verification are also discussed. 

Examples of forecast evaluation and verification are then presented, highlighting the methods which can be adopted to address 

the issues posed by the usage of these non-conventional observations and objectively quantify the skill of a high-impact 30 

weather forecast. 

1 Introduction 

Verification of forecasts and warnings issued for high-impact weather is increasingly needed by operational centres. The model 

and nowcast products used in operations to support the forecasting and warning of high-impact weather such as thunderstorm 
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cells also need to be verified. The World Weather Research Programme (WWRP) of the World Meteorological Organisation 35 

(WMO) has launched in 2015 the High-Impact Weather Project (HIWeather), a 10-year international research project, which 

will advance the prediction of weather-related hazards (Zhang et al., 2019). Forecast evaluation is one of the main topics of 

the project. The WWRP/WGNE Joint Working Group on Forecast Verification Research (JWGFVR)1 of WMO has among its 

main tasks to facilitate the development and application of improved diagnostic verification methods to assess and enable 

improvement of the quality of weather forecasts. The verification of high-impact weather requires a different approach than 40 

the traditional verification of the meteorological variables (for example, precipitation, temperature, wind) constituting the 

ingredients of the high-impact weather phenomenon. The phenomenon should be verified with its spatio-temporal extent and 

by evaluating the combined effect of the different meteorological variables that constitute the phenomenon. Therefore, the 

development of verification approaches which make use of new sources and types of observations is encouraged. 

Verification of weather forecasts is often still restricted to the use of conventional observations such as  45 

surface synoptic observations (SYNOP) reports. These conventional observations are considered the gold standard with well 

defined requirements for where they can be located and their quality and timeliness (WMO-No.8, 2018). However, for the 

purposes of verifying forecasts of high-impact weather, these observations often do not permit characterization of the 

phenomenon of interest, and therefore do not provide a good reference for objective verification. In Europe, ten years ago, a 

list of new weather elements to be subject to routine verification was proposed by Wilson and Mittermaier (2009) following 50 

the Member States and Co-operating States´ user requirements for ECMWF products. Among others, visibility/fog, 

atmospheric stability indices and freezing rain were mentioned, and the observations needed for the verification of these 

additional forecast products were reviewed.  

Depending on the phenomenon, many reference data sets exist. Some are direct measurements of quantities to verify, e.g. 

lightning strikes compared to a lightning diagnostic from a model, but many are not. In that case, we can derive or infer 55 

estimates from other measurements of interest. The options are many and varied, from remote sensing datasets, datasets derived 

from telecommunication systems including cell phones, data collected from citizens, reports of impacts and claim/damage 

reports from insurance companies. In this instance, it enables the definition of “observable” quantities which are more 

representative of the severe weather phenomenon (or its impact) than, for example, purely considering the accumulated 

precipitation for a thunderstorm. These less conventional observations, therefore, enable more direct verification of the 60 

phenomena and not just the meteorological parameters involved in their occurrence. 

The purpose of this  paper is to present a review of new observations, or more generically, quantities which can be considered 

as reference data or proxies , which can be used for the verification of high-impact weather phenomena. Far from being 

exhaustive, this review seeks to provide the numerical weather prediction (NWP) verification community with an organic 

“starter package” of information about new observations which may be suitable for high-impact weather verification, providing 65 

at the same time some hints for their usage in objective verification. In this respect, in this paper the word “observations”  will 

                                                             
1 The JWGFVR is a Working Group joint between WWRP and WGNE (Working Group on Numerical Experimentation). 
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be used interchangeably with the word “reference data”, considering also that in some cases what is usually considered an 

observation may be only a component to build the “reference data” against to which verify the forecast (for example, a 

measurement of lightning with respect to a thunderstorm cell). The word “verification” is used throughout the paper to stress 

the focus towards a quantitative usage of these observations. However, the word “evaluation” may better represent in many 70 

cases the kinds of analyses that can be undertaken using the datasets here considered, allowing a better understanding of the 

forecast performance, particularly for phenomena that have direct human consequences. 

The review is limited to the “new” observations, meaning those observations which are not already commonly used in the 

verification of weather forecasts. The choice of what is a new observation is necessarily subjective. For example, we have 

chosen to consider radar reflectivity as a “standard” observation for the verification of precipitation, while the lightning 75 

measurements are considered among the “new” observations. Nonetheless, some of the methodologies developed for standard 

observations may also provide guidance about how to use the new observations. As an example, the significant use of radar 

mosaics to evaluate convective and precipitation forecasts (see Gilleland et al., 2009; Roberts et al., 2013) is a useful guidance 

for any verification of thunderstorms. Some of the "new" observations are familiar to meteorologists (e.g. for monitoring and 

nowcasting) but quite new for the NWP community, particularly from the point of view of their usage in forecast verification.  80 

In order to provide practical and quantitative examples, the paper focuses on specific types of high-impact weather. First, 

thunderstorms are considered, a phenomenon occurring over several areas of the globe, characterized by high spatio-temporal 

variability as well as spatial extension. Many different data provide information about this phenomenon, permitting to span 

quite a variety of new observations. Second, fog is considered, a different phenomenon dominated by a very local character, 

where the structure is less important. Starting from these examples, it is possible to extend the subject to a wider spectrum of 85 

high-impact weather phenomena following the same approach. Depending on their being localized or spatially extended or 

characterized by fine structure, phenomena like tornadoes, heat waves and urban floods can benefit from approaches similar 

to the ones presented here. 

2 A proposed framework for High Impact Weather verification using non-conventional observations 

In order to transform the different sources of information about high-impact weather phenomena into an “objective reference” 90 

against which to compute the score of the forecast, four steps are proposed. 

The first step is to define the quantity or object to be verified, selected for forecasting the phenomenon, which will be simply 

referred to as forecast, even if it may not be a direct model output or a meteorological variable. As noted above, for 

thunderstorms, accumulated precipitation may not be the only quantity to be objectively verified, but it can be a component of 

the entity to be verified, along with lightning, strong winds and hail. Suitable quantifiable components should be directly 95 

observable or have a proxy highly correlated to it. In the case of thunderstorms, the quantity to be verified  can be the lightning 

activity, or areas representing the thunderstorm cells. An example of the latter case is given by the cells predicted by the 

algorithms developed in the context of nowcasting, where the cells are first identified in the observations from radar or satellite 
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data, possibly in combination with other sources of data. With Doppler-derived wind fields, the occurrence of damaging winds 

could also be explored. In the case of fog, the quantity to be verified can be visibility or fog areas, either directly predicted by 100 

a model or obtained with a post-processing algorithm. 

The second step is to choose the observation, or reference, against which to verify the forecast. Observations which represent 

some of the phenomena described above already exist, but often they are used only qualitatively, for the  monitoring of the 

events in real-time or for nowcasting. Ideally, these new observation types should have adequate spatial and temporal coverage, 

and their characteristics and quality should be well understood and documented. Even when a forecast of a “st andard” 105 

parameter (e.g. 2m temperature) is verified against a “standard”, conventional, observation (e.g. from SYNOP), care should 

be taken in establishing the quality of the observations used as reference and their representativeness of the verified parameter. 

This need becomes stronger in case of non-standard parameters (e.g. a convective cell) verified against a non-standard 

observation (e.g. lightning occurrence or a convective cell “seen” by some algorithm). In order to indirectly assess the quality 

of the observations, or to include the uncertainty inherent in them, comparing observed data relative to the same parameter but 110 

coming from different sources is a useful strategy. This approach can contribute to increasing the different sources of 

observations available for the verification of a phenomenon, considering that they are all uncertain. In the verification of 

phenomena, when new observations are used for verifying new products, it becomes even more crucial to include the 

uncertainties inherent in the observations in the verification process, as they will affect the objective assessment of forecast 

quality in a context in which there may not be a previously viable evaluation of that forecast. How to include uncertainties in 115 

verification will not be discussed in the present paper. For a review of the current state of the research, it is suggested to read 

Ben Bouallegue et al. (2020) and the references therein. 

After having identified the forecast and the reference, the third step is the creation of the pair, called a verification set. The 

matching of the two entities in the pair should be checked before the computation of summary measures. For example, is one 

lightning strike sufficient for verifying the forecast thunderstorm cell? Since forecast and observation do not necessarily match 120 

in the context of high impact weather verification using non-conventional observations, a preparatory step is needed for 

ensuring a good degree of matching. In this step, the correlation between the two components of the pair should be analysed. 

Some of the observation types may be subject to biases. As correlation is insensitive to the bias, for some types of forecast-

observation pairs, any thresholds used to identify the objects of the two quantities must also be studied to ensure that the 

identification and comparison is as unbiased (from the observation point-of-view) as possible. In particular, the forecast and 125 

the observation should represent the same phenomenon, and this can be achieved by stratifying the samples. A simple example 

is the case where the forecast is “a rainfall area” and the observation is “a lightning  strike”: all the cases of precipitation not 

due to convection in the forecast sample will make the verification highly biased, therefore they should be excluded. Another 

element of the matching is to assess spatial and temporal representativeness, which may lead to the need to suitably average 

or re-grid the forecasts and/or observations. Some examples of how the matching is performed are presented in the next 130 

Sections. If the forecasts and observations show a good statistical correlation (or simply a high degree of correspondence), it 

can be assumed that one can provide the reference for the other and objective verification can be performed. This approach 
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can be extended to probabilities: an area where the probability of occurrence of a phenomenon exceeds a certain threshold can 

be considered as the predictor for the forecast of the phenomenon, provided that  its quality as predictor has been established 

through previous analysis. Therefore, the same verification approach can be applied in the context of ensemble forecasting 135 

(Marsigli et al., 2019). Verification of probability objects for thunderstorm forecast is performed in Flora et al. (2019). 

A special case of pair creation occurs when an object identified by an algorithm is used as the reference, as in the example of 

the thunderstorm cell identified by radar. In this case, a choice in the matching approach is required: should the algorithm be 

applied only for the identification of the phenomenon as observation, or should it also be applied to the model output for 

identifying the forecast phenomenon? This is similar to what is done in standard verification, when observations are upscaled 140 

to the model grid, to be compared to a model forecast, or instead both observations and model output are upscaled to a coarser 

grid. In the first case, the model forecasts, expressed as a model output variable (e.g. the precipitation falling over an area), is 

directly compared with the “observation” (e.g. a thunderstorm cell identified by an algorithm on the basis of some 

observations). In the second case, the same algorithm (an observation operator) is applied to the same set of meteorological 

variables in both the observed data and the model output in order to compare homogeneous quantities. This approach eliminates 145 

some approximations made in the process of observation product derivation, but observation operators are also far from perfect. 

Therefore, although this approach can ensure greater homogeneity between the variables, it may still introduce other errors 

resulting from the transformation of the model output. 

Finally, the fourth step is the computation of the verification metrics. This step is not principally different from what is usually 

done in objective verification, taking into account the specific characteristics of the forecast/observation pair. In general, high-150 

impact weather verification requires an approach to the verification problem where the exact matching between forecast and 

observation is rarely possible, therefore verification naturally tends to follow fuzzy and/or spatial approaches (Ebert, 2008; 

Dorninger, 2020). An issue inherent in the verification of objects, such as convective cells, is the definition of the “non-event”: 

while it is intuitive how to perform the matching between a forecasted and an observed convective cell, how to define the 

mismatch between a forecasted cell and the non-occurrence of convective cells in the domain (false alarms) is not trivial. This 155 

question should be addressed when the verification methodology is designed and the answer may depend on the specific 

methodology adopted for the spatial matching. Some of the spatial methods (e.g., distance metrics, Methods for Object-based 

Diagnostic Evaluation (MODE; Davis et al. 2006)) do make it relatively easy to identify and/or evaluate false alarms  and they 

should be preferred when the false alarms are particularly relevant for the evaluation.  

2 High-impact weather: Thunderstorms 160 

In convective situations, meteorological centres use a large amount of real-time data from different sources (e.g. ground-based, 

satellite, and radar) in order to perform nowcasting and monitoring of thunderstorms and thus issue official weather warnings. 

In recent years, with the development of convection-permitting models, thunderstorm forecasting has become an aim of short-

range forecasting, particularly with the advent of modeling frameworks such as the Rapid Update Cycle (RUC), which provides 
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NWP-based forecasts at the 0-6h time scale updated every 15-60 minutes. These predictions of thunderstorms, from 165 

nowcasting to forecasting, need to be verified in order to provide reliable products to the forecasters and to the users. 

New observations which could be used, or have been used on a limited basis, for the verification of thunderstorms, are reviewed 

here, categorized as lightning detection networks, nowcasting products and data collected through human activities. Examples 

of usage of these data, sometimes in combination, in the objective verification of thunderstorms are presented. 

2.1 Lighting detection networks 170 

Data from lightning detection networks are used for nowcasting purposes in several centres. Lightning density and its temporal 

evolution can serve as a useful predictor for the classification of storm intensity and its further development (Wapler et al., 

2018). Therefore, these data show a good potential in thunderstorm verification. Lightning data can be used as observations in 

different ways, from the most direct, verifying a forecast also expressed in terms of lightning, to more indirect, for example, 

by verifying a predicted thunderstorm cell. In both cases, some issues need to be addressed, starting from how many strokes 175 

are needed to detect the occurrence of a thunderstorm (specification of thresholds). In the indirect cases, how large an area  

defines the region of the phenomenon (thunderstorm) needs to be specified. These choices are relevant also when lightning 

data are combined with other observations (e.g. radar data), in order to improve the detection of the phenomenon. Some of 

these issues are further discussed when examples of forecast verification against lighting data are presented. 

Data from lightning localisation networks have the advantage of continuous space and time coverage and of a high detection 180 

efficiency, compared to human thunderstorm observations-. Some lightning detection networks which have been used for 

thunderstorm verification (often only subjectively) are listed in Table 1. 

 

Name of the dataset Scope Short Description References 

EUCLID (EUropean 

Cooperation for 

LIghtning Detection) 

Collaboration 

among national 

lightning 

detecting 

networks over 

Europe 

Lightning data with homogenous 

quality in terms of detection efficiency 

and location accuracy. About 164 

sensors in 27 countries. 

www.euclid.org 

LINET 

(LIghtning detection 

NETwork) 

Originally 

developed at the 

University of 

Munich 

Lightning sensors set up in the area to 

be monitored (baseline 200 to 250 

km). Information about location, time 

and stroke current. 

www.nowcast.de 

Betz et al. (2009) 
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ATDnet (Arrival 

Time Difference 

network) 

Met Office Network of 11 sensors around the 

world. 

https://navigator.eumetsat.int/ 

product/EO:EUM:DAT:OBS: 

ATDNET 

Anderson and Klugmann (2014) 

NORDLIS  

(Nordic Lightning 

Information System) 

Scandinavia Cooperative lightning location 

network between Norway, Sweden, 

Finland and Estonia; about 30 sensors. 

Mäkelä et al. (2010) 

National Lightning 

Detection Network 

(NLDN) 

USA NOAA develops derived products 

freely available for all users, including 

summaries of lightning flashes by 

county and state and gridded lightning 

frequency products. 

Cummins and Murphy (2009) 

https://www.ncdc.noaa.gov/data-

access/severe-weather/lightning-

products-and-services 

SA-LDN (South 

African Lightning 

Detection Network) 

South African 

Weather 

Service 

Network of 26 Vaisala cloud-to-

ground lightning detection sensors  

Gijben (2012) 

Table 1. Lightning detection networks used for thunderstorm verification in the papers referenced in this section. 

 185 

Lightning observations are also provided from space (Table 2), which can complement ground-based weather radars over sea 

and in mountainous regions. 

Sensor/dataset Operated by Short Description References 

Lightning 

Imaging Sensor 

(LIS) 

International Space 

Station (ISS) 

Provides total lightning 

measurements between +/- 48 

degrees latitude. 

Blakeslee and Koshak, 2016 

Geostationary 

Lightning Mapper 

(GLM) 

GOES-16 (NOAA) Measures a region including the 

United States, providing lightning 

detection with a spatial resolution of 

about 10 km. 

https://ghrc.nsstc.nasa.gov/lightning 

Geostationary 

Lightning Imager 

(or Lightning 

Mapping Imager) 

FY-4 (CMA) Provides measurements of the total 

lightning activity with a resolution 

of about 6 km at the subsatellite 

point. 

https://fy4.nsmc.org.cn/nsmc/en/ 
theme/FY4A_instrument.html#LMI  
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Lightning imager 

mission 

Meteosat Third 

Generation 

Provides lightning products with 4.5 

km resolution. 

www.eumetsat.int 

Table 2. Lightning sensors on board satellites and the International Space Station . 

2.2 Nowcasting products 

National Meteorological Services develop tools for nowcasting, where observational data from different sources (satellite, 190 

radar, lightning, etc.) are integrated in a coherent framework (Wapler et al., 2018 and Schmid et al. 2019), mainly with the 

purpose of detection and very short range prediction of high-impact weather phenomena. In this context, the use of machine 

learning to detect the phenomenon from new observations, after training the algorithm with a sufficiently large sample of past 

observations, could play an important role by mimicking a decision tree where different ingredients (predictors) are combined 

and computing how they should be weighted. Usually different algorithms are developed for the different products. For a 195 

description of nowcasting methods and systems, see WMO-No.1198 (2017) and Schmid et al. (2019). 

For the purpose of this paper, the detected variables/objects of nowcasting (thunderstorm cells, hail, etc.) can become 

observations against which to verify the model forecast. The detection step of the nowcasting algorithm can be considered as 

a sort of “analysis” of the phenomenon addressed by that algorithm, e.g. an observation of a convective cell, which could be 

used for verifying the forecasts of this phenomenon. Here, nowcasting products are proposed as observed data instead of 200 

prediction tools.  

Remote-sensing-based nowcasting products have the clear advantage of offering high spatial continuity over vast areas. As a 

disadvantage, it should be noted that some data have only a qualitative value, but qualitative evaluation could become 

quantitative by “relaxing” the comparison through neighbourhood/thresholding (examples will be provided in Section 2.4). 

The quantification of the errors affecting the products is also an issue, since usually this is not provided by the developers. 205 

Efforts towards such an error quantification should be made to provide appropriate confidence in the verification practice. 

Exploring the possible usage of the variables/objects identified through nowcasting algorithms for the purpose of forecast 

verification requires strengthening the collaboration between the verification and the nowcasting communities. On the one 

hand, the nowcasting community has a deep knowledge of the data sources used in the nowcasting process and of the quality 

of the products obtained by their combination. On the other hand, the forecast verification community can select, from the 210 

huge amount of available data, those showing greater reliability and offering a more complete representation of the 

phenomenon to be verified.  

Many meteorological centres have developed their own nowcasting algorithms, (Wapler et al., 2019), usually different for 

different countries, but a complete description of them is difficult to find in the literature. Therefore, it is recommended to 

contact the Meteorological Centre of the region of interest. The example of EUMETSAT collaboration shown below indicates 215 

the kind of available products. 
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2.2.1 The EUMETSAT NWC-SAF example 

EUMETSAT (www.eumetsat.int) proposes several algorithms for using their data. The Satellite Application Facility for 

supporting NoWCasting and very short range forecasting (NWC-SAF, nwc-saf.eumetsat.int) provides software packages for 

generating several products from satellite: clouds, precipitation, convection and wind (Ripodas et al., 2019). The software is 220 

distributed freely to registered users of the meteorological community. The European Severe Storms Laboratory (ESSL, 

https://www.essl.org) has performed a subjective evaluation of the products of the NWC-SAF for convection (Holzer and 

Groenemeijer, 2017) indicating the usefulness of the products for nowcasting and warning for objective verification. For 

example, the stability products (Lifted Index, K-index, Showalter Index) and Precipitable Water (low, mid, and upper 

troposphere) have been judged to be of some value. The RDT (Rapid Developing Thunderstorms) product in its present form 225 

has been judged difficult to use, but elements of the RDT product have significant potential for the nowcasting of severe 

convective storms, namely the cloud-top temperatures and the overshooting-top detections. Furthermore, the RDT index has 

proven to be useful in regions where radar data do not have full coverage. De Coning et al. (2015) found good correlations 

between the storms identified by the RDT and the occurrence of lightning over South Africa. Gijben and de Coning (2017) 

showed that the inclusion of lightning data had a positive effect on the accuracy of the RDT product, when compared to radar 230 

data, over a sample of twenty-five summer cases. RDT is considered as an observation against which to compare model 

forecasts of convection, as well high impact weather warnings, at the South African Weather Service (S.  Landman, personal 

communication). A review of the products for detecting the convection is made by the Convection Working Group, an initiative 

of EUMETSAT and its member states and ESSL (https://cwg.eumetsat.int/satellite-guidance, Fig. 1), indicating which 

products are appropriate for the detection of convection. 235 

 

Figure 1. Satellite-derived products for the detection of convection . From https://cwg.eumetsat.int/satellite-guidance. 

about:blank
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2.3 Data collected through human activities 

Human activities permit generation and collection of a wide and diverse amount of data about the weather. Some of these data 

are collected with the purpose of monitoring the weather (citizen networks, reports of severe weather), others are generated 240 

for quite different purposes but may be related to the weather (impact data, insurance data). A special category are the data 

generated in the social networks: a report of severe weather may be generated only for the purpose of complaining about the 

weather. The quality of these data and their correlation with weather phenomena are very different in these three cases. A 

review of the so-called “volunteered geographic information” related to weather hazards has been performed by Harrison et 

al. (2020), including also crowdsourcing and social media. 245 

Data collected through human activities can be distinguished by those solicited by the potential user and those that are not. An 

example of the first is report data collected in a dedicated website, prepared by the potential user, invit ing the citizen to submit 

their report. Table 3 describes three widely used databases. This kind of data may be biased by the fact that people may feel 

pushed to report. Non-solicited data include those associated with public assistance (e.g. emergency services) and those 

spontaneously generated by people (e.g. in social networks). Solicited and un-solicited human reports need to be quality 250 

checked in order to take into account and correct for biases which are introduced (e.g. multiple reports of the same event with 

little spatial or temporal distance, subjective and conflicting evaluations of the intensity, variation of the sample with time, 

etc.). Human reports and impact data have the advantage of being particularly suitable for high impact weather verification, 

and the disadvantage that they are biased: the non-event is usually not reported. In addition, they depend on the density of the 

population: where no or few people live, no reports are issued even if the impact on the society (e.g. agriculture) or on the 255 

environment may be high. Therefore, this kind of data has a particularly inhomogeneous spatial distribution. 

 

Dataset Name Operated by Characteristics References 

European Severe 

Weather Database 

(ESWD) 

ESSL (European 

Severe Storm 

Laboratory) 

Quality-controlled information on 

severe convective storm events 

over Europe. Among other 

parameters, hailstones with a 

diameter of at least 2.0 cm are 

reported. 

https://www.eswd.eu  

Dotzek et al., 2009 

Storm Prediction 

Center (SPC) 

NOAA Archive of severe weather events, 

including tornadoes, wind, hail, 

thunderstorms. 

https://www.spc.noaa.gov 

Severe Storms 

Archive 

BoM (Australian 

Bureau of 

Meteorology) 

Data relating to recorded severe 

thunderstorm and related events in 

Australia dating back to the 18th 

http://www.bom.gov.au/australia/

stormarchive 
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Century. Information on related 

severe weather (e.g. wind gusts) is 

also provided. 

Table 3. Widely used severe weather report databases. 

 

Severe weather reports are an important source of information which can be made objective and used in forecast verification. 260 

Hitchens et al. (2013) define a “practically perfect” warning region based on point-based storm reports (e.g., for wind, hail). 

The “practically perfect” region is consistent with a forecast which a forecaster would make given perfect knowledge of the 

reported event. Statistical methods are used to convert point observations (here reports) into a spatial field that can be compared 

directly to a warning or the output from a model. The field gives the probability that an event occurs in a given g rid box. By 

considering each probability value as an individual threshold, the range of probabilities can be converted into a set of 265 

dichotomous (yes or no) observation of severe weather. 

 Reports can be also be combined with other data sources to identify the phenomenon. Valachova and Sykorova (2017) use a 

combination of satellite data, lightning data and radar data (cells identified through a tracking algorithm) in order to detect 

thunderstorms and their intensity for nowcasting purposes, in combination with reports from ESWD operated by ESSL.  

Crowdsourcing can also provide a new kind of data useful for verifying thunderstorm as a phenomenon, using the reports from 270 

the citizens as observations of the thunderstorm. Wiwatwattana et al. (2015) describe the use of reports from a crowd-sourcing 

weather app to verify probabilistic precipitation forecasts in Bangkok, Thailand. Crowd-sourced hail reports gathered with an 

app from MeteoSwiss makes an extremely valuable observational dataset on the occurrence and approximate size of hail in 

Switzerland (Barras et al., 2019). The crowdsourced reports are numerous and account for much larger areas than automatic 

hail sensors, with the advantage of unprecedented spatial and temporal coverage, but prov ide subjective and less precise 275 

information on the true size of hail. Therefore, they need to be quality controlled. Barras et al. (2019) noted that their reflectivity 

filter requires reports to be located close to a radar reflectivity area of at least 35 dbZ. Overall, the plausibility filters remove 

approximately half of the reports in the dataset.   

Among the impact data, insurance data are a useful source, but their availability is limited because of economic interests 

(Pardowitz, 2018). In some cases partnerships between weather services and insurance providers may be arranged to exchange 280 

data. 

A special branch of non-solicited impact data are those generated in the social networks. Recent work at Exeter University 

(UK) has shown that social sensing provides robust detection/location of multiple types of weather hazards (Williams, 2019). 

In this work, Twitter data were used for sensing the occurrence of flooding. Methods to automate detection of social impacts 

are developed, focusing also on the data filtering to achieve a good quality. In the usage of all these data as observations for 285 

an objective verification, a crucial step is the pre-processing of the data in order to isolate the features which are really 

representative of the forecasted phenomenon. As noted earlier, an assessment of the observation error should accompany the 

data, for example by varying the filtering criteria and producing a range of plausible observations. 
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2.4 Usage of the new observations in the evaluation or verification of thunderstorms  

In this section, some studies describing the verification of thunderstorm and convection are presented. They represent only a 290 

subset of those that have been undertaken world-wide to address this topic. 

They are used here to show which verification methods have been used and how the authors addressed the issues posed by the 

usage of non-standard observations and by the need to create a meaningful verification set. The different observations listed 

in the previous subsection are used, sometimes in combination. For each work, their most significant feature for the purpose 

of this paper is indicated in the title as keyword(s). 295 

 

Lightning; matching forecast and observation. Caumont (2017) verified lightning forecasts by computing 10 different proxies 

for lightning occurrence from the forecast of the AROME model run at 2.5 km. In order for them to be good proxies for 

lightning, calibration of their distribution was performed, offering a good example of the process of matching the predicted 

quantity with the observed one. 300 

Lightning; spatial coverage. For a thunderstorm probability forecasting contest, Corbosiero and Galarneau (2009) and 

Corbosiero and Lazear (2013) predicted the probability to the nearest 10% that a thunderstorm was reported during a 24-hour 

period at ten locations across the continental United States. The forecasts were verified by standard METAR reports as well 

as by the National Lightning Detection Network (NLDN) data. For this comparison, strikes were counted within 20 km of 

each station (Bosart and Landin, 1994). Results show that, although there was significant variability, the 10-km NLDN radial 305 

ring best matches METAR thunderstorm occurrence. 

Lightning; matching forecast and observation. Brunet et al. (2019) use lightning data in a 25 km radius of a forecast point to 

be a thunderstorm "observation" for the purpose of verifying NWP-based warnings and comparing to human-generated 

thunderstorm warnings. They propose a verification methodology for the fair comparison between continuous and categorical 

probabilistic forecasts, as needed for comparing human and automatically generated object-based forecasts derived from 310 

probabilistic forecasts. 

Lightning; spatial coverage; pointwise vs spatial. Wapler et al. (2012) computed the Probability of Detection (POD) by 

comparing the cells detected by two different nowcasting algorithms to lightning data. The comparison was made both 

pointwise and using an areal approach (following Davis et al., 2006). They showed how the score improves by increasing the 

radius of the cell and that the verification is also dependent on the reflectivity threshold used to detect the cells. The pointwise 315 

approach gave a higher POD than the areal approach, showing how the choice of the verification method influences the results. 

The area covered by lightning generally extends beyond the area covered by a cell (identified by high reflectivity values), 

leading to a decrease of the areal POD. False Alarm Ratio was computed only for the areal approach, considered the difficulty 

of counting the number of non-forecasted events in the pointwise approach. They also compared detection of hail from the 

ESWD report with the cells detected by two nowcasting algorithms, but no scores were computed. As the authors pointed out, 320 
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since observations of “no-event” are not provided, it is difficult to compute scores resulting from the presence of “yes-event” 

observations only.  

Lightning; spatial coverage; false alarms. Lighting data were used for verification of nowcasting of thunderstorms from 

satellite data by Müller et al. (2017). They used a search radius of 50 km, within which at least 2 flashes in 10 minutes should 

be recorded in order to detect the event. A false alarm was identified when the nowcasted thunderstorm was not associated 325 

with a detected event. 

Lightning; spatial method. In the work of de Rosa et al. (2017) extensive verification of thunderstorm nowcasting was 

performed against ATDNet lightning data over a large domain covering central and southern Europe using the MODE method 

(Davis, 2006; Bullock et al., 2016) of the MET (Model Evaluation Tools) verification package. The cells detected from the 

nowcasting algorithm were compared against lightning objects obtained by clustering the strikes. 330 

Combination of lightning and report data. Wapler et al. (2015) performed a verification of warnings issued by the DWD for 

two convective events over Germany. They qualitatively compared warning areas against data from ESWD Reports and 

lightning data. They also performed a quantitative comparison against lightning data via a contingency table for the two events. 

This approach could be extended to a larger dataset in order to perform a statistically robust verification. 

Combination of lightning and report data. At ECMWF, two parameters, convective available potential energy (CAPE) and a 335 

composite CAPE–shear parameter, have recently been added to the Extreme Forecast Index / Shift Of Tails products 

(EFI/SOT), targeting severe convection. Verification is performed against datasets containing severe weather reports only and 

a combination of these reports with ATDNet lightning data (Tsonevsky et al., 2018). Verification results based on the area 

under the relative operating characteristic curve show high skill at discriminating between severe and non-severe convection 

in the medium range over Europe and the United States (Fig. 2). More generally, report data and lightning data were used to 340 

evaluate the performance of ECMWF systems in a collection of severe-weather related case studies, including convection, for 

the period 2014-2019 (Magnusson, 2019). 
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Figure 2. Area under the ROC Curve for EFI for CAPE (left) and CAPE-shear (right) for Europe, compared against datasets 345 

containing severe weather reports only (red curves) and a combination of these reports with ATDNet lightning data (blue curves).  

From Tsonevsky et al. (2018). 

 

Satellite data; observation operator. Wilson and Mittermaier (2009) employed a MSG satellite derived Lifting Index to 

evaluate the Lifted Index forecasted by the model, to verify regions of convective activity. The index can be computed only 350 

on cloud-free areas but, with respect to that derived from radiosoundings, has the advantage of much larger geographical 

coverage. 

Satellite data; observation operator. Rempel et al. (2017) verified convective development in a convection-permitting model 

against satellite data. An observation operator was used to derive synthetic satellite images from the model. The computation 

of object-based metrics (SAL, Wernli et al., 2008) was performed, after the identification of individual cloud objects within 355 

the considered domain both in the observed and synthetic satellite images. 

Satellite data; matching forecast and observation. Deep convection in a convection-permitting model, compared to the one 

forecasted by a convection-parametrised model, was evaluated by Keller et al. (2015). The observables were satellite-derived 

cloud top pressure, cloud optical thickness, brightness temperature, outgoing longwave radiation and reflected solar radiation. 

They were used in combination to evaluate the characteristics of the convection. No objective verification was performed, but 360 

a categorization of the satellite products (Fig. 3) permits the use of these indicators for verification of cloud type and timing of 

convection. 

 

Figure 3. Histograms of cloud frequency as a function of cloud optical thickness and Cloud Top Pres sure for (a) satellite data and 

(b,c,d) three simulations made with the COSMO model at 12 km (b) and 2 km (c,d, the latter with enhanced microphysics scheme)  365 

horizontal resolution. From Keller et al. (2015). 

 

Evaluation from citizens used for verification. MeteoSwiss carried out a subjective verification by beta testers of thunderstorm 

warnings issued for municipalities on mobile phones via app (Gaia et al., 2017). The forecast was issued in categories: “a 

developing / moderate / severe / very severe thunderstorm is expected in the next XX minutes in a given municipality”. 370 

Probability of Detection and False Alarm Ratio of the thunderstorm warnings, were computed against beta-tester evaluation. 
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Insurance data and emergency call data. Schuster et al. (2005) analysed characteristics of Australian hailstorms using data of 

insurance claims costs, emergency calls and emergency service intervention, in addition to data from severe weather reports 

(Fig. 4). Rossi et al. (2013) used weather-related emergency reports archived in a database by the Ministry of the Interior in 

Finland to determine hazard levels for convective storms detected by radar, demonstrating the potential of these data especially 375 

for long-lasting storms. 

 

Figure 4. Affected area and storm paths derived from radar data (closed contours) with (a) hailstone sizes categorized according to 

their diameters in cm and (b) requests for assistance to the NSW State Emergency Service.  From Schuster et al. (2005). 

 380 

Emergency services data; matching forecast and observation. Pardowitz and Göber (2017) compared convective cells detected 

by a nowcasting algorithm against data of fire brigade operations. In addition to the location and time of the alerts, the data 

included keywords associated to each operation, which permitted selection of the weather related operations relevant for this 

work (water damages and tree related incidents). Pardowitz (2018) examined fire brigade operation data in the city of Berlin 

with respect to their correlation to severe weather. 385 

Airport operation data used in verification; matching forecast and observation. A simple and effective verification framework 

for impact forecasts (in this case, probabilistic forecasts of thunderstorm risk) was demonstrated by Brown and Buchanan 

(2018) based on two years of data. The London Terminal Maneuvering Area (TMA) thunderstorm risk forecast is a specific 

customer oriented forecast with the purpose of providing early warning of convective activity in  a particular area. The London 

TMA thunderstorm risk forecasts were verified for a range of thresholds against observations provided by the UK Air 390 

Navigation Service Provider (ANSP) of the delay in minutes (arrival, en-route and alternative combined) and arrival flow rate 

experienced at airports across the London TMA. Applying thresholds to the delay in minutes and flow rate data received 
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directly from the UK ANSP allows for categorization of each forecast period into a high or medium impact event. This process 

enables a simple 2 × 2 contingency approach to be taken when verifying the forecasts. Brown and Buchanan (2018) analysed 

the results using relative operating characteristic (ROC) curves, reliability diagrams and economic value plots (e.g. Jolliffe and 395 

Stephenson, 2012). 

3 High-impact weather: Fog 

The second high-impact weather phenomenon considered here is fog. According to the WMO definitions, fog is detected in 

observations when the visibility is below 1000 m, but in the context of high-impact weather different thresholds are often 

adopted, specific to the application of interest. NWP models generally are not efficient in predicting fog and visibility 400 

conditions near the surface (Steeneveld, 2015), since the stable boundary layer processes are typically not represented well in 

the NWP models. Therefore, for forecasting of fog/visibility, very-high-resolution (300m grid) models are employed in some 

of the NWP centres (London Model in Met Office UK and Delhi Model in NCMRWF, India). 

3.1 Observations for fog 

Fog and low stratus can be detected by surface or satellite observations. Problems of visibility measures from manual and 405 

automatic stations are described in Wilson and Mittermaier (2009). In principle, surface instruments can easily detect fog (e.g. 

visibility and cloud base height measurements). However, observation sites are sparsely distributed and do not yield a full 

picture of the spatial extent of fog. Satellite data can compensate because of the continuous spatial coverage they provide 

(Cermak and Bendix, 2008). The disadvantage of satellite data is the lack of observations when mid- and high-level clouds are 

present (Gultepe, 2007). Also, the precise horizontal and vertical visibility at the ground is difficult to assess based sole ly on 410 

satellite data. Satellite data alone cannot distinguish between fog and low stratus, because it cannot be determined if the cloud 

base reaches the surface. Therefore, detection methods usually include both phenomena. Satellite data are used for the detection 

of fog in several weather centres during the monitoring phase of operational practice. As an example, in India, fog is monitored 

using satellite maps from fog detection algorithms developed for INSAT 3D satellite joint ISRO-Indian Space Research 

Organization. Published evaluations of model outputs for the prediction of fog employing satellite images have mainly taken 415 

a case study approach (e.g. Müller et al., 2010; Capitanio, 2013). Only few studies employed satellite data in an objective 

verification framework, using spatial verification methods. 

3.1.1 The EUMETSAT NWC-SAF example 

The Satellite Application Facility for supporting NoWCasting and very-short-range forecasting (NWC-SAF) of EUMETSAT 

provides cloud mask (CMa) and cloud type (CT) products. In CMa, a multispectral thresholding technique is used to classify 420 

each grid point. The thresholds are determined from satellite-dependent look-up tables using as input the viewing geometry 

(sun and satellite viewing angles), NWP model forecast fields (surface temperature and total atmospheric water vapour content) 
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and ancillary data (elevation and climatological maps). With the CT mask a cloud type category is attributed to the clouds 

detected by the CMa. To assess the cloud height, the brightness temperature of a c loud at 10.8 μm is compared to a NWP 

forecast of air temperature at various pressure levels. The CMa followed by the CT application classifies each grid point as 425 

one of the listed categories (Derrien and Le Gléau, 2014). The points (or areas) that are labe lled as fog can be used 

quantitatively, for example as a dichotomous (fog/no fog) value. 

The 24h Microphysics RGB (red-green-blue; description available at www.eumetrain.org) makes use of three window 

channels of MSG: 12.0, 10.8 and 8.7 µm. This product has been tuned for detection of low-level water clouds and can be used 

day and night throughout the year. In the 24h Microphysics RGB product fog and low clouds are represented by light 430 

greenish/yellowish colours. Transparent appearance (sometimes with gray tones) indicates a relatively thin, low feature that is 

likely fog. In order to use this product for fog and low cloud detection as an observation in a verification process, a mask could 

be created, where pixels with light greenish/yellowish colours are set to the value of 1 and all other colours set to 0. 

Other centres developed different algorithms for similar purposes: NOAA developed GEOCAT (Geostationary Cloud 

Algorithm Test-bed), which, among others, provide estimates fog probability from satellite. Thresholds should be applied to 435 

the probabilities in order to perform verification of model fog forecasts. 

3.2 Usage of the new observations in the evaluation or verification of fog 

Some studies demonstrating the verification of fog forecasts are briefly described below. Depending on the observation they 

use and on the purpose of the verification, point-wise or spatial verification methods are adopted. In addition, there is a 

distinction, depending on the purpose of verification, between model-oriented and user-oriented methods. Spatial verification, 440 

e.g. using objects, or allowing for some sort of spatial shift, can be informative for modelers and as a general guidance for 

users. If a user needs information about performance at a particular location only (e.g. an airport), it does not matter whether 

the fog that was missed in the forecast was correctly predicted at a nearby location. For this user, classical point -wise 

verification measures are still the most relevant. However, with the increased use of probabilistic forecasts (to be recommended 

especially in the case of fog) this distinction blurs somewhat, because the ‘nearby correct forecast’ is likely to indirectly  show 445 

up in the probabilistic scores of a given location. The work presented are organised as point-wise or spatial verification 

methods. 

 

Point-wise verification.  

Zhou and Du (2010) verified probabilistic and deterministic fog forecasts from an ensemble at 13 selected locations in China, 450 

where fog reports were regularly available. The forecast at the nearest model grid point was verified against observations over 

a long period. Boutle et al. (2016) performed an evaluation of the fog forecasted by a very-high-resolution run (333 m) of the 

Unified Model over the London area. Verification was made at three locations where measurements were available: two 

visibility sensors at two nearby airports and manual observations made at London City. Bazlova (2019) presented the results 

of the verification of fog predicted with a nowcasting system at three airports in Russia, in the framework of the WMO Aviation 455 
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Research Demonstration Project (AvRDP). Indices from the contingency table were computed against observations available 

from aviation weather observation stations. 

Terminal Area Forecasts (TAFs) give information about the expected conditions of wind, visibility, significant weather and 

clouds at airports. Mahringer (2008) summarized a novel strategy to verify TAFs using different types of change groups, where 

the forecaster gives a range of possible values valid for a time interval. A TAF thus contains a range of forecast conditions for 460 

a given interval. In this approach, time and meteorological state constraints are relaxed in verification. To evaluate the 

correctness of a forecast range, the highest (or most favourable) and lowest (or most adverse) conditions valid for each hour 

of the TAF are taken for verification. For this purpose, all observations within the respective hour are used (METAR and 

SPECI), which span a range of observed conditions. For each hour, two comparisons are made: the highest observed value is 

used to score the highest forecast value and the lowest observed value is used to score the lowest forecast value. Entries are 465 

made accordingly into two contingency tables which are specific for weather element and lead time. 

From a model-oriented verification point of view of fog and visibility, aiming at improving the modelling components, 

generally the focus is on how accurately the model reproduces ground and surface  properties, surface layer meteorology, near 

surface fluxes, atmospheric profiles and aerosol and fog optical properties. Ghude et al. (2017) give details of an observation 

field campaign for study of fog over Delhi in India. Such campaigns allow not only verification of various surface, near surface 470 

and upper air conditions, but also allow calibration of models, or the application of statistical methods to improve raw model 

forecasts at stations of high interest (e.g. airports). Micro-meteorological parameters like soil temperature and moisture, near 

surface fluxes of heat, water vapor and momentum in the very-high-resolution models (London Model and Delhi Model; 330m 

grid resolution) could be verified using the field data. 

 475 

Spatial verification using satellite data. 

Morales et al. (2013) verified fog and low cloud simulations performed with the AROME model at 2.5 km horizontal resolution 

using the object-oriented SAL measure (Wernli et al, 2008). The comparison was made against the Cloud Type product of 

NWC-SAF. Roux (2017) subjectively verified ACCESS model forecasts of fog fraction in the vicinity of Perth, Australia 

against fog probability estimated from Himawari-8 geostationary satellite data using the GEOCAT package mentioned earlier. 480 

Westerhuis et al. (2018) and Ehrler (2018) used a different satellite-based method for fog detection. The detection method 

calculates a low-liquid-cloud confidence level (CCL method) from the difference between two infrared channels (12.0 μm and 

8.7 μm) from Meteosat Second Generation with a spatial resolution of about 3 km. The grid points are also filtered for high- 

and mid-level clouds using the Cloud Type information from the NWC-SAF data. The CCL satellite data ensures consistent 

day- and nighttime detection of fog, in contrast to the NWC-SAF cloud detection, which was also tested as a reference. Cases 485 

with high and mid-level clouds must be excluded. The same method for fog detection was also used in Hacker and Bott (2018) 

who studied the modeling of fog with the COSMO model in the Namib Desert. Ehrler (2018) verified the fog forecasted by 

the COSMO model using the Fractions Skill Score (Roberts and Lean, 2007). First, grid points with high- or mid-level clouds 

were filtered, both in the CCL satellite and in the COSMO model data. Then, the score was computed on the remaining points. 
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The CCL satellite data is not binary, but rather ranges from 0 to 1, therefore an adequate CCL threshold above which a grid 490 

point is assumed as fog needed to be determined. For this purpose, the FSS was calculated for different thresholds (0.5-0.8) in 

the CCL satellite data, leading to the choice of a threshold of 0.7. 

In order to verify fog extent, measures considering the area impacted by a phenomenon could be employed, as for example the 

Spatial Probability Score (SPS) introduced by Goessling and Jung (2018). 

4 Final considerations 495 

This paper reviews non-standard observations and proposes that they be used in objective verification of forecasts of high-

impact weather. Apart from the description of the data sources, their advantages and critical issues with respect to their usage 

in forecast verification are highlighted. Some verification studies employing these data, sometimes only qualitatively, are 

presented, showing the (potential) usefulness of the "new" observations for the verification of high-impact weather forecasts. 

Several data sources are not “new” in other contexts, but have not been routinely applied for objective forecast verification. 500 

For example, some data are well established as sources of information for nowcasting and monitoring of high-impact weather. 

Others are used in the assessment of the impacts related to severe weather. In this paper, the element of novelty is given by 

reviewing these observations in a unique framework, addressing the community of NWP verification, aiming at stimulating 

the usage of these observations for the objective verification of high-impact weather and of specific weather phenomena. In 

this context, this work proposes to establish or reinforce the bridge between the nowcasting and the impact communities on 505 

one side, and the NWP community on the other side. In particular, a closer cooperation with nowcasting groups is suggested, 

because of their experience in developing products for the detection of high-impact weather phenomena. This cooperation 

would allow for the identification of nowcasting objects and algorithms which can be used as pseudo-observations for forecast 

verification.  

The possibility offered by non-standard types of observations generated through human activities, such as reports of severe 510 

weather, impact data (emergency calls, emergency services, insurance data), and crowdsourcing data, could be extended to 

many more data sources. For example, no studies referenced here made use of weather related data which can be collected 

automatically when a car is driving (e.g. condition of the road with respect to icing), but their potential for forecast verification 

has already been foreseen (Riede et al., 2019), though not yet in a mature stage. Other possibilities are offered by new impact 

data (e.g. the effect of the weather on agriculture) or by the exploitation of the huge amount of information available in the 515 

social networks. 

Performing verification of phenomena using new types of observations requires that the matching between forecasted and 

observed quantities be addressed first. The paper highlights, in reviewing the referenced works, how the matching between 

forecast and “new” observations has been performed by those authors, in order to provide the reader with useful indications of 

when the same observations, or even other observations with similar characteristics, could be used in verification. 520 
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The assessment of the data quality and of the uncertainty associated to the observations is part of this verification. The usage 

of multiple data sources is suggested as a way to take into account this issue. As we have seen, few studies follow this approach. 

Finally, high-impact weather verification requires an approach to the verification problem where the exact matching between 

forecast and observation is rarely possible, therefore verification naturally tends to follow fuzzy and/or spatial approaches. In 

some studies, spatial verification methods already established for the verification using standard observations for rainfall (SAL, 525 

MODE, FSS) have been applied also with non-standard observations. Following this approach, the full range of spatial methods 

may be applied in this context, depending on the characteristics of the specific phenomenon and the observation used. Since 

this is a relatively new field of application for the objective verification, it is not known which is the most suitable method for 

each phenomenon/observations case, but the reader is invited to consider the hints provided by the authors who first entered 

this realm and expand on them. 530 

This paper does not provide an exhaustive review of all possible new observations potentially usable for the verification of 

high-impact weather forecast, but it seeks to provide the NWP verification community with an organic “starter-package” of 

information about new observations, their characteristics and hints for their usage in verification. This information should 

serve as a basis to consolidate the practice of the verification of high-impact weather phenomena, stimulating the search, for 

each specific verification purpose, of the most appropriate observations. 535 
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